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Ionization and recombination in attosecond electric field pulses
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Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)],
we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short
electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in
time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric
peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle
pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field,
give excellent agreement with fully numerical calculations for all momentum transfers.
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I. INTRODUCTION

The observation and control of quantum phenomena in
atoms and molecules using newly developed laser techniques
is an area of great current interest [1]. In particular, the de-
velopment of attosecond (more accurately “a fraction of a
femtosecond”) pulses has been rapid in recent years [2-6].
Presently, the free-electron laser source at DESY produces
pulses with frequency ~0.5 a.u., total pulse duration 50 fs,
and intensities up to 7 X 10'3 W/cm? (corresponding to a
peak electric field of ~0.044 a.u.) [2,3]', whereas the high-
frequency laser pulses produced from a high-harmonic gen-
eration have a frequency around w=3.3 a.u. and minimal
duration of 0.65 fs [4] and recently of 0.25 fs [6]. In both
cases, the envelopes of the pulses produced are not well con-
trolled and each pulse contains more than five (in the DESY
case more than 100) cycles. Very recently a train of almost
single-cycle pulses of duration 0.17 fs has been realized [7].
A truly few-cycle pulse has been produced for frequency w
~0.05 a.u. [8]. The attosecond few-cycle pulse awaits the
development of attosecond high-power lasers with control-
lable pulse envelopes, but since progress in laser physics is
explosive, there is reason to hope that such lasers will be
available in the near future. Alternatively one can use rela-
tivistic time dilatation to obtain short, very strong field
pulses in the frame of target particles moving at relativistic
velocities, although here one is restricted to ions in storage
rings.

There has been an enormous amount of theoretical work
on the ionization of atoms by strong lasers. However, in the
early days, this was mostly confined to the cw laser regime.
The observation of real-time electronic processes requires
extremely short pulses where only a few cycles (in fact down
to a half cycle) of the electromagnetic field occur in the pulse
duration. This opens up a completely new area for theory.
Most of the theoretical approaches for studying several-cycle
pulses employed so far are wholly numerical, except for a
small number of analytic results based on the Keldysh-
Faisal-Reiss approximation [9,10] and Coulomb-Volkov ap-
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proach [11]. Here we will consider the situation where the
oscillation period is short compared to the orbital time in the
initial state. In this regime there are a large number of papers
concerning ionization of Rydberg states (see for example
[12-14]) including purely analytic nonperturbative studies of
Rydberg atom excitation and ionization for the case of half-
cycle pulses [15-17]. However, for few-cycle pulses, so far
the theoretical approaches have been limited to numerical
studies only.

In a previous Letter [18], to be referred to as paper I, we
studied the ionization of the ground-state hydrogen atom in a
short half- or single-cycle electric field pulse. Here we
present more extensive results and in particular generalize
the strong-field case to several-cycle pulses and to ionization
from excited states of the hydrogen atom. In addition we
study the energy and particularly angular distributions of ion-
ized electrons. The conclusion of I, that for pulse periods less
than an orbital period a process like Rabi flopping on the
continuum can occur, is reinforced by the results presented
here. In this way, using suitably designed pulses, a control of
the continuum occupation probability (or correspondingly
that of the initial state) can be achieved. Throughout we use
atomic units.

II. THEORY

For an initial state ®,(¢,) we calculate the time propaga-
tion to time ¢, i.e.,

[P ,(1)) = Ut,10)| (1)) (1
where the time-development operator is defined by
H(t)U(t,15) =i d Ul ot (2)

with, in dipole approximation,
H(t)=Hy+r-F(t) = Hy+ V(2). (3)

Here H,, is the atomic Hamiltonian and F(r) describes the
magnitude (whose peak value we denote by F,) and polar-
ization of the classical electric field.

The probability amplitude of occupation of any final state
is then simply
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ag(t) =(PAN[V(1)) (4)

and the corresponding probability is P;(r)=as(1)|*.

The most accurate method of calculating W,(r) from Eq.
(1) is to propagate the initial wave function in time according
to the time-dependent Schrodinger equation (TDSE)

HONE () =49, (0) ©

obtained by applying (2) on |®,(t,)). This we have achieved
by propagating the wave function, completely numerically
with no approximations, on a three-dimensional grid using
the discrete-variable representation (DVR) method. The de-
tails of this numerical approach are given in Ref. [19]. As
with all fully numerical approaches, the results provide little
insight into the physics underlying the time development.
Therefore we examine two limits where analytical solutions
are possible. The first is standard first-order perturbation ap-
proximation (FPA), valid when F,<<1 a.u. Here we give
closed forms for N-cycle rectangular and sinusoidal pulses.
Remarkably, the physics of ionization by very intense pulses
(Fy>1 a.u) becomes rather simple and, somewhat unusual
in strong-field laser-atom interactions, we can give analytic
expressions for excitation and ionization probabilities so
long as the half-cycle duration is less than the initial orbital
period. These expressions are obtained using the first Mag-
nus approximation (FMA) to the exact propagator defined in
Eq. (2). By modifying the FMA to allow for propagation of
the ionized electron in the nuclear Coulomb field, we can
even obtain analytic expressions for the ionization probabil-
ity after N-cycle pulses.

The time propagator in Eq. (2) is defined formally also by
the integral equation

t

U(t,t’):UO(t,t')—if Uo(t,t") V("YU ,t")dl"  (6)

1

where U,(t,t")=exp[—iHy(t—1t")] is the propagator of the
atomic field alone. In first-order perturbation theory one re-
places U on the right-hand side of Eq. (6) by U, and substi-
tutes in Egs. (1) and (4) to give

ag(t) = <‘Df(f)| Uy(1,10)|P(10))
- f (@)Ut WUt 1)@y (a0))di" . (7)

If @,(ty)= ¢ exp(~=iE;ty) and P (1)=p,exp(—iEt), where ¢
and ¢y are eigenstates of H, with different eigenvalues E;
and E, then the first term in Eq. (7) is zero and one obtains

ag(t)=—i J (V)| ppexpli(Es— E)t'ldt’,  (8)

which is the standard first-order perturbation result.

For intense pulses, in general when the electric field is
bigger than the atomic field potential, the perturbation theory
does not converge. However, if the pulse time is very short
one can employ an approximation to U(z,’) first suggested
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by Magnus [20] and considered in detail by Pechukas and
Light [21]. If H and U commute, Eq. (2) can be integrated to
yield

Ul(t,t,) =exp<—if H(t’)dt’). 9)

0

However, this is not possible since H(¢;) and H(z,) do not
commute for any two times #; and 7,. Nevertheless, the Mag-
nus expansion shows that, for small (r—z,), Eq. (9) can be
used as the first approximation to U(¢,") the corrections in-
volving, as one might expect, the nested commutators of H(¢)
at different times. Then if one makes the further assumption
that V(¢) is short compared to the orbital times of eigenstates
of H,, one can neglect the noncommutativity of H, and V(r)
to write

|W.) = Ut,10)| P,(10))

=~ exp(— if V(t')dt’)exp[— iHo(1 - 1) ]| ®i(1))

0

il

0

F(t')dt’) -r}exp(— iEf)|¢y.  (10)
Then, defining

qu F(t')dt' (11)

0

as a momentum boost, one has the simple result

Pi=(¢dexp(-iq- 1)), (12)

which we will call the FMA.

One remarks here on the close analogy between the FMA
for short light pulses and excitation and ionization by the
electric fields of charged particles. For electron or heavy-ion
impact in the first Born approximation, the transition matrix
element is exactly that appearing in Eq. (12), where q is then
the change in momentum of the projectile, or equivalently
the momentum transferred to the target atom. For heavy ions
moving at velocities high enough that their motion can be
described by a classical trajectory the analogy is even closer.
Then, for distant collisions where the dipole term of the Cou-
lomb force is dominant, the transition matrix element is
again of the form (12) in the FMA, with the momentum
transfer q(7) given exactly as in Eq. (11) by an integral over
the electric field of the incident heavy ion. When the momen-
tum transfer becomes small so that e™4T~1-iq-r, the FMA
transition amplitude becomes

ag; = —iq-{¢,|r|$;). (13)

Similarly when (E,~E;)7<1, i.e., for a short pulse the ex-
pression (8) in the first-order perturbation approximation re-
duces to Eq. (13). Hence, the FMA and FPA give identical
results for short, weak pulses. The FPA remains valid for
long, weak pulses, the FMA for short, stronger pulses. The
expression (13), following Ref. [22], will be referred to as
the sudden approximation (SA).
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In the context of a study of sudden perturbations, the
FMA (12) has also been derived by Dykhne and Yudin [23]
who referred to it as the “jarring” or “shakeup” approxima-
tion, presumably since they applied it to atomic excitation
resulting from a sudden change in the nuclear potential (e.g.,
as in neutron scattering). Subsequently this shakeup approxi-
mation has been applied many times to laser-atom interac-
tions (see, e.g., [24,25]). However, in our case the momen-
tum transfer is directly to the atomic electron as in charged-
particle impact and the description “shakeup” is not exactly
appropriate. Hence we prefer to emphasize the analogy to
charged-particle impact and refer to Egs. (11) and (12) as the
first Magnus approximation.

III. FIRST-ORDER PERTURBATION THEORY

The FPA is normally applied to situations where the pulse
contains an enormous number of cycles, e.g., cw laser ion-
ization. Then one obtains a constant ionization rate known as
Fermi’s golden rule. In this case the ejected electrons are
monochromatic, corresponding to the absorption of a single
photon from the ground state. However, for short pulses in
time, as one might expect from elementary considerations of
the time-to-energy Fourier transform embodied in Eq. (8),
the spectrum of ejected electrons exhibits considerable struc-
ture extending over an extremely wide energy range, as
shown by the initial results reported in I.

As an example we consider specifically a pulse consisting
of a train of m alternating half cycles each of duration 7 and
of either rectangular or sinusoidal form. The ionization prob-
ability from the ground state ¢,, with binding energy |E,|, to
a final state ¢, of momentum Kk, integrated over all angles of
emission, is given by

2 =k [ aklacor (1)

where

a(k) =- if F(1) - (¢ylr|p)expliendt,

0
k2

e=E-E, and E=3.

This time integral can be performed to give
‘ [1-exp(ien][1 - (- 1)"exp(iemn)] |?
1 +exp(ien)]
sinz(%er)sinz[%(e— 7T/7')m7':|
COSZ(%ET)Gz

for a sequence of rectangular pulses of magnitude F and
duration 7. Here we defined the function

dpP
o Fou,(E)

= 4Fquy(E) (15)

uy(E) =kf |<¢k|r|¢l>|2dﬁ-

For a sequence of sinusoidal pulses, i.e., F(t)=F sin(7t/7)
and 0 <t<mr, one obtains
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FIG. 1. The energy distribution of ionized electrons for ten half
cycles of duration (a) 7=03 au., ¢g=9X1073 au. and (b) 7
=3 a.u., ¢=0.09 a.u., calculated from Egs. (15) and (16).

[1-(=1)"exp(iem7)]|?
e — (m/7?

[ Fom 2 sinzé(e—W/T)mT
_4( )u,(E) [€— (w1

dP Fow)z
— | == E
dE ( )

(16)

The energy distributions resulting from five full-cycle pulses
are shown in Fig. 1 of paper I. For 7=0.3 a.u. the energy
distributions peak strongly at zero energy and show consid-
erable structure. For sinusoidal pulses the harmonic peaks
decrease smoothly as a function of energy whereas for
square pulses the harmonics are folded with the {sin[%(E
—EI)T]/%(E—EI)T}Z Fourier transform of a single half cycle
and the higher-energy part of the distribution shows peaks at
E|+wy+wy(1+2j)/m, j=1. This behavior is illustrated fur-
ther in Fig. 1 of this paper where we concentrate attention on
the low-energy part of the electron emission spectrum, again
for five-cycle pulses of rectangular or sinusoidal form. The
rectangular pulse has field strength F;, and the peak of the
sinusoidal pulse is shown as 7F,/2 so g is the same in both
cases. Then one sees that near threshold dP/dE is indepen-
dent of pulse shape but differences appear at higher energies
due to the differences in the Fourier transforms of the pulses,
as detailed above. The energy distributions also show a broad
peak, indicated by arrows on Fig. 1, near E=/7, which
corresponds to the frequency of oscillation of the pulses. For
7=0.3 a.u. this peak is much smaller than the E=0 emission
probability. However, for longer pulses, for example, for ten
half cycles with 7=3 a.u., corresponding to total pulse time
of 30 a.u. [Fig. 1(b)], this peak grows and dominates the
emission of zero-energy electrons. Of course this is just the
onset of the behavior appropriate to an infinitely long pulse,
where this resonance peak becomes a 6 function correspond-
ing to one-photon absorption with E=7/7+E|.

In Fig. 2 of paper I, it was shown that for the region of
lower-energy electron emission (<2 a.u.) dP/dE exhibits an
oscillatory behavior as a function of time, in that the ioniza-
tion caused by a unidirectional rectangular half-cycle pulse is
drastically reduced by a subsequent half cycle of opposite
direction. Adding a third half cycle results essentially in the
restoration of the ionization probability for one half cycle. To
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FIG. 2. The excitation probability P, (of the nth shell, n=2,3)
and the ionization probability P;,, for a rectangular pulse with F
=0.03 a.u. and 7=0.3 a.u. as functions of time. The probability of

population of the other bound shells with n>3 is negligibly small.

our knowledge, that this oscillation of ionization and recom-
bination occurs even in the perturbative regime has not been
pointed out before. In Fig. 2 this behavior is made explicit by
plotting the time-dependent occupation probability of the
continuum (dP/dE integrated over all E) and of the n=2 and
3 shells, during a three-half-cycle pulse. Although the abso-
lute probabilities are low, one notes that ionization is as
probable as excitation and that all probabilities oscillate so
that at =27, a one-cycle pulse, almost all probability has
returned to the ground state. Note that in dipole approxima-
tion from the ground state only p states (/=1) are populated,
so that the angular distribution is purely cos” 6.

The origin of the recombination is simply due to the quan-
tum phase reversal which arises from reversing the electric
field. Classically one could view the polarization (ionization)
caused by the first half cycle as simply being reversed by
switching the electric field direction in the second half cycle.
The small residual ionization is just due to the high-
momentum components of the ionized wave packet which
leave the interaction region quickly enough to avoid recom-
bination.

A further interesting effect in the perturbation regime is
the strong dependence of the ionization probability on the
phase of the electric field. We consider a two-cycle (m=4)
sinusoidal pulse with a sin? envelope, i.e.,

F(t) = Fy sin’(mt/4n)sin(mtl 7+ ¢), t €[0,47], (17)

where ¢ is the relative phase of envelope and carrier. The
pulse forms for ¢=0 and /2 are shown in Fig. 3(a). The
choice (17) ensures that F(r) does not have a dc component
so that the time integral over the pulse yields zero. From Fig.
3(a) the shape of dP/dE, obtained in the FPA, is largely
independent of ¢, since it is decided essentially by the carrier
envelope. However the magnitude of ionization is very sen-
sitive to ¢ and in particular, as shown in Fig. 3(b), where the
low-energy part of the spectrum is magnified, one sees that a
phase change of 7r/2 brings more than one order of magni-
tude change in the ionization probability near threshold.
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FIG. 3. Energy distribution of continuum electrons for a two-
cycle laser pulse with 7=0.3 a.u. and g=9X 10~ a.u. and an as-
sumed sin? envelope for the ¢=0 and /2 cases.

IV. THE STRONG-FIELD SHORT-PULSE CASE

When 7 is shorter than the initial-state orbital time but ¢
(i.e., Fy) is large, then the FMA of Egs. (11) and (12) is
appropriate. One notes that in this approximation only the
integral over the pulse duration appears corresponding to the
momentum boost q given by Eq. (11). For a single half-cycle
rectangular pulse q=F,7 and for a single half-cycle sinu-
soidal pulse q=2F,7/ 7. However, the value of q is indepen-
dent of pulse shape and one can replace F(z) by a & pulse,
ie.,

F(t)=qdt-1,),

The validity of this was demonstrated explicitly in I, where
the FMA result was compared to exact numerical DVR re-
sults for rectangular and sinusoidal pulses (Fig. 3 of that
paper). Since, for hydrogenic atoms, the matrix elements of
the momentum boost operator are known in closed form
[26-28], the ionization probability (12) can be calculated
analytically. This is somewhat unusual in the strong-field
case where often, even in numerical work, the approximation
of reduced dimensionality or cutoff Coulomb potentials has
been made.

Initially we consider a single short pulse and examine the
momentum spectra of ionized electrons as a function of q. In
particular we see where the sudden approximation (13) is
valid. In Fig. 4, we show dP/dE for four values of g. On the
insets of the same figure we show angular distributions given
by

t, € (0,7). (18)

A(K) =f |a(K)[2dk.

When ¢g<<1 a.u. in Fig. 4(a), one sees that for dP/dE the
FMA and its dipole limit the SA agree perfectly. For the
same case the agreement of the FMA angular distribution
(shown on the inset) and the expected p-wave angular distri-
bution in the dipole limit is not so good. The angular distri-
bution in the dipole limit has forward-backward symmetry
even though the field is unidirectional [29], and as can be
seen from Fig. 4(a) the FMA result is not perfectly forward-
backward symmetrical although ¢ is very small. This indi-
cates that the angular distribution is a more sensitive test of
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FIG. 4. Energy distributions obtained after one short pulse (7<<1 a.u.) for g= (a) 0.05, (b) 0.5, (c) 1, and (d) 5 a.u. in the FMA and in
the SA. The dotted line in the case (d) is the energy distribution obtained by projection on plane waves. The insets show the angular

distribution with respect to the field z direction.

approximations than the energy distribution. As ¢ is in-
creased the SA breaks down as can be seen already for ¢
=0.5 a.u. in Fig. 4(b), the angular distribution becoming di-
rected strongly along the field. The dipole contribution of the
SA remains peaked at zero emission energy but the FMA
gradually acquires a peak near to E=¢?/2—|E;| as g becomes
large. This is the binary peak, well known in collision phys-
ics, corresponding to the initially bound electron receiving
all the transferred momentum, with the nucleus acting as a
spectator. This simple physical picture is illustrated best in
momentum space. The distribution of the initial momentum
of the bound electron is given by the momentum-space wave

function ¢,(p), i.e., for a 1s electron in a field of a nucleus of
charge Z

272 1
4 (p*+ 2"
For a large ejected momentum Kk it is sufficient to replace the

continuum Coulomb wave by a plane wave so that Eq. (12)
becomes

|<Zi(P)|2 = (19)

(2z) 1
47 (q+kP*+ 2%

Pn=|dlq+k)= (20)
Hence one sees that the initial momentum distribution, cen-
tered around momentum p=0 from Eq. (19), is simply lifted,
without change of shape, to be centered around k=—-q with
corresponding energy shift g>/2+|E,|. One also sees from
Eq. (20) that the energy distribution peaks near k=g (E

=q?/2) as shown in Fig. 4(d). On the same figure the dotted
line, denoted as projection on the plane waves, is the energy
distribution according to Eq. (20). Indeed, as g — < the dis-
tribution (20) is proportional to 8(q+k) expressing the bi-
nary condition. From Eq. (20) the qualitative features of the
small-g energy distributions are also established. The distri-
bution (19) has a width (p) ~ Z so that for ¢ <Z, the peak of
the distribution is not shifted appreciably and the equivalent
energy shift g?/2 is less than the binding energy |E,|=Z2/2.
Hence only the tail of the distribution (20) is evident at posi-
tive energies, i.e., the distribution peaks at E=0 as in Fig.
4(a). By contrast for ¢>Z (=1 for hydrogen), as in Fig. 4(d),
the whole distribution, peaked at the binary condition k=g, is
evident.

Such a “binary collision” interpretation of energy distri-
butions has already been suggested in Refs. [11] and [17]. In
the latter reference it was also clearly pointed out that a pure
half-cycle pulse cannot be realized in practice, since the total
time integral over the pulse must be zero. From Egs. (11) and
(12) this would appear to imply that the FMA always yields
zero ionization. However, this is not necessarily so. For ex-
ample in Ref. [12] it is shown that pulses can be created with
an initial short large-amplitude half cycle followed by a
much weaker and much longer half cycle in the opposite
direction (see Fig. 1 of Ref. [12]). Hence, on the first half
cycle the initial momentum “kick” is described by the FMA
correctly. The second half of the pulse does not appreciably
change the total ionization probability but may distort the
measured momentum distribution somewhat. Quite how the
distributions of Fig. 4 will be changed will depend on details
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of each particular experiment. Distortions can be minimized,
either by accelerating the electrons out of the pulse region by
a static electric field or by suitably focusing the pulse so that
energetic electrons escape the effect. For these reasons one
should not necessarily view the results of Fig. 4 as represent-
ing distributions measurable in a real experiment. Rather
they should be considered as a “snapshot” of the state of the
electron taken at the half-cycle pulse time. This helps to
understand the subsequent behavior of the ionization process
in the N-cycle pulses to be considered below.

N-cycle case

In the FMA, an even number of half cycles with the same
amplitude results, at the end of the pulse, in no ionization
and excitation at all, i.e., it appears that nothing has hap-
pened. However, the numerical results show that this is not
the case. Therefore, we have modified the FMA to allow
propagation in the Coulomb field of the nucleus between the
half cycles. To illustrate this point precisely, in the case of a
single-cycle pulse one approximates the influence of one
cycle by two alternating & pulses, each of them with an am-
plitude equal to the momentum transfer of a half cycle as
defined in Eq. (18), and a time shift between the & pulses
equal to a half-cycle duration [illustrated in Fig. 9(b)]. Here
one should mention two points. First, although this modified
FMA is formally similar to the numerical split-operator
method [30] we use only one & function per half cycle, the
use of a ¢ function meaning that in the moment of interaction
the Coulomb field is neglected. The second point concerns
the short interaction time which is crucial for the validity of
our modified FMA. Because of the short interaction time, the
electronic wave function does not have time to move away
from the Coulomb center and therefore the electron must be
described by Coulomb waves, i.e., approximating the con-
tinuum eigenstates as plane waves is inappropriate. Such an
intuitive approximation of the sinusoidal time dependence of
the pulse by a train of alternating & pulses has been already
considered in a purely numerical study [31] where qualita-
tive features of ionization from a soft-core potential for
pulses of around 50 cycles were considered.

In the modified FMA, N cycles are equivalent to a se-
quence of 2N & pulses of alternating sign separated by the
half-cycle time 7, i.e.,

2N-1

F(t) = Fy()=q 2, (- 1)/ 8(t—jn). (1)
j=0

In this case the transition amplitude becomes

aﬁ(N) - <¢f|eiq-re—i[:loT(e—iqre—il:loreiq~re—il:lor)N—le—iq~r|¢i>'
(22)

The case of a single half-cycle pulse [N=1/2 in Eq. (21)]
was considered in I where it was shown that for 7=0.3 a.u.
and ¢ >3 a.u. all the population of the ground state is trans-
ferred to the continuum (Fig. 4 of paper I). In fact the situ-
ation is a little more subtle than shown in paper I. From Fig.
5(a) one sees that for g>3 a.u. all atoms are ionized after the
pulse (the FMA result agrees perfectly with the DVR results
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FIG. 5. Probability of (a) ionization and population of the Z
=1 ground state, and (b) population of the n=2,3,4 shell, after one
half-cycle pulse with 7=0.3 a.u. The FMA is compared to the nu-
merical calculation (DVR) for both sinusoidal and rectangular
pulses.

in this case). As a function of g the depopulation of the
ground state is continuous and monotonic. However, the
population of the n=2 shell shown in Fig. 5(b) first in-
creases with ¢ and then decreases to zero. The probability of
excitation of the nth shell from the ground state in the FMA
can be calculated following the general procedure outlined in
[26] to give

28n7qr2[n2(3qr2+ 1) _ 1)
3[(n%q"* + 1)+ 2n(n%q"* = 1) + n*P
2,2 4 (n—1)2\"
X<nq (n=1)%)"

n*q"*+(n+1)>

Pnl(q,) =

(23)

where ¢’ =¢/Z is the momentum boost scaled by the nuclear
charge Z. This function exhibits a maximum which is located
at increasing ¢’ as n increases. For n=2 the maximum is at
q'=0.75 a.u., and as n— it shifts to ¢’ =0.9 a.u. From
Fig. 5(b) one sees that this is the ¢ region in which the
ionization probability maximizes. As seen in Fig. 5(a), this
also coincides with the rapid increase of ionization probabil-
ity. In Fig. 5 the probabilities obtained from a DVR calcula-
tion using both rectangular and sinusoidal pulses are shown
also. In all cases the exact DVR results for both pulse forms
agree perfectly with the FMA results on the scale of Fig. 5.

The fact that for large enough ¢ all atoms are 100% ion-
ized after a half-cycle pulse can be used to advantage to
derive approximate analytic expressions for initial-state
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populations after N complete cycles of the field. We begin
with N=1 where Eq. (22) reduces to

as(1) = (e Te g9 g (24)

If we introduce a complete set of hydrogen eigenstates as
intermediate states then Eq. (24) becomes

ag(1) = 2 (dylexpliq - 1)| ) d,lexp(- iq - )| )
n=1
Xexp(—iE,7) + f K ¢plexp(iq - r)| )yl

k2
Xexp(-iq - r)|¢,~>exp<— iET). (25)

In Fig. 6(a) the full circles show the decreasing probabil-
ity of being in the ground state after a one-cycle pulse as ¢ is
increased. At ¢~ 3 a.u. this amounts to around 80%. How-
ever this cannot be assigned to population which has re-
mained in the ground state. In Fig. 6(a) is also shown (empty
circles) the probability of ionization after a half-cycle pulse,
obtained by numerical DVR calculation, which is in perfect
agreement with the FMA half-cycle result (dotted line). For
g~ 3 a.u. this amounts to almost 100%. Hence one con-
cludes that on the first half cycle all electrons are ionized and
80% of them are returned to the ground state by the second
half cycle. This extremely large probability of recombination
corresponds then to “Rabi flopping” on the continuum, as
was shown explicitly in I and will be illustrated more strik-
ingly below. That this interpretation is correct is also to be
seen from the dashed line in Fig. 6(a). This denotes the final
ground-state population emanating from the electrons in the
continuum after a half cycle. Above g~2.5 a.u. the final
population of the ground state has come exclusively from
recombination of continuum electrons. Since this is so, we
can see that, above ¢~2.5 a.u., one can neglect the contri-
bution of all bound states as intermediate states in Eq. (25).
Then, if we assume that the discrete initial and the final
states are identical, the probability of population of the initial
state after the second & pulse is
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FIG. 6. (a) The probability P; of occupation of the ground state
after a one-cycle sine pulse with 7=0.3 a.u. and the probability P;,,
of occupation of continuum states after a half cycle. (b) The same
probabilities for the 2s initial state. In both cases Z=1.

2

k2
= ‘ f d°k|(py|exp(- iq-r)|¢,->lze><p(— i )
(26)

In the case when the initial state is the ground state the above
expression reduces to (denoting P;; simply as P,)

k12
f[(k’)exp(— i;r’)dk’

where the scaling k'=k/Z, 7 =772 is used and the function
I(k") is given by [26]

2

P, = , (27)

28¢"%k' (3q"* + k' + 1)exp{— (2/k ) tan"'[2k'/(¢"* - k"> + 1)} (28)

I(k,): 3[(q/_kl

In the limit g’ — o, one obtains the following asymptote:

1

1) = 37T[l+(q -k

If we linearize the k' dependence of the energy phase factor

in Eq. (27), i.e.,

(29)

Y+ 1P[(q" + k)2 + 171 — exp(2a/k’)]

k!Z qlz
exp(— i;r’) ~exp[—i(k' —q")q’ T’]exp(— i?T’),
(30)
then one can integrate the above asymptotic expression, and

the ground-state occupation probability assumes the simple
analytic form

043411-7



DIMITROVSKI, SOLOV’EV, AND BRIGGS

1 N —

7=0.1

0.9}
0.8}
0.7}
0.6/
A 0.5
0.4
03
0.2f
0.1] :
006 12 18 24 3 36 42 48 54 6
q [au]

/7

FIG. 7. Full lines: ground-state occupation probability after a
one-cycle sine pulse for different 7’s according to the asymptotic
formula (31). Dashed line: probability of ionization after the first
half cycle in the FMA. Results are plotted for Z=1.

T 2\2
" =exp(- 2q’7’)<1 +q' 7+ (g 3 ) .

31)

From Fig. 6(a) one sees that this analytic form for P,
(denoted by the continuous line) agrees with the numerical
DVR result for ¢ >3 a.u.. However, although the approxima-
tion that only continuum states function as intermediate
states is not justified for ¢ <2.5 a.u., the analytic asymptote
is valid all the way down to ¢=0. This is a happy accident
caused by the fact that expression (31) has the correct g=0
value and the probability is smooth and monotonic in q.

The monotonic decrease of P, as a function of g is shown
in Fig. 7 for various values of 7. Also shown is the ionization
probability after a half cycle, which in the FMA depends
only on ¢ and not on 7. One sees that for 7=0.1 a.u. even at
g=6 a.u., 90% of the population returns to the ground state.
Recombination at the 80% level is still achieved at g
=0.9 a.u. for 7=0.9 a.u. The qualitative behavior of the
curves of Fig. 7 is readily understood in the region ¢
>3 a.u. The first pulse puts electrons in the continuum cen-
tered around k=gq. Hence the electrons have time 7 to diffuse
away before the recombining pulse occurs. The larger is g
and the longer is 7, the more electrons will diffuse out of the
ground-state wave packet whose initial momentum-space co-
herent shape is unchanged by the impulsive transfer of mo-
mentum. The more electrons diffuse away the fewer are
available to be recombined by the second half of the one-
cycle pulse.

Calculations have been performed also for initial 2s and
2p states. The results for 2s, for the same ¢ and 7 values
shown in Fig. 6(a) for 1s, are given in Fig. 6(b). One notes
that already for g>1 a.u., 100% ionization is caused by the
first half-cycle pulse. Compared to the ground state, this
lower value of g to achieve ionization is simply due to the
lower binding energy. The minimum “momentum kick” to be
given to a bound electron to ionize is given by %q2
=%Zz/n2, i.e., by g=Z/n. This gives ¢g=1 a.u. for the n=1
ground state of hydrogen and ¢=0.5 a.u. for n=2. This is in
rough agreement with the onset of ionization shown in Fig.
6. One also notes, from the exact DVR results for P, after a
one-cycle 7=0.3 a.u. pulse shown in Fig. 6(b), that now at
g=3 a.u.,, 90% of the ionized electrons recombine. For a Ls
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FIG. 8. Recombination into the initial states (a) 2s and (b) 2p
under the influence of a short, one-cycle pulse; plots for Z=1.

initial state this value is only 80%. From the arguments given
above one might expect that the number of electrons escap-
ing before recombination depends only on ¢ and 7. However
the reduction for 2s is readily explicable. The width of the
continuum momentum distribution (the ground-state distri-
bution boosted by momentum q) is proportional to Z/n.
Clearly it is the high-momentum electrons that diffuse away
fastest and, as the momentum spread of 2s is a factor of 2
smaller than for 1s, there is less diffusion out of the coherent
momentum wave packet and therefore a higher recombina-
tion probability.

Using a similar procedure as led to Eq. (31) (see the Ap-
pendix), one can obtain an asymptotic expression for the
population of the 2s state after a full-cycle pulse, when one
starts from the 2s state. This is given by

9 = exp(— 61’7’)<1 + s + (g'7')" + (q,T,)4>2
s 2 12 240 )

(32)

This curve is shown on Fig. 6(b) as a continuous line and, as
in the ls case, is in perfect agreement with DVR results, not
only for asymptotically large ¢ but over the complete range
of g values.

In paper I we presented the time development of the oc-
cupation probability of initial 1s and continuum states (Fig. 5
of that paper) which showed explicitly that in a single full-
cycle pulse, almost 100% ionization occurs after a half cycle
and ~80% recombination after a full cycle, i.e., a kind of
Rabi flopping on the continuum occurs. In Fig. 8 we show
the same plots for an initial 2s or 2p state, for the same g and
7 values. In this case one notes a rapid full depletion of the
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initial state into the continuum and then 90% repopulation of
the initial state. One might question why repopulation occurs
almost exclusively into the original initial state, since after
100% ionization all bound states are unoccupied. Presum-
ably, the answer simply lies in the fact that the initial bound-
state momentum wave packet ¢&;(p) is transferred unaltered

to ¢,(p+q) on the first half cycle. If there is no appreciable
spreading of this packet before the second half cycle, which
provides momentum ¢, then the whole wave packet becomes

&;(p) again, which has zero overlap with states other than the
initial state i.

Even more interesting is a train of N pulses. The TDSE
Eq. (5) has been solved exactly numerically to obtain the
initial-state and continuum populations as a function of time
and the results are presented for an initial 1s state, in Fig. 10
for a two-cycle train and in Fig. 11 for a five-cycle train of
pulses. The modified FMA for the transition amplitude is
given by Eq. (22) and represented symbolically in Fig. 9 by
a train of alternating & pulses. A negative amplitude repre-
sents a pulse that returns the continuum electron to the initial
state, where it remains until a positive amplitude pulse puts it
back in the continuum after a lapse time 7. During this time
the time-dependent wave function simply acquires a constant
phase exp(—iE;7). For N pulses this is a phase exp(—iE;N7)
which does not contribute to Py=|a|* from Eq. (22). This
implies that in Eq. (22) one can put

e—iq~re—iﬁoreiq~r =1 (33)
to give, as simplification,
ag(N) = <¢f|€iq'r€_iH°NTe_iq'r| &) (34)

That is, a train of N cycles is equivalent, in this approxima-
tion to the modified FMA of Eq. (22), to a one-cycle pulse
with a delay of N7 between half cycles. This approximation

F(t)

ANVANVANN
NVARVARVA

t (b

1/2:
=

Fl(t) regions of complete.ionization

©

FIG. 9. (a) Electric field time dependence [F(z)]. (b) A train of
alternating & pulses modeling the electric field [Fy(7)]. Shaded re-
gions denote the time intervals in which the population is entirely in
the continuum. (c) The equivalent one-cycle pulse [F;(1)].
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FIG. 10. Full lines: Z=1 ground-state occupation probability as
a function of time. Pulses with (a) g=3 a.u., 7=0.3 a.u. and (b) ¢
=4 au. 7=0.1 a.u. Dotted lines: probability of ionization. Full
circles: analytic asymptotic expression for the ground-state occupa-
tion probability after N full cycles (N=1-2).

is shown symbolically in Fig. 9(c) with the equivalent one-
cycle pulse F,(7). Hence the analytic forms [Egs. (31) and
(32)] for the population of the initial state after one cycle can
be applied for N cycles, simply by replacing 7" by N7'. The
results of this approximation are shown also on Figs. 10 and
11 after each cycle and are in very good (and sometimes
perfect) agreement with the accurate DVR results.

Figure 10 illustrates the Rabi flopping from the ground
state for relatively large ¢ values and for 7=0.3 and 0.1 a.u.
and a total duration of two cycles, i.e., t=47. One sees
clearly again that for larger g and shorter 7 the Rabi flopping
is less damped. The N-cycle results are shown in Fig. 11 and
illustrate that the rate of decrease of P, as g7 increases is
quite strong i.e. as expected from Eq. (34), one needs g7
<1 a.u. but also ¢g>1 a.u. and therefore 7<<1 a.u. to achieve
significant Rabi flopping over a few cycles. The N-cycle for-
mula (34) agrees also for the 2s state, as we have explicitly
checked by a numerical calculation and as is illustrated in
Fig. 12.

V. CONCLUSIONS

We have examined the ionization of a hydrogenic atom
from the n=1 and 2 states by short laser pulses consisting of
a half cycle up to the order of five full cycles. We have
compared and contrasted three levels of approximation: (1)
the fully numerical propagation of the time-dependent wave
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FIG. 11. Full lines: Z=1 ground-state occupation probability as
a function of time. Pulses with (a) ¢g=2 a.u., 7=0.1 a.u., (b) ¢
=3 a.u., 7=0.1 a.u., and (c) ¢=3 a.u., 7=0.2 a.u. Dotted lines: prob-
ability of ionization. Full circles: analytic asymptotic expression for
the ground-state occupation probability after N cycles (N=1-5).

function, (2) the FMA, appropriate for short pulses of arbi-
trary field strength, and (3) the FPA, appropriate for weak
pulses of arbitrary duration. In the case of the FPA, analytic
formulas for rectangular and sinusoidal pulses consisting of
m half cycles have been obtained. For a finite number of
pulses the energy distribution shows considerable structure,
peaking at zero electron emission energy for 7<<1 a.u. How-
ever, when 7>1 a.u. or the number m of half cycles tends to
infinity, a peak appears in the energy spectrum corresponding
to the energy conservation condition for one-photon absorp-
tion, i.e., at electron energy E=—|E;|+ /7. For a small num-
ber of cycles, beginning with a half cycle N=1/2, we have
shown that the population of excited and continuum states,
though small, exhibits oscillations in time, with a maximum
for odd m and a minimum for even m. Particularly for low-
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FIG. 12. Full line: 2s-state occupation probability as a function
of time for a pulse with ¢g=3 a.u., 7=0.3 a.u., and for Z=1. Dotted
line: probability of ionization. Full circles: analytic asymptotic ex-
pression for the initial-state occupation probability after N cycles
(N=1-2).

energy electron emission, in the case of m=4, the ionization
probability shows strong dependence on the phase of the
pulse with respect to the maximum of the carrier envelope.

In the FMA for 7<<1 a.u. we have shown that the ioniza-
tion probability is independent of the precise shape of the
pulse and can be represented as a train of alternating o pulses
separated by a time 7. The transition amplitude after each
half cycle is decided by the momentum boost operator
exp(iq-r), where q is the momentum transferred from field
to atom. The analogy here to the scattering of fast charged
particles has been emphasised. For small q, such that q-r
<1 for all relevant r values, only the dipole term is impor-
tant and this sudden approximation gives a cos® # angular
distribution, as in the FPA, and an energy distribution peak-
ing at E=0 for a single half-cycle pulse. However, as ¢ in-
creases the angular distribution becomes more and more
peaked in the field direction and the energy shows a maxi-
mum at the “binary peak” corresponding to transfer of all
momentum to the electron with the nucleus acting as specta-
tor. In the FMA the angular distribution becomes more and
more peaked along the field direction as the momentum
transfer is increased (see Fig. 4).

For N=1/2, all probability is transferred to the continuum
when ¢ exceeds approximately 2 a.u. for the 1s state and 1
a.u. for the 2s state. For these g values, for N=1 almost all
probability returns to the initial state, a process akin to Rabi
flopping from the continuum. For the n=2 state, this process
is even more pronounced. So long as 7<<1 a.u. this flopping
continues for several cycles before the initial state is appre-
ciably depopulated.

Under the approximation that, for N equal to a half inte-
ger, all population previously in the initial state is transferred
to the continuum and in the subsequent half cycle is trans-
ferred back to the initial state, a simple analytic form has
been obtained for the population of the initial state after N
cycles. For both 1s and 2s as initial state this formula is in
excellent agreement with the exact DVR result.

The calculations have been carried out on the hydrogen
atom so that the numerical results can be obtained without
further approximation and the analytic results in closed form.
However, the key results in short-pulse ionization depend

043411-10



IONIZATION AND RECOMBINATION IN ATTOSECOND...

only on the facts that the orbital time in the initial state is
much longer than the pulse duration 7 and that the momen-
tum transfer ¢ is much larger than the width of the momen-
tum distribution of the initial state. For hydrogenic atoms
this width is Z/n or |2E|"? where |E,| is the initial-state
binding energy. Hence for nonhydrogenic atoms equivalent
results should be obtained with qualitatively similar charac-
ter if ¢7 in atomic units is scaled by a factor |2E;|'2.

APPENDIX

In order to derive the asymptotic expression (32) we start
from the explicit expression for the matrix element (k")

=k'2[ [ lexp(=iq’ -¥")|r)|2dK’ given in [26], i.c.,
2%’k exp{- (/K )tan"[k'/(g"* - k"> + 1/4)]}
“ 31 —expQalk)[(g" = k') + 1/4P[(q" +k')* + 1/4]

41
X [3q’]0+ (8- 11k"%)q"® + <§ +18k"% + 14k’4)q'6

5 31 47 47 7
+(___k/2_IOk/4_6k/6>ql4+(___ 12 _ 14
16 8 320 80 4

16 1 12 12 12 1 12 !
-k 4_1+k q' "+ (1+k'?) 4_1+k , (A1)
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where we use the scaled quantities k'=k/Z, q'=q/Z, r’
=Zr. From the fact that in the limit of ¢’ —o0 there is a
well-defined peak in Eq. (Al) at k'=¢’, we can factor the
expression as follows:

I=f(k'.q") X g(k'.q"),

where f(k',q")=[(q'—k')*+1/4]7 is the part of the expres-
sion (A1) that defines the peak at k' =¢’. Next, by developing
g(k’,q’) in a Taylor series with respect to k' at the point

=¢q' and subsequently taking the limit ¢’ — o0 for the co-
efficients, one obtains,

(A2)

1 kl_12 k/_/4
limg(k’,q’)=l _( q)+( q)'

(A3)
207 127 3

q’ﬂoo

Inserting (A3) into (A2), we get an asymptotic expression for
I(k"). Using the linearization (30), the integral (27) reduces
to

fm exp(—ig' 7'u)(1 — 10u* + 40”4)du. (Ad)

1207(u® + 1/4)°

Integrating Eq. (A4) and taking the squared modulus of the
result one obtains the asymptotic expression (32).
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