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The time evolution of the radiation pressure forces due to the action of laser light on matter in the form of
neutral molecules, atoms, and ions is considered when the frequency of the light is comparable to a dipole-
allowed transition frequency. We find that the transient regime, applicable from the instant the laser is switched
on, is important for the gross motion, provided that the upper-state lifetime �−1 is relatively long, while the
steady-state regime, formally such that t��−1, is appropriate for the evaluation of the forces and the dynamics
for large �. With a focus on the orbital-angular-momentum-endowed laser light, the light-induced time-
dependent forces and torques are determined and their full time dependence utilized to determine trajectories.
Marked differences are found in both translational and rotational features in comparison with the results
emerging when the steady-state forces are assumed from the outset. Intricate and detailed atom trajectories are
plotted for Laguerre-Gaussian light at near resonance for a transition of Eu3+ that has a particularly small �.
The implications of the results for trapping and manipulating atoms and ions using laser light are pointed out
and discussed.
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I. INTRODUCTION

It is well known that the translational motion of atoms and
ions as well as molecules �henceforth referred to as “atoms”�
can be influenced by the radiation pressure forces exerted by
laser light �1–3�. If the light beam is endowed with orbital
angular momentum, there is, in addition, a light-induced
torque which leads to a rotational motion of the atoms about
the beam axis �4–8�. The torque influences the rotational
motion of matter, both in the bulk and for individual atoms.
It arises from the orbital angular momentum content of the
light and has been the subject of considerable investigation
over the last decade or so �9,10�. The trajectory of a given
atom in a given Laguerre-Gaussian light beam will depend
on the initial conditions at the instant the beam is switched
on. However, most treatments of radiation effects on atoms
assume that the steady-state position-dependent forces and
associated torques are operative during the entire motion.
Evidently, this assumption is not justifiable in general.

We have found that the full time dependence is character-
ized by a transient regime in which the atoms are subject to
forces and torques that differ markedly from their steady-
state forms and give rise to new features in the subsequent
dynamics, in both the translational and rotational aspects of
the motion, effectively modifying the initial conditions long
before the steady state is reached.

The investigations of the transient regime and its effects
for angular-momentum-endowed laser light require careful
derivations of the average forces using density matrix tech-
niques. The forces then enter the equation of motion for the
atomic center of mass, leading to the trajectory. In order to
demonstrate the importance of the transient regime, we apply
the theory to the case of Eu3+ ions in Laguerre-Gaussian
light. Eu3+ ions possess a relatively narrow upper-state width
for a particular transition, permitting transient effects to
manifest themselves in the translational and rotational as-

pects of the gross motion when the ion is subject to
Laguerre-Gaussian light.

This paper is organized as follows. In Sec. II we outline
the theoretical framework beginning with a statement of the
Hamiltonian appropriate for our model involving an atom of
finite mass, with the internal dynamics represented by two
quantum levels coupled by interaction with the electromag-
netic fields. We then outline the steps and justify the approxi-
mations leading to the optical Bloch equations governing the
evolution of the state populations in terms of the time-
dependent density matrix elements for the two-level system.
In Sec. III we outline the steps leading to the explicitly time-
dependent solutions of the optical Bloch equations, known as
Torrey’s solutions, adapted here to the case of Laguerre-
Gaussian light. In Sec. IV we make use of the Torrey solu-
tions to derive the time-dependent spatially varying forces
acting on an Eu3+ ion for three specific cases discussed in
Sec. III. We proceed to display the results exhibiting the
atomic trajectories for the Eu3+ ion under the influence of the
transient forces of a Laguerre-Gaussian light, comparing the
predictions with the situation where steady-state forces are
used. Section V analyzes the results and contains further
comments and final conclusions.

II. FORMALISM

A. Hamiltonian

Our first aim is to outline a derivation leading to the time-
dependent average force acting on the atom as a mobile cen-
ter of mass exhibiting gross motion, and the internal dynam-
ics is described by a two-level system interacting with laser
light. The total Hamiltonian for the atom plus field can be
written as the sum of three terms

H = HF + Ha + Hint �1�

where HF and Ha are the zero-order Hamiltonians for the
laser and the atom, respectively, and are given by
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HF = ��a†a , �2�

Ha =
P2

2M
+ ��0�†� . �3�

Here � and �† are the ladder operators for the two-level
system; P is the center-of-mass momentum operator with M
the mass and �0 the dipole transition frequency. The opera-
tors a and a† entering HF are the annihilation and creation
operators of the laser light and � is its frequency. The last
term, Hint, in Eq. �1� is the interaction Hamiltonian coupling
the laser light to the two-level system in the electric dipole
approximation. Explicitly we have

Hint = − � · E�R� �4�

where E�R� is the electric field evaluated at the center-of-
mass position vector R and � is the dipole moment vector
operator:

� = �12�� + �†� , �5�

with �12 the transition dipole matrix element.
We are interested in the forces and torque acting on the

atom due to a general Laguerre-Gaussian �LG� laser light
mode for which the electric field operator can be expressed
in quantized form as follows:

E�R� = i�a�̂Fklp�R�ei�klp�R� − H . c . � , �6�

where �̂ is a mode polarization vector, while Fklp�R� and
�klp�R� are the mode amplitude function and phase, respec-
tively, given by �11�

Fklp�R� = Fk00
Nlp

�1 + z2/zR
2�1/2� �2r

w�z�
��l�

Lp
�l�� 2r2

w2�z�
�e−r2/w2�z�,

�7�

�klp�R� =
kr2z

2�z2 + zR
2�

+ l� + �2p + l + 1�tan−1�z/zR� + kz .

�8�

Here Fk00 may be identified as the amplitude for a plane
wave propagating along the z axis with wave vector k; the
coefficient Nlp=�p ! / ��l�+ p ! � is a normalization constant;
w�z� is a characteristic width of the beam at axial coordinate
z and is explicitly given by w2�z�=2�z2+zR

2� /kzR, where zR is
the Rayleigh range. The LG mode indices l and p determine
the field intensity distribution and are such that l� is the
orbital angular momentum content carried by each quantum.

In order to arrive at the required expressions for the time-
dependent forces we need to transform to the interaction pic-
ture with respect to the zero-order field Hamiltonian HF
=��a†a. The operators a and a† are then time dependent
such that

a�t� = eiHFt/�ae−iHFt/� = ae−i�t. �9�

In the classical limit, appropriate for the case of a coherent
beam, the a and a† operators behave as

a�t� → �e−i�t, a†�t� → �*ei�t. �10�

Substituting for the field operator from Eq. �6�, and applying
the rotating-wave approximation, we have for the interaction
Hamiltonian

Hint = − � · E�R� = − i���̃†f�R� − H . c . � , �11�

where we have introduced �̃ and f�R� as follows:

�̃ = �ei�t, f�R� = ��12 · �̂��F�R�ei��R�/� , �12�

and we have, for the time being, dropped the labels klp in the
field amplitude function Fklp�R� and phase �klp�R�. It is also
convenient at this stage to introduce the position-dependent
Rabi frequency 	�R� as follows

�	�R� = ���12 · �̂��F�R��, f�R� = 	�R�ei��R�. �13�

Clearly 	 also depends on the mode type and would nor-
mally bear the labels klp.

B. Optical Bloch equations

In order to set up the appropriate optical Bloch equations
for the atomic density matrix elements we now allow the
position operator R and the momentum operator P to be
replaced by their average values r and P0=MV, where V is
the center-of-mass velocity. This semiclassical approxima-
tion amounts to treating the center-of-mass motion of the
atom classically, while the internal dynamics continues to be
treated quantum mechanically. The validity of this approxi-
mation demands that the spread in the atomic wave packet be
much smaller than the wavelength of the light, and that the
recoil energy be much smaller than the linewidth.

Within the semiclassical approximation, the system den-
sity matrix associated with the two levels and the center of
mass can be written as


S = ��R − r���P − MV�
�t� . �14�

The time evolution of the internal density matrix 
�t� is such
that

d


dt
= −

i

�
�H,
� + R
 , �15�

where the term R
 incorporates the relaxation effects in the
two-level system.

The optical Bloch equations for the two-level density ma-
trix elements emerge from the above formalism in the fol-
lowing matrix form:

	 
̇̂21�t�


̇̂12�t�

̇22�t�


 = 	− ��2 − i�� 0 2f�r�
0 − ��2 + i�� 2f*�r�

− f*�r� − f�r� − �1

	
̂21�t�


̂12�t�

22�t�



+ 	 − f�r�

− f*�r�
0


 �16�

where the spontaneous emission process has been described
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in terms of an inelastic collision rate �1 and an elastic colli-
sion one �2. Elastic collisions often have dominant line-
broadening effects for a wide variety of physical conditions
�12�. We have also introduced the effective, velocity-
dependent, detuning � by �=�0−�� ·V �where �0=�
−�0� that arises naturally in the expression for the density
matrix, and set 
̂= 
̃ exp�−itV ·���. The matrix element 
11

has been written in terms of 
22 since 
11�t�+
22�t�=1.

III. TORREY’S SOLUTIONS

We use Laplace transform techniques to obtain time-
dependent solutions to the optical Bloch equations as first
employed by Torrey to solve nuclear Bloch equations
�13,14�. The Laplace transform is

F̄�� = �
0

�

F�t�e−tdt . �17�

Applying this transform to the optical Bloch equations leads
to the new Laplace transformed optical Bloch equations, ex-
pressed here in matrix form,

�	
̄21��

̄12��

̄22��


 = 	 − f�r�/
− f*�r�/

0

 , �18�

where the initial conditions are 
̄21�t=0�= 
̄12�t=0�= 
̄22�t
=0�=0, and

� = 	 + �2 − i� 0 − 2f�r�
0  + �2 + i� − 2f*�r�

f*�r� f�r�  + �1

 . �19�

From Eq. �18� we find

���
̄21�� = − f�r�� + �2 + i��� + �1� ,

���
̄12�� = − f*�r�� + �2 − i��� + �1� ,

���
̄22�� = 2�f�r��2� + �2� . �20�

Each equation in Eqs. �20� can be written in the same general

form. Assuming that P̄ represents either 
̄21, 
̄12, or 
̄22, then
Eqs. �20� have the form

P̄�� =
g��
���

, �21�

where g�� represents the corresponding right-hand side of
Eq. �20�.

If we assume that ����� can be factorized into the form

����� = � + a��� + b�2 + s2� �22�

then P̄�� can be written as partial fractions,

P̄�� =
A

 + a
+

B� + b� + C

� + b�2 + s2 +
D


. �23�

Inverting the transform of this equation leads to solutions to
the optical Bloch equations that take the form

P�t� = Ae−at + �B cos�st� +
C

s
sin�st��e−bt + D . �24�

Such solutions are known as Torrey solutions, in which the
first three terms represent transient effects, and the final term
the steady state. The coefficients A and D are obtained by
taking the following limits:

A = lim
→−a

�� + a�P̄��� ,

D = lim
→0

�P̄��� ,

while the coefficients B and C are found using the relevant
initial conditions.

As the aim is to seek time-dependent solutions to the op-
tical Bloch equations in order to find an expression for the
transient force exerted on a two-level atom by a Laguerre-
Gaussian beam, we need only concentrate on 
̄21. This is the
only time-dependent factor entering the force expression
�F�t�= i�� �
̃21

* f�r�− 
̃21f*�r��. For 
̄21 we obtain

A =
− g�− a�

a��b − a�2 + s2�
, �25�

D =
g�0�

a�b2 + s2�
, �26�

and

B = − �A + D� , �27�

C = aA + bB − f�r� . �28�

The Torrey rate parameters a, b, and s can be determined
by solving the cubic equation ���=0. We consider three spe-
cial cases of physical interest in which the cubic equation has
simple roots. These cases are those of exact resonance,
strong collisions, and intense external field.

A. Exact resonance

In the case of exact resonance we take the total detuning
� to be zero. The cubic equation becomes

��� = � + �2��� + �2�� + �1� + 4�f�r��2� = 0 �29�

and the roots are

 = − �2, −
1

2
��1 + �2� ± i�4�f�r��2 −

1

4
��1 − �2�2.

�30�

This is consistent with rate parameters a, b, and s in the
Torrey solution Eq. �24�, given by

a = �2,

b =
1

2
��1 + �2� ,
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s =�4�f�r��2 −
1

4
��1 − �2�2, �31�

and with

A = 0,

B =
f�r��1

�1�2 + 4�f�r��2
,

C =
f�r���1

2 − �1�2 − 8�f�r��2�
2��1�2 + 4�f�r��2�

,

D =
− f�r��1

�1�2 + 4�f�r��2
. �32�

B. Strong collisions

For the case of strong collisions we have a large number
of atoms in the system. Thus, we take the elastic and inelas-
tic collision rates to be approximately equal and we can
therefore write

� � �1 � �2. �33�

Therefore, the cubic equation becomes

��� = � + ���� + ��2 + 4�f�r��2� + �2� + �� = 0 �34�

with roots

 = − �, − � ± ��2 + 4�f�r��2. �35�

This implies that the rate parameters a, b, and s in the Torrey
solution Eq. �24� are

a = b = � ,

s = ��2 + 4�f�r��2 �36�

with

A = 0,

B =
f�r��� + i��

�2 + �2 + 4�f�r��2
,

C =
f�r��i�� − �2 − 4�f�r��2�

��2 + �2 + 4�f�r��2�
,

D =
− f�r��� + i��

�2 + �2 + 4�f�r��2
. �37�

C. Intense external field

Finally we consider the case where the intensity of the
light beam is sufficiently large that 	 /�2�1, in which case
	 /�1�1 is also true. Therefore,

	 � � �38�

where ���2−�1. We now rewrite ��� in terms of �2 and �,
and we have

��� = � + �2��� + �2�� + �2 − �� + 4�f�r��2�

+ �2� + �2 − �� = 0 �39�

or

� + �2��� + �2�2 + 4�f�r��2 − �� + �2� + �2� = ��2.

�40�

When the Rabi frequency 	 is very large compared to �,
Eq. �40� has three roots which can be found as follows. First,
if we assume that �+�2�2��2+4�f�r��2, we can rearrange
Eq. �40� to the form

� + �2� =
��2

��2 + 4�f�r��2��1 + � + �2�� + �2 − ��/��2 + 4�f�r��2��
. �41�

This leads to the first root

 � − �2 + �
�2

�2 + 4�f�r��2
+ O�� �

	
�3� . �42�

To obtain the second and third roots we consider the case
where �+�2�2���2+4�f�r��2�, leading to an alternative re-
arrangement of Eq. �40� of the form

� + �2�2 + �2 + 4�f�r��2 = �� + �2��1 +
�2

� + �2�2� ,

�43�

which yields the second and third roots

 = − �2 +
2��f�r��2

�2 + 4�f�r��2
± i��2 + 4�f�r��2 + O�� �

	
�2� .

�44�

Thus, the Torrey rate parameters a, b, and s in the intense
external field case are
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a = �2 − ��2 − �1�
�2

�2 + 4�f�r��2
,

b = �2 −
2��2 − �1��f�r��2

�2 + 4�f�r��2
,

s = ��2 + 4�f�r��2. �45�

In this case we find that the Torrey rate parameters have a
more complicated form than in the other two cases, and it is
therefore more convenient to leave the coefficients A, B, C,
and D written in terms of them. Hence, the coefficients in the
case of an intense external field are expressible as

A =
f�r���2 + i� − a���1 − a�

a��b − a�2 + s2�
,

B = − �A + D� ,

C = aA + bB − f�r� ,

D = −
f�r��1��2 + i��

a�b2 + s2�
. �46�

Having established the time dependence for the density
matrix elements, for the special cases described, we are now
in a position to derive the time-dependent forces acting on a
Eu3+ ion subject to a Laguerre-Gaussian beam.

IV. DYNAMICS OF Eu3+ ION IN LG LIGHT

The average force exerted by the light on the ion center of
mass is the expectation value of the rate of change of the
center-of-mass momentum, which amounts to the expecta-
tion value of the trace of −
�Hint,

�F = − �tr�
 � Hint� . �47�

This is a time-dependent as well as spatially dependent force
and it turns out that it is divisible into two types of force,
namely, the dissipative force �Fdiss and a dipole force
�Fdipole. It can be shown that these forces are related to the
density matrix elements by the expressions �5�

�Fdiss�R,t� = − � � ��
̂21
* f�r� + 
̂21f*�r�� , �48�

�Fdipole�R,t� = i�
�	

	
�
̂21

* f�r� − 
̂21f*�r�� . �49�

In order to explore the transient regime we consider the
dynamics of an atom in the field of a Laguerre-Gaussian
beam from the instant the beam has been switched on. The
relevant equation determining the dynamics is Newton’s sec-
ond law, written in the form

M
d2R

dt
= �F�t� �50�

subject to initial conditions. Since the equation of motion is
second order in time we need two sets of initial conditions,

namely, values of the initial position vector components R�0�
and values of the initial velocity vector components V�0�.

The main by-product of solving the equation of motion is
the trajectory R�t�, but the solutions should also determine
the evolution of velocity and acceleration. The associated
evolution of the forces also enables determination of the
torque acting on the center of mass, responsible for rotational
motion.

In previous investigations on atom dynamics in LG
beams, a magnesium ion was considered in the study of the
effects of the steady-state forces arising from a two-level
atom in angular-momentum-endowed light �5�. This is not a
suitable choice for considering transient effects as, due to the
short lifetime of the excited state of the magnesium ion, the
steady-state forces will dominate, making the transient forces
negligible. To illustrate transient effects we need to consider
transitions with a long upper-state lifetime, and rare-earth
ions are good examples of this. In particular, we consider a
Eu3+ ion in the numerical work that now follows �15�.

The atomic mass of Eu3+ is 25.17�10−26 kg and the rel-
evant transition is 5D0→ 7D1, which corresponds to a wave-
length =614 nm. The upper state for this transition has �
=1111.11 Hz. We concentrate on the l=1, p=0 Laguerre-
Gaussian mode. We take the laser intensity to be I
=105 W cm−2, except for the intense external field special
case where the intensity is I=108 W cm−2. The beam waist is
taken to be w0=35.

All the numerical evaluations considered here were run
for a period tmax�5�−1, which is approximately 4.5 ms, al-
lowing for the transient regime to manifest itself in the re-
sults and for the steady-state forces to be the appropriate
forces at the end of the run.

A. Exact resonance

On the assumption that �2=�1 /2=�, then in the case of
exact resonance the dissipative force emerges from the pro-
cedure described above in the form

�Fdiss =
− �	2� � �

�2 + 2	2 ��cos�st�

− ��

2
+

4	2

�
� sin�st�

s
�e−�3/2��t − 1� �51�

where s=�4	2− 1
4�2. There is no dipole force acting on the

atom in the case of exact resonance, which also means that
there is no radial force acting on the atom �in cylindrical
coordinates�. Therefore, if the atom is initially at rest at a
point off the beam axis, the atom will remain at the same
radial distance from the beam axis throughout the trajectory.
This can be seen in Fig. 1, where the Eu3+ ion starts from rest
in the x-y plane at distance  from the beam axis and rotates
around the axis, traveling forward in the direction of the
beam propagation. This is the expected behavior in which the
atom experiences no evidence of trapping under exact reso-
nance conditions.
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B. Strong collisions

For strong collisions, the dissipative force emerges in the
form

�Fdiss =
− 2�	2� � �

�2 + �2 + 4	2

���cos�st� − ��2 + 4	2

�
� sin�st�

s
�e−�t − 1�

�52�

and the corresponding dipole force is

�Fdipole =
2��	 � 	

�2 + �2 + 4	2��cos�st� −
� sin�st�

s�
�e−�t − 1�

�53�

where ���2 and s=��2+4	2. The evolution of the dy-
namical state of the Eu3+ motion in a Laguerre-Gaussian
beam can be followed for a relatively long period of the
order 5�−1. Figure 2 displays the trajectory of the ion in the
case of strong collisions with initial position on the z plane at
radial coordinates r=5 in Fig. 2.

C. Intense external field

For an intense external field the expressions for the tran-
sient forces obtained are more complex than for the previous
two cases. It is convenient to introduce the parameters � and
� related to the Torrey rate parameters through �= ��
−2a� /2a��b−a�2+s2� and �=� /2a�b2+s2�. In terms of � and
� the dissipative force emerges in the form

�Fdiss = − 2�	2 � ���� − a��e−at + ���� − �� − a���cos�st�

+ �a�� − a�� − b��� − a�� − ��� − 1�
sin�st�

s
�e−bt

− ��� �54�

while the dipole force is

�Fdipole = 2��	 � 	��e−at + ��� − ��cos�st�

+ �a� − b�� − ���
sin�st�

s
�e−bt − �� . �55�

The parameters a, b, and s are given in Eq. �45�. We have
also written ���2� 1

2�1 as was assumed in the exact reso-
nance case. Figure 3 displays the trajectory for a Eu3+ ion
subject to the Laguerre-Gaussian beam in the intense exter-
nal field case where the atom is initially at rest in the z=0
plane at a radial coordinate r=5. The total duration of the
trajectory is 5�−1, and the detuning is �0=100�.

V. COMMENTS AND CONCLUSIONS

In the cases of strong collisions and intense external field
the atomic trajectory within the body of the Laguerre-

FIG. 1. Trajectory of a Eu3+ ion starting at rest in a LG1,0 mode
in the case of exact resonance. The dot represents the initial position
of the atom. See the text for values of the other parameters needed
for the evaluation of the trajectory. FIG. 2. Trajectory of a Eu3+ ion projected in the x-y plane with

the ion starting at rest in a LG1,0 mode in the case of strong colli-
sions. The dot represents the initial position of the ion. See the text
for values of parameters used in the generation of this trajectory

FIG. 3. As in Fig. 2, but here the case is that of strong external
field. The dot represents the initial position of the ion. See the text
for values of parameters used in the generation of this trajectory
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Gaussian beam follows a characteristic path in which there is
axial motion superimposed on an in-plane motion. The in-
plane trajectory is in the form of loops resembling the petals
of a flower. The manner in which the trajectory takes shape
can be seen with reference to Fig. 4 which displays a portion
of the trajectory exhibited for the case considered in Fig. 2.
We see from the main Fig. 4 that as the atom approaches the
beam axis �where there is zero intensity�, it first travels
across and experiences a change in the sign of the torque
after crossing the axis. It then follows a curved downward
path before it gets repelled at some radial position deter-
mined by the dipole potential profile. It then turns upwards
toward the axis, and completes the first loop by crossing the
axis again, but this time it approaches from below, so it ex-
periences another change in the sign of the torque. It then
follows a similar pattern, completing a second upper loop. In
this manner the first two loops form the shape of the number
8. The third loop is displaced azimuthally relative to the first,
and so on. The inset to the figure confirms the order in which
the first and second loops are formed, whereby the x coordi-

nates after the first crossing of the axis conform with the
formation of the lower loop first. It is in the creation of the
petal-like trajectory and in the azimuthal displacement of the
loops that the influence of the light-induced torque manifests
itself. After a sufficiently long time, the forces and torque
approach steady-state values, corresponding to the time-
independent �i.e., post-transient� parts of the force expres-
sions in Sec. III.

FIG. 5. The evolution of the torque being exerted on the Eu3+

ion in the strong collisions case �with �0=500�, when the initial
position of the atom is r=5.

FIG. 6. Variation with time of the steady-state time-independent
torque exerted on Eu3+: exact resonance �full curve�, strong colli-
sions �dotted curve�, and intense external field �dot-dashed curve�.

FIG. 7. Trajectory of a Eu3+ ion in a LG1,0 beam initially at rest
5 from the beam axis in the steady-state regime using the param-
eters for the special cases of �a� strong collisions and �b� intense
external field. The initial position of the atom is represented by the
dot.

FIG. 4. The portion of the projected trajectory in Fig. 1 showing
how the loops are formed. The inset to the figure shows the evolu-
tion of the x coordinate with time.
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A similar behavior is exhibited in the case of an intense
external field, Fig. 3. However, the number of the loops is
greatly increased; this is clearly due to the increase in kinetic
energy of the atom, both translational �radially due to stron-
ger radial forces� as well as rotationally �due to the torque� in
the presence of the more intense field of the Laguerre-
Gaussian beam.

The looped trajectory cannot arise in the case of exact
resonance, Fig. 1, since there is no dipole force acting on the
atom and hence no radial force, due to the zero detuning. The
radial position remains constant, as is indeed exhibited in the
figure.

It is instructive to examine the evolution of the torque
corresponding to the trajectories in Figs. 2 and 3. Figure 5
shows the torque experienced by the Eu3+ ion in the case of
strong collisions when the atom has an initial position of r
=5 from the beam axis, and the detuning is 500�. The
formal expression for the time-dependent torque is

T�t� = r�t� � �F�t� . �57�

Note that the time evolution of the torque is due to the fact
that both the position and the average force carry time de-
pendence. From Fig. 5 it is easy to see that immediately after
the Laguerre-Gaussian beam is switched on, there is a sud-
den increase in the torque, which subsequently oscillates be-
tween positive and negative values. This large torque quickly
decays away toward a steady-state torque corresponding to
the time-independent part of the dissipative force. Further-
more, it can be seen that, after the initial response, a collapse
and revival pattern is exhibited by the evolution of the
torque. We have checked by explicit analysis that this behav-
ior corresponds to the individual loops in the trajectory, with
the peak of the torque corresponding to the outer tip of the
loop, and the collapse of the torque to the points in the tra-
jectory where the atom is close to the centre of the beam. We
have also checked that the sudden jump discontinuities in the
torque are real events arising from the change in the direction
of motion as the atom crosses the axis.

It is reassuring to check whether our procedure, which
employs the full time dependence of the forces to determine
the dynamics, does indeed correctly represent the large-time

limit. Table I shows the mean average of the torque on the
atom during the long-time interval 5��t�10 for the special
cases of exact resonance, strong collisions, and intense ex-
ternal field. The average radial position from the beam axis
during the same period was also recorded so that the values
of the average torque can be compared with the time-
independent torque, arising from the steady-state term of the
Torrey solutions.

The formal expressions for the steady-state forces can be
deduced from Eqs. �16� by taking the limit t→�. The varia-
tion of the torques, formally given by Eq. �57� with radial
position are shown in Fig. 6 for the three cases discussed. It
is easy to check that the results in Table I are consistent with
those in Fig. 6. Finally we present the results of the dynamics
in which the steady-state forces are assumed from the outset.
Figure 7 shows the trajectory for the same situations as in
Figs. 2 and 3. The differences are clear and we conclude that
steady-state forces do not correctly describe the motion of
atoms subject to Laguerre-Gaussian beams for transitions
possessing long upper-state lifetimes.

In conclusion, we have shown that transient effects due to
the interaction of atoms with a Laguerre-Gaussian beam be-
come significant when the upper-state lifetime is relatively
long. The evolutions of the dynamical variables of the gross
motion are markedly different from those arising from the
situation determined by assuming the validity of the steady-
state forces from the outset. The trajectories determined here
suggest that under certain circumstances consideration of the
transient regime is crucial for the correct dynamics. It should
always be taken into consideration in the processes of trap-
ping and, in general, manipulating atomic beams using laser
light for transitions possessing a long lifetime for the upper
state.
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TABLE I. The average torque exerted on the atom in the steady-state régime �5��t�10� for three
special cases, where �rf is the average radial position from the beam axis during the steady state.

r0 / �0 /� I �W cm−2� �rf / ��T� /�k�

Exact resonance 1 0 105 1.000 1.000

Strong collisions 1 500 105 21.212 0.503

5 500 105 1.027 0.268

Intense external field 5 100 108 2.314 0.945
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