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Relativistic reversal of the ponderomotive force in a standing laser wave
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Effect of relativistic reversal of the ponderomotive force (PF), reported earlier for a collinear configuration
of electron and laser standing wave [A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett., 95, 053601 (2005)],
is studied here theoretically for various types of polarizations of the laser beam. We demonstrated that the

collinear configuration, in which the laser wave is linearly polarized with electric field E parallel to the initial
electron momentum py, is the optimal configuration for the relativistic reversal. In that case, the transverse PF
reverses its direction when the incident momentum is py=mc. The reversal effect vanishes in the cases of

circular and linear with E 1 p,, polarizations. We have discovered, however, that the counter-rotating circularly
polarized standing waves develop attraction and repulsion areas along the axis of laser, in the laser field whose
intensity is homogeneous in that axis, i.e., has no field gradient.
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I. INTRODUCTION

This work is a theoretical extension of our recent Letter
[1] on fully relativistic ponderomotive force acting upon
electrons in a standing laser wave. Ponderomotive (field-
gradient) force (PF) is time-averaged (over a laser cycle)
force acting on a charged particle in a spatially inhomoge-
neous electromagnetic (EM) field [2-5]. In the nonrelativis-
tic regime this force always pushes the particles away from
high-field areas and into the low-field areas. Conventional
approach to handle the PF relies on adiabatic approximation,
whereby one separates “slow” and “fast” motion to obtain a
time-independent “ponderomotive potential” for the “slow”
motion proportional to the field intensity U(7) < |E(r)|* and

the PF, F p==VU(r) [6,7]. For atoms and ions this force has
a non-relativistic nature. However, in application to elec-
trons, with advent of laser technology, PF can enter a
strongly relativistic domain, where the laser field may readily
exceed a relativistic scale E,=kmc?/e, whereby an electron
is accelerated to relativistic energies within a laser half-
cycle; here m is the rest mass of electron, and k=w/c and w
are laser wave number and frequency. For lasers with the
wavelength N\=1 um the relativistic domain for electrons
starts at the fields E,=~3.2X 10 V/cm or intensities
~1.4% 10" W/cm?. There are many applications and mani-
festations of PF, such as laser trapping and cooling of atoms
[8—11], high-field photoionization of atoms [12,13], Kapitza-
Dirac (KD) effect in a standing electromagnetic wave
[14-17], plasmas and solids irradiated by powerful lasers
[18,19], as well as observation of relativistic hysteretic reso-
nances [20,21] and nonlinear optics of a single electron
[22-25]. In-depth understanding of the PF in a traveling
wave owes to the fact that the single electron motion in a
plane electromagnetic wave is exactly solvable [26-30]. In a
standing wave (SW), which, in fact, is the most fundamental
configuration for the PF because of high field-gradient be-
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tween the SW nodes, the PF was mainly studied via com-
puter simulations in relation with transition to chaos and sto-
chastic heating of electrons [31,32]. While original KD effect
[14-17] assumed the use of a mirror to develop a standing
wave, the superintense fields required for the experiments in
relativistic regime, rule out such an arrangement. Most re-
cent experiment [33], however, demonstrated feasibility of
no-mirror generation of counterpropagating waves with the
intensities higher than a few terrawatts. It should also be
noted that some configurations with counterpropagating
waves do not form a standing wave with nodes and antinodes
(see below, Sec. IV B) and thus cannot be constructed by
using reflection from a mirror.

In our Letter [1] we have developed an analytical theory
of relativistic PF in a highly controllable and experimentally
verifiable KD situation whereby an electron with sufficiently
high incident momentum p, is launched into a SW formed
by two counterpropagating linearly polarized laser (L)
beams. Electrons were considered to be launched from out-
side of the SW normally to its axis, along the direction of
electric (E) field (collinear configuration). Here we provide a
detailed derivation of the major results of Ref. [1], and gen-
eralization of the theory on circular and cross-linear (electric
field perpendicular to p,) polarizations. Our analytical solu-
tions allowed us to separate the PF into longitudinal (directed
along the SW phase planes) and transverse components. This
separation provides a clear physical picture of stability re-
gions for electron trajectories. Theoretical results are verified
by numerical simulations.

The paper is structured as follows. In Sec. II we formulate
the problem and introduce the model and its parameters. Sec-
tion III is devoted to the collinear electron-laser configura-
tion. In the first part of it (Sec. IIT A) we consider an electron
launched in an antinode plane of a linearly polarized SW
with electric filed parallel to the initial momentum of elec-
tron. We show that there is a single parameter of the prob-
lem, which identifies the region of elastic electron scattering
by the SW. We show the existence of adiabatic invariant, and
find and analyze characteristics of motion. In the case of
electrons launched along arbitrary SW plane, the magnetic
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FIG. 1. (Color online) Configuration of electron and the stand-
ing wave. F(x) is a profile of the laser beam, p is the initial elec-
tron momentum.

(M) laser field becomes a significant player and brings about
a rich landscape of motion patterns. This general case is
treated in Sec. III B. Our major discovery is that in addition
to a large KD effect (considered in Sec. III C), the PF in the
direction normal to the incident momentum, exhibits a dra-
matic sign reversal with a relativistic threshold: while re-
maining high-field repelling along p,, PF normal to p, re-
verses into high-field attractive force, if po>mc. In Sec. IV
we study all other (noncollinear) configurations of SW and
investigate the existence of the switching effect in these
cases.

II. BASIC MODEL

We consider two weakly focused Gaussian L beams with
the spatial profile F(x) vanishing in the wings [F(x) —0 as
|x| — ], counterpropagating, and forming a SW in the y
axis, and an electron launched in the transverse x axis near
their focal plane (Fig. 1). To study and analyze the electron
motion in the field of the SW we use relativistic Lorentz
equation

dr - oo
L_E+ Ll xH, 1)
dt mcy

dar . p

dt my

where y=1/1+(p/mc)? is the relativistic factor, E and H are
electric and magnetic fields of the SW, respectively, v is
electron velocity, and 7 is position vector of electron. To
concentrate on the significant features of the phenomenon,
we assume “slab” two-dimensional (2D) beams stretched in
the z axis, i.e., dF/dz=0.

In our calculations here we neglected the radiation “fric-
tion,” or self-action force on the electron. Our estimates and
numerical simulations showed it is negligible for the specific
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situation. Indeed, the time of the electron passing through the
laser beam is relatively short, and for the radiation friction to
affect the motion, one needs y:0(103), which is far beyond
the domain of interest, see also Refs. [22-24]. As far as the
laser-electron interaction, we used strictly classical approach,
since in the cases of interest, a typical number of photons
exchanged between an electron and laser per cycle exceeds
~mc?/hw=0(10°), and quantum dispersion A,=(AN)/N is
much smaller than a small parameter of the problem u, i.e.,
Aq=(Nph)‘”2<,u,§ [see Eq. (11) below]. In our calculations
we use normalized coordinates

&=k, {=1zk, (3)

time 7=of, momentum p=p/mc, y=\1+p?, and amplitude
profile f(¢)=F/E,. To verify theoretical results we have per-
formed numerical simulations, whereby equations of motion
were integrated with no a priori assumptions about the na-
ture of the electron motion. In most of realistic laser beams,
the laser amplitude/intensity profile in their cross sections
can be assumed to have Gaussian shape. However, since any
numerical simulation has to use finite size of an L beam, to
assure reliability of the simulation, it is more appropriate to
assume an amplitude profile that zeroes out at the “edges” of
the L beam and is smooth everywhere including those edges,
i.e., has at least its first derivative zeroing out at those points.
All the figures in this paper are results of calculations with
such a model laser profile taken in a Gaussian-like form

7=k,

fox cos® £ at |§ < Tr—gL,

& 2
0 otherwise,

1§ = (4)

that satisfy the above conditions; here §; is roughly half-size
of the beam profile. Initial conditions for electron are

ﬁ:p@%amigz—zfzatrzo. (5)

This choice of the profile was found to be optimal for our
numerical calculations. We also checked that qualitatively,
all the results hold for the Gaussian profile. Note that all the
analytical results are valid for arbitrary profile function f(&)
(subject only to a condition imposed on its gradient; see
explanations below in Sec. IIl A) and they are not limited
neither by Gaussian shape nor by the model (4).

III. COLLINEAR POLARIZATION OF THE FIELD-
ELECTRON SYSTEM

Our calculations showed that some of the most interesting
effects are brought about by the specific configuration of the
field as related to the electron momentum. Specifically, it is
the case, when both counterpropagating waves in the SW are
linearly polarized along the same line as the incident mo-
mentum of an electron. In this case, we write the electric

field of the SW as E/ E,q=¢é.f(§)cos nsin 7, and the Lorentz
equations take the form

dpe = f(&é)cos nsin T+ &zf(f)sin 7COS T, (6)
dr y
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FIG. 2. (Color online) Typical motions of electrons passing
through (upper curve) and reflected from (lower curve) the antinode
of laser SW (fo =15, §,=40). Here py=11 and 8, respectively, with
the threshold py,, = 9.59. Solid lines: the full motion ¢, dashed lines:

time-averaged & The inset depicts an enlarged center region of the
main plot.

d—p’l =_ pif(g)sin 7 COS T, (7)
dr Y
dé _pe  dn_py (8)

dr ‘y’ dr y'

These equations allow one to consider electrons launched in
arbitrary plane of the SW. However, the case, when electron
is launched in an antinode plane is very special since it al-
lows for the most comprehensive analytical treatment, and
we will consider it first in Sec. IIT A.

A. Electron motion in antinode plane

Thus, we start with the case of electron launched in an
antinode plane n=n (n is an integer number), where the E
field has spatial maximum along the axis of the L beam, and
the M field vanishes. Allowing for thorough analytical treat-
ment, this case makes a good reference point. More impor-
tantly, those planes become strong attractors for relativistic
trajectories, see below Sec. III B. Equations (6)—(8) are then
reduced to

dp . ¢ p

dT _f(g)snl 7, dT - ’y7 (9)
where p=p;. As usual, we choose the field gradient df/dé
sufficiently small. Characterizing the field gradient by the
scale of transverse inhomogeneity in the laser beam §; and
assuming that the motion of an electron can always be pre-
sented as “slow” motion, indicated by the tilde and small
“fast” oscillations 6¢ of the coordinate ¢ with the laser fre-
quency, we will stipulate that the amplitude of the fast oscil-
lations is small enough compared to the scale &;. Writing the

full motion of electron as &= §+ 6&, where
o 2
5§Ef 8&7)dT=0, (10)
0

with the overbar designating averaging over the oscillation
period, one can show by direct calculations that for an arbi-
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FIG. 3. (Color online) Fast oscillations of dimensionless energy
v—1 and momentum p of electrons passing through (a) and re-
flected from (b) the laser beam (the parameters are the same as in
Fig. 2). The dashed lines are evolutions of the “slow” components
7, p obtained as the numerical solution of Eq. (16).

trary relativistic case, we have |9¢|< /2. Indeed, the limit-
ing speed of electron is the speed of light, |B|=|v|/c=1, so
that within a laser cycle the full swing of electron is ~ 7, and
the maximum amplitude of the swing is @/2. In the case of
relativistic field, 2> 1, we can write 8~ sgn(p), and because
of that, the electron trajectory, &(7), assumes a sawtooth
shape, see Fig. 2.
The condition of laser &profile smoothness is

= 1 f — gosc
gL > gosc = min ,fpk or g =
2 33

<1, (11)

where f is the peak magnitude of the amplitude profile and
e is the small parameter. This condition is sufficient for the
system to exhibit elastic scattering, including the strongly
relativistic case, whereby the fast oscillations of momentum
and energy may be large when the laser amplitude f is
high, see Fig 3. Using Eq. (11), and writing the laser profile
f viewed by an electron as

~ d d
£ =@+ Loex ugo[—fas} . (12)
dE dE

we have from the first equation of Eq. (9) that

p=p~f(@cos 7+ uOLf(E)]. (13)
Writing a Fourier series for o¢ as
Oé=¢& sin 7+ & . cos T+ & sinQQ7+ ) + -+ (14)

one can show that only the first term in Eq. (14) is significant
for the “slow” motion, even when 6&(7) has a relativistic,
sawtooth shape, so to proceed, we can write
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E=E+&sinT, p=p-f(Ecos . (15)

Substituting this into Eq. (9), we have now adiabatic equa-
tions for “slow” motion alone as

L dr
where
2 = g
i _f p—f(§)c~0S T (17)
21Jo 1 +[p—f(Bcos 7P
fzw [p - f(®)cos Tlcos T dr. (18)
V1 + [~ f(Beos 71

Using the relativistic factor of an electron, i.e., dimension-
less energy y we introduce now its averaging over the laser
period, H=%, i.e., “slow” energy as

- 1 (* =
H(p,é) = ;Tf \/1 +[p - f(§cos T]%dr (19)
0

(note that in general H=5# \1+p* and p# By !). It is then
readily verified that Eq. (16) can now be written in the ca-
nonical Hamiltonian form as

g AHpP.H] dé JH(p.D]
Sl 0

dr 0F dr ap
from which it transpires that H(p, €) is the (adiabatic) Hamil-
tonian, and thus is to be conserved during the motion. In-
deed, evaluating the time derivative of H

i _Hdp ML, e
dr  dpdr  Hzdr

we can see that H is the invariant of motion: H=inv="1y,,
where 1y, is the relativistic factor of incident electron. The
same result is obtained by assuming an arbitrary phase ¢ of
the laser field, i.e., by replacing 7in Eq. (9) by 7+ ¢. If we
have an incoherent electron beam with electrons arriving ran-
domly, time averaging in all calculations can be replaced by
averaging over the ensemble of all the phases 0 =< ¢ <2; by
designating it with angular brackets, we arrive at the same
result, i.e., the system has an ergodicity property

&=§& (p=p B=8 (22)

and

H(p,8 = y=(y)=inv =7, (23)

One can view Eq. (23) as conservation of a full adiabatic
relativistic energy. Elegantly simple, this result in hindside
may seem to be almost obvious, but this is not quite the case.
On the surface of it, H is a legitimate “full energy,” but the
adiabatic nature of this Hamiltonian makes it one of those
rare cases where it cannot be split into kinetic and potential

PHYSICAL REVIEW A 72, 043401 (2005)

energies nor into polynomial form, except for the nonrelativ-
istic case, see below. Interpretations aside, this creates a
tough problem, e.g., when one tries to develop quantum me-
chanics of “slow” relativistic motion by replacing the Hamil-
tonian (19) with the set of regular operators. The situation
here is reminiscent of the physics of strongly nonlocal pro-
cesses. While nonadiabatic relativistic energy ymc? still al-
lows for procedure resulting in Dirac equation for a wave-
function, the averaging in Eq. (19) makes this problematic,
especially in the strongly relativistic case of violently huge
nonlinear oscillations of both momentum and energy during
the laser cycle, see Fig. 3. In view of those processes, it is in
fact amazing that the invariant of motion (23) holds; there is
no way of knowing a priori that the “potential” energy due
to laser field will not come into play separately from v,
which is usually associated with kinetic energy.

Let us consider a few characteristic or limiting cases.

(a) For arbitrary momentum p but nonrelativistic EM field
f*<1, Eq. (23) yields

F@

~
VI + P+ ——————
4(1 ~2)3/2

nv ="%. (24)

(b) In particular, in the fully nonrelativistic case (p?,f>
< 1) one has as expected:

~2 2

Lru®=im="), (25)
where 52/2 is slow kinetic energy, and U(8)=/2(§)/4 is an
effective potential. This is the only case when the kinetic and
potential energies of slow motion can be separated.

(c) The case of the strongly relativistic EM field, f(£)?
> 1. Based on the approximation whereby, due to Eq. (15),

during most of the oscillation period y=|g—f(€)cos 7, Egs.
(19) and (23) yield

psin”! L%] +\N2(&) - pP=inv=mpy2,  (26)

if p?/f><1, and p*= p otherwise; no specific terms can be
assigned here to either kinetic or potential energies.

(d) A turning point &, at which the electron slow trajec-
tory comes to a complete stop, i.e., p=0, is determined by

the relationship H(0, &)=, or

21—fz(§tm)E L =Y (2 )
+ gm =Y ]

where E(u) is a complete elliptic integral of the second kind
[34].

(e) Of special interest is a threshold incident energy Y
marking the switch from full reflection (py,=-p,) to full
transmission (p.,=po). This case corresponds to the turning
point coinciding with the peak amplitude of the EM-field
profile fyi; hence
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FIG. 4. (Color online) Trajectory (A) and momenta (B) of elec-
tron normally incident on a SW in the collinear configuration (lin-
early polarized L beam with Ellp,) at 7,=7r/8 with initial momen-
tum py=0.2 (f=2.0,&,=160).

2\'1+f§kl fok }
E /—2 .
\"1+fpk

Amazingly, the threshold incident momentum, py,.= Vg, —1
vs fpk 1s an almost linear function. In both nonrelativistic

x<1) and high-relativistic (fg>1) limits we have py,
=afpk, where a=1/+2 and a=2/r, respectively, i.e., a does
not change drastically. In the entire range of f, a good
interpolation with the precision better than 1% everywhere
holds:

Yinr = (28)

ks

p ~ 128 A+ 8fy (29)
2 Nas

where A=16(m>-8) ~ 30.

The scattering due to adiabatic motion here is fully elas-
tic; whether passing through the laser beam or being re-
flected from it, an electron comes out with the same, incident
energy, i.e., You=7Yo, Whereas its momentum is conserved
only if the electron passes through p,,=p,. Otherwise, it
reverses its sign, po,=—po (Fig. 3), while the deficit momen-
tum 2p, is absorbed by the laser beam, which should result
in the beam’s slight deflection. However, when the adiabatic
condition (11) is violated, i.e., the field gradient is not small
enough, the relativistic field and electrons may exhibit large
nonelastic scattering resulting in particular in dramatic en-
ergy transfer from laser to electrons that may allow for multi-
MeV acceleration of electrons per pass and very tight focus-
ing of electrons after they pass through the laser beam. These
effects will be addressed by us elsewhere.

B. Arbitrary plane of incidence

In the previous section we considered electron motion
along the antinode plane, where the M field is zero. Now let
us study the general case of arbitrary incidence, whereby an
electron is launched into a SW in an arbitrary plane that thus

PHYSICAL REVIEW A 72, 043401 (2005)

200 100 0 100 200

0 500 1000 1500 20.00
T

FIG. 5. (Color online) Trajectory (A) and momenta (B) of elec-
tron normally incident on a SW in the collinear configuration at
7o=m/5 with initial momentum py=0.2 (f;=2.0,&,=160).

has a nonvanishing M field. In the nonrelativistic case, the M
field [second term in the right-hand side of Eq. (1)] for many
purposes can be ignored since p<<1. In linearly polarized
traveling wave for p>1 [26] it results in “8-like” trajecto-
ries. Standing wave opens a whole new can of worms: oscil-
lation “channeling” of electrons, ‘“sneaky” transmission
modes, huge KD-effect in transmission and reflection, etc.;
but most of all—relativistic reversal of PF.

For the motion normal to the SW planes, the fundamental
fact that rules out general adiabatic theory is that at y> 1 the
full swing of fast oscillations across the SW planes may
reach A/2, which is precisely the spacing between adjacent
SW  planes. This disallows the assumption that the
n-inhomogeneity scale can always be small, since (u,)max
=(7ose)max/ ™= 1 [compare with Eq. (11)]. Numerical simula-
tions [31,32] in most of the cases exhibit chaos. Typical elec-
tron behavior (trajectory and momenta) in the chaotic regime
is shown in Figs. 4 and 5. Parameters of simulations for these
figures are fj; =2, § =160, py=0.2, and electron is launched
into a standing wave at ny=m/8 and ny=m/5 for Fig. 4
(reflection) and 5 (transmission), respectively. One can see
“channeling” in the electron trajectories, whereby electron
oscillates near some phase plane of the SW during many
laser cycles and then, at some point, jumps to another plane,
or just streams away along the SW axis.

Here, however, we are interested in well-controlled elec-
tron motion that would enable us to predict and use new
physical effects and determine their characteristics and areas
of existence, in particular the accessibility and stability do-
mains of the various modes (e.g., antinode modes). The main
condition of interest to us here is the case whereby the elec-
tron momentum strongly dominates over the momentum due
to the laser field, p; =,/ po<<1. In such a case, the motion is
adiabatic and can be well analyzed; note, that this condition
does not preclude momentum p, and field f, becoming
strongly relativistic. We separate again slow and fast electron
motion (similarly to the procedure described in Sec. IIT A),
and the small parameters of electron motion are (&€)max
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FIG. 6. (Color online) Trajectory (A) and momenta (B) of elec-
tron normally incident on a SW in the collinear configuration at
1o=/4 with initial momentum below the switching threshold (
p0=0.8, fox=0.1, £ =200).

E,u,§:0(§zl)<1 and (67) max=mz <1, where 8¢ and 87 are
the amplitudes of fast ¢ and # oscillations. We seek for a
solution in the following form, keeping slow motion and the
first order harmonics only:

E~E+&cosT+&sinT, (30)
n= 7+ 7°cos 7+ 7 sin 7, (31)
Pg™ Pg+ Py COS T+ pgsin 7, (32)
Py = Py+ p5, €08 T+ p) sin T, (33)

“ (L)

where superscripts and “s” label the slow-varying coef-
ficients (to be evaluated later on) in terms with fast-varying
functions cos 7 and sin 7, respectively; these notations will
be used by us throughout the rest of this paper. Substituting
Egs. (30)-(33) into Egs. (6)—(8) and evaluating coefficients
for each harmonic separately one can obtain the amplitudes
of fast oscillations and the equation of “slow” motion. Keep-
ing only the leading terms with respect to the small param-
eters uz, and py, the result is

fBeos 7. pi=tE5 Gy Ga)
p5=0, py,=- ByoT) po sin 7, (35)
&=~ %ﬁn sin 7, £=- @ cos 7, (36)
#J@%mw,#ﬂ, (37)

and the equations of slow motion are
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FIG. 7. (Color online) Trajectory (A) and momenta (B) of elec-
tron normally incident on a linearly polarized L beam with Ellp, at

70="/4 with initial momentum above the switching threshold (p,
=22, fx=0.2, £,=200).

£=BoT.  Pe=Pos (38)

dpy B, .o di_p,
dr = 47 (1= posin(220), dr 3

where 7=1,=11+pj. Equation (39) can be rewritten as a
second order differential equation for slow variable 7:
a*y d7

2 +( ,807) P sin(Zﬁ)=0, Py=Y

. (39

(40)

i.e., the » oscillations are pendulumlike. Their small-
oscillation slowly varying frequency is

\|Po 1|

2%

and it reaches its maximum in the middle of the L beam,
where f=fy. The equilibrium points of Eg. (40) are 7
==+nm/2; each stable point (focus) is alternated by an un-
stable point (saddle).

The most remarkable feature of Eq. (40) is that at a cer-
tain switching point pj=1 (or py=mc), slow oscillations van-
ish, while the stable and unstable points of Eq. (40) reverse
their positions. At p%< 1, the stable points are 7=(n
+1/2)r, hence the planes of attraction for the trajectories are
the nodes, see Fig. 6(a), i.e., the planes of the maximum M
field (and zero E field) of the SW wave (the points 7=n1r are
unstable, saddle, points). Slow oscillating solid lines for % in
Fig. 6(a) and for p,(7) in Figs. 6(a) and 6(b), obtained di-
rectly from numerical solution of Eq. (40), coincide within
the line thickness with the cycle averaging of the full motion.

However, in the relativistic area, at p%> 1, the points 7
=nm become stable, Fig. 7(a), and the antinodes considered
in detail in the first part of the paper, become the plane of
attraction, whereas 7=(n+1/2)m correspond to saddle

QD =fBoD)— -5 (41)
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FIG. 8. (Color online) Trajectory (A) and momenta (B) of elec-
tron normally incident on a linearly polarized L beam with El Po at
no=m/4 with initial momentum equal to the switching threshold
(po=1.0, fy=0.1, & =200).

points. At pO—l we have (), =0, Fig. 8. Thus, the pondero-
motive force reverses its dlrectlon at po—l or po=mc. In fact,
it is the only effect that we know of that pins down a clear
borderline between “relativistic” and “nonrelativistic” mo-
tions. This borderline corresponds to y,=v2, or ~212 KeV
electron kinetic energy, which can readily be accessed by
using an electron microscope. In the non-relativistic limit Eq.
(40) reduces to a regular 7-gradient-force equation with p,
<1 and y,=1, and nodes 7=(n+1/2) being stable points.
One can show, that in case when the SW is linearly polarized
with electric field making a small angle ;<1 with the di-
rection of initial momentum p,, the switching of stable and
unstable equilibrium points occurs at py=1+O[ 6%].

The PF reversal effect here can be explained this way. The
PF normal to the E polarization and p, is induced by the
second, “magnetic” term on the right-hand side of Eq. (1),
proportional to y~!. Fast oscillations of y (such as, e.g., in
Refs. [22-25]) create the force counteracting to the “regu-
lar,” nonrelativistic, PF. That new force is getting dominant
at py> 1. At py=1, these two nearly cancel each other. [In the
one-dimensional (1D) case, Eq. (9), the magnetic term is
absent. ]

C. Trajectory and frequency of the slow motion; Kapitza-
Dirac effect

Equation (40) also describes trajectory 7(&) if 7 is re-
placed with E/ ﬁo, so that

-1
2
d§2 G yws 0)2 sin(27) =0. 42)

If an electron makes a few # oscillations, i.e., if
(Q,) k1! Bo> 1, the small 7 oscillations with the launching
point 7=17,, can be obtained from Eq. (40) via the WKB
approximation as
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(1) < (1= 74) #;;L sin[® (7], (43)
‘D(T)=f7 O, (0dt > 2, (44)

and 7, is a stable point nearest to 7); it explains why the
slow 7 oscillations are pinched down at the peak field. These
oscillations can be observed via E-beam EM radiation with
the low-frequency spectrum that has a cutoff frequency

fo g1l

cut = '}/2
0

as well as via modulation of the laser frequency with respec-
tive frequencies, wy., =0, +(),, i.e., self-scattering of laser at
electrons in a quasiresonant SW system. The highest possible
frequency for a given f; corresponds to po=\3, at which
(Qey)max=/pk/4. Due to the 7 oscillations, when an electron
approaches far outer edge of the L beam, it can be angularly
deflected due to a “slingshot” effect, causing thus super-
strong relativistic KD effect. The highest possible angle of
deflection 6y~ (0,)max/ Po is estimated as

Q (45)

o fu e
0max 23/2 P Y (46)
or, if_p3>1, Omax ~ (/2% f i/ po; e.g., for py=2 and fy
=1/42, We have 6.,,,~ 7/8, a huge effect. This KD deflec-
tion for p0 # 1 is seen in Figs. 6 and 7 for p, and especially
for 7; it also exists even for pO—l because of the higher
order corrections in u; and wug, Fig. 8(a), but is too small to
show up in the Fig. 8(b) for p,,

Sufficient conditions to prevent the system from sliding
into instability and chaos is that the incident momentum is
strong enough compared to the E field, p(2)> fgk, or the L
beam size, 2¢; is sufficiently short. In fact, strong chaos in
SW in Refs. [31,32] was apparently facilitated by an electron
being born inside the L beam and having low initial momen-
tum, and L beam size being very large or infinite. For p,
> 1, most “permissive,” middle entrance point 7,=7/4, and
sufficiently long run & =200 (50N waist), we found that the
stability area for py>1 is determined by a simple formula
po/ fpx > const=2.

The areas of parameters f, po, and 7y, where the system
is still stable, exist even if s >p0 albeit they are relatlvely
narrow. Of interest here are reflection modes; even if fpk
> 1, but p, is sufficiently small (typically, <0.07), the slow &
motion may come to a complete stop similarly to Eq. (27) far
before it reaches the point where f; peaks out, Fig. 9(b). For
Sfox<2.3, there are still areas of p, and 7,, where electrons
with relatively low p, are still able to “sneak through,” Fig.
9(a).

IV. NONCOLLINEAR LASER-ELECTRON
CONFIGURATIONS

In the previous sections we discussed only collinear con-
figuration, i.e., the case of linearly polarized L beams with
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FIG. 9. Transmission (A) and reflection (B) trajectories of elec-

tron normally incident on a linearly polarized L beam with El Do
(fox=2, £,=200) at 7y="/4; py=0.325 (A), 0.06 (B).

electric field having only component along the initial elec-
tron momentum p,. Let us consider other polarizations while
studying electron motion in the general case of an arbitrary
plane of incidence. In general, there could be many possible
configurations involving different mutual polarizations of
both L beams, and different configurations between these
polarizations and the direction of the momentum of incident
electrons. For example, one can consider two L beams still
collineraly polarized, but their polarization making a certain
angle with the incident electron momentum; one can further
consider that two L beams are still linearly polarized, but
their polarizations are not parallel to each other; one of the L
beams is linearly polarized, while another one is circularly
polarized, etc. The most general case would be the one
whereby the both L beams are elliptically polarized with the
ellipses of their polarization having different ellipticity, dif-
ferent directions of their main axes, arbitrary direction of
mutual rotation, and they make arbitrary angle with the inci-
dent electron momentum. However, for the sake of simplic-
ity and briefness, in addition to the above considered collin-
ear configuration, we will address here only three more
configurations, which we consider to be the major ones. One
of them is the case whereby two L beams are collinearly
polarized, but their polarization is normal to the momentum
of incident electron, and two other cases whereby both L
beams are circularly polarized: one with those circular polar-
izations being corotating, and another one with them being
counter-rotating. Each one has an interesting peculiarity.

As in Sec. III B, we will analyze the regime of strong
electron momentum dominance f;/ po<< 1. We again chose a
2D L-beam profile, uniform in the z direction. However, for
the polarizations studied in this section, electron motion is
three dimensional. Major questions of interest are whether
the reversal effect exists and whether the polarization can be
efficiently used to control the stability of electron motion,
e.g., the planes of attraction (nodes, antinodes).
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A. Electric field polarized normally to p,

First we analyze the case whereby the SW is formed by
two counterpropagating linearly polarized L beams with
electric field perpendicular to the incident electron momen-
tum, py= poe In this case electric and magnetic fields of the

SW are E= E.f(§)é; cos nsin 7, H=- relf (§)ég sin 7 cos 7,

where {=kz. The Lorentz equations of motion (1) and (2)
take the form

dp d
Pe_g, Lo _ M f(€)cos Tsin 7, (47)
dr dr Y

d

;pé = £(&)| cos 7sin 7+ P2 sin cos 7. (48)
T Y

Together with the standard kinematic equations

d_pe dn_py  dL_p (49)
dr v’ dr o dr v’
we have a complete system of differential equations for all
three component (&, 7, ) of coordinates and momenta. In the
£ direction we immediately have pz=pg=p,=const, é= BoT.
There are no fast oscillations of momentum in the & direc-
tion.
Similarly to Sec. III B we separate “slow” and “fast” elec-
tron motion and look for a solution in the form of Egs. (31)
and (33) and

(~C+cosT+sin, (50)

p¢ = P+ Pz COS T+ pisin 7. (51)

The small parameters of the problem are u; and w, The
result for equation of “slow” motion is

ﬁ By sin(27 ~ dy

- 27)=0, =%, 52
dTZ 4’}/20 III( 77) p7] ’YOdT ( )

Z=O, p;=0. Nonzero amplitudes of “fast” oscillations for the
first harmonics in Egs. (31), (33), (50), and (51) are

P =~ f(Byr)cos 7 pz=%’2f(ﬁofr)cos 7o (53
0

F=m f(,BoT)

Yo

=- %;zf(ﬁor)cos 7 cos 7. (54)
0
Equation of “slow” motion in the # direction (52) is again a
pendulumlike equation. In contrast to the L beam with the E
field parallel to p,, there is no relativistic reversal of stable
and unstable planes of attraction. The equilibrium points of
Eq. (52) are always the planes having zero electric field [ 7
=(n+1/2)m], as in the nonrelativistic case. Comparison of
the equations of motion (40) and (52) reveals that the trans-
verse PF in both cases has the “regular” (nonrelativistic)
component f2sin(27)/47y; and the relativistic component
Vi sin(217)p(2)/4y8. However, the relativistic component has
different sign for different L-beam polarizations. In case

when E|l Po (Sec. 11 B) the relativistic component of the PF
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FIG. 10. (Color online) Trajectory (A) and momenta (B) of elec-

tron normally incident on a linearly polarized L beam with EL Do at
7o=m/4 with initial momentum py=2.2 (f=0.2, §,=200).

pushes the particles toward the high E-field regions, whether

when E 1 p, it repels electrons from the high field region
together with the “regular” PF. Because of this, the PF in Eq.
(52) is inversely proportional to ¥, i.e., for y,> 1 it is much
stronger than for the case of collinear configuration [see Eq.
(40)], whereby the force is inversely proportional to ;.

Figure 10 demonstrates trajectory and momenta (p, and
p,) of electron launched into a linearly polarized SW with
the E field perpendicular to p,. Parameters of the simulation
(except L-beam polarization) for this figure are the same as
of Fig. 7 and we show the numerical solution of the full
Lorentz equations (47) and (48) together with solution of the
equation of “slow” motion (52). One can see, that in opposite
to collinear configuration, even for p,> 1 electron still oscil-
lates near the plane »=m/2 (E field is zero) and there is no
relativistic reversal. Note, that the amplitudes of small oscil-
lations in 7 and p,, are zero for the first harmonics. Correc-
tions appear only in the second order in u; and u,. That is
the reason why in Fig. 10 the “slow” variables % and p,
nearly coincide (within the linewidth) with % and p,, corre-
spondingly. Small deviations are shown in the insets of the
figure.

B. Circular polarization

Let us study now the case whereby the SW is formed by
two counterpropagating circularly polarized L beams. One
can distinguish two different situations: one is when the
counterpropagating L beams have the same helicity (both are
left/right circularly polarized), which we call the “counter-
rotating” case, and another is when the L beams have differ-
ent helicity (one is left- and another is right-circularly polar-
ized), which we will call “corotating” case (the reason for
this term is that an electron will experience rotating motion
from both waves in the same direction). To carry out a mean-
ingful comparison between results obtained for the SWs
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formed by linearly and circularly polarized L beams we
chose the following field normalization: each L beam form-
ing a SW is assumed to have the same intensity for all po-
larizations. With this normalization the amplitude of E and
M fields of the circularly polarized L beams should be V2
times smaller than corresponding amplitude of the linearly
polarized L beams studied in the previous sections. This way
all the L beams that form SWs would have equal time-
averaged energy flux (Poynting vector), and consequently,
each SW would have the same time average of the energy
density.

1. L beams with different helicity (corotating waves)

In the case when one L beam is left circularly polarized
and another is right circularly polarized (i.e., at a given point
E-field vectors of both L beams rotate in the same
direction—corotating fields), the total electric and magnetic
fields of the SW are E:Erelf(g)cos n(égsin T+é;cos 7)/ \2,
H=E,,f(&)sin 7(é; sin 7+¢é, cos 7/\2. The factor 1/y2 is
added to satisfy the normalization condition discussed above:
namely, the SW studied here is formed by circularly polar-
ized L beams of the same intensity as the linearly polarized L
beams in Secs. III and IV A. Note, that in this case there is a
“real” standing wave in the sense that one can distinguish
nodes and antinodes of E and M fields as in the case of the
SW formed by two linearly polarized L beams. That is, one
can find points with a maximum E field and vanishing M
field. This configuration can always be arranged by using a
fully reflecting mirror as in the KD effect. The equations of
motion in this case are

d

ﬂ=@{cos ysin 7+ P2 gin 7 cos 7':|,

dr 2
d sin
4Py _ w[— pg COS T+ pgsin 7], (55)
dr V2y

d

ﬂ=JL/§){Cos 7COS T— Py sin 7 sin T],

dr V2 Y

and the kinematic relations are given by Eq. (49). Using the
same approach as before we separate “slow” and “fast” mo-
tion to obtain p;=p,, p;=0, the equation of “slow” motion

&7 B . _ __d7y
12 a0 Bmwg . (56)

dr

and the amplitudes of “fast” oscillations of momentum and
coordinate for & and 7 components are given by Eqgs.
(34)—(37), where f(B,7) should be substituted by f(By7)/ V2.
For the { component we have

s (,307') ~ ¢ f(,BoT).. .
py="cosT, py=—"pF —p,sin7g,  (57)
V2%

V2
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FIG. 11. (Color online) Trajectory (A) and momenta (B) of elec-

tron normally incident on a SW formed by two corotating L beams
at 79=1r/4 with initial momentum py=2.2 (f,,=0.28, § =200).

F(Bo7) ~

fBor) F=- cos 7. (58)

p,Sin 7, =
2% 2y

Equation (56) is again a pendulumlike equation, which can
easily be compared with the previously considered cases.
Qualitatively, here again we have no reversal effect and the
stable equilibrium points are the planes 7=(n+1/2)m (the
planes where electric field vanishes), as in the case of lin-

r=-

early polarized SW with EL Do- This result can be easily
understood if we notice that the SW formed by corotating
beams is a superposition of two 7r/2-phase shifted linearly

polarized SWs with orthogonal polarizations: one has EL Do

and the other has E|p, (note, that in order to preserve the
field normalization condition those two SWs should harve
amplitudes of the E and M fields reduced by a factor of 2).
Then, using results for the PF for each polarization (Secs.
III B and IV A) we can say that the SWs with E lpy and
E L p, have the PFs ~(1—p%)/2 and ~(1+p(2))/2, respec-
tively (the factor 1/2 comes from the normalization). Adding
those up one can see that the relativistic components of the
PF cancel and the resultant PF is equal to the regular, non-
relativistic PF. This agrees with Eq. (56). Numerical simula-
tions confirm analytical results (see Fig. 11 for py>1).
Although another relativistically-nonlinear effect, the gen-
eration of relativistic higher order harmonics, is a separate
issue to be considered by us in detail for linearly polarized
wave elsewhere, it is worth noting here that corotating circu-
larly polarized SWs make an outstanding configuration for
most efficient and broad spectrum generation of such har-
monics. As was shown in Ref. [35], the number of harmonics
for this configuration may go up as y;sc (where 7y, is the
relativistic factor of fast oscillations/rotations of an electron),
the same as in the cyclotron radiation, which is greater than
for any other polarization configuration of a driving wave. At
the same time, the total radiated power of these harmonics in
corotating circularly polarized SWs is proportional to 'yﬁsc
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when y,,.>1 vs yﬁsc for the linear polarization.

2. L beams of same helicity (counter-rotating waves)

The second case of the SW is when both L beams
forming the SW have the same helicity (i.e., in a given point
electric field vectors of two L beams rotate in opposite
directions—counter-rotating beams, so that at any point
the SW is linearly polarized, even though direction of the
polarization changes from point to point). The fields in this
conﬁguratlon are E= E,.f(&sin T(e cos 7+&,sin /2, H
= re1f(§)cos 7(é¢ cos +é, sin 77)/\2 Note, that in this wave
EIH [36] and there are no nodes or antinodes of the E and M
fields. At any point 7 the amplitude of square modulus of
E-field vector is constant. Essentially, it is the case whereby
there is no standing wave pattern of intensity and no trans-
verse intensity gradient (compare with the SW in previous
Sec. IVB 1). Let us choose the configuration in which at
points n=nr the SW is linearly polarized with El p,, then at
n=m(n+1/2) the SW has E L p,. The Lorentz equations of
motion in this case are

dp:_1(©

{cos 7 sin T+ Py sin 7 cos T:|
dr Y

dp, _ f(Hcos 7

= [— pesin n+ pycos 1], (59)
dr = (2, LPesnmEpccosy
d
&P _ 19 {sm 7 sin 7— LE 708 T:|,
d’T \'2

together with the usual kinematic relations (49). The solution
after the separation of slow and fast motion is pz=py, p,=0,

f BoT, the amplitudes of fast oscillations are given by Egs.
(34)—(37) [with f(B,7) substituted by f(By7)/ V2 due to the
normalization] for & and 7 components, and for the { com-
ponent

e SBn) o f(ByT) -
py=—"r_sin® py=-"5 —p,cos7, (60)
N Yo
o f(Bo7) - f(,8 T
&= A’ pycos f, {=-—F—sin7  (61)
2% V2
and for » component of momentum and coordinate we have
&y f (Bom) 5 . - N a7
2 4y e sin2@) =0, By=.  (62)
Yo

Evidently, for this SW configuration stable equilibrium
points are n=n1r, where El Po and again, there is no reversal
effect. Electrons are attracted to the planes with El Po at any
value of p, (the case of py<<l is shown in Fig. 12). As
explained in Sec. IV B 1, linearly polarized SW with El Do
pushes the particles away from the regions of the E-filed
maximum with the PF ~(1-p3)/2, whereas when EL Po the
PFis ~(1 +p§)/2. Subtracting these forces we obtain that the
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FIG. 12. (Color online) Trajectory (A) and momenta (B) of elec-

tron normally incident on a SW formed by two counter-rotating L

beams at 7y=m/4 with initial momentum p=0.8 (fx=0.14, &
=200).

net force is ~p% and the equilibrium planes of the SW are the

planes with Ellp, [as predicted by Eq. (62)]. Another way to
understand this result is to remember that this counter-
rotating SW has an unusual property, namely, in this wave

EIH [36]. Then it follows, that in the planes where El Do We

have py, X H=0 and there is no nonrelativistic contribution to
the PF that repels the particle away from these planes. This is
a quite remarkable result, because even though the SW has a
constant intensity of the electric field, and, in this sense,
there is no transverse gradient, electrons still “feel” the dif-
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ference between the planes of the SW via relativistic compo-
nent of the transverse PF.

V. CONCLUSION

The ponderomotive force as it is known in non-relativistic
case, gets transformed into much richer set of spatial relativ-
istic interactions. We have developed the relativistic analyti-
cal theory of electron motion in a standing wave of ultrapow-
erful laser having various polarizations. Our major result is
that for certain polarizations the PF normal to the incident
momentum, p, reverses its sign as the momentum exceeds
relativistic scale, which makes high-intensity areas (antin-
odes) attracting instead of expected low-intensity areas
(nodes). Optimal configuration to observe relativistic rever-
sal is collinear electron-SW configuration, whereby electric
field is linearly polarized and parallel to the initial momen-
tum of electron. The reversal effect is absent in the cases of
circularly polarized L beams and when electric field of laser
is normal to p,. However, changing mutual helicity of the
circularly polarized beams one can control the stability
planes of electron motion in the SW. Counter-rotating stand-
ing wave has homogeneous intensity profile along the axis of
propagation and does not have a field gradient in that direc-
tion; however, electrons are attracted to the planes with

El Po- We also found an adiabatic invariant and reflection-
transmission threshold energy of electrons for antinode
modes, “sneaky” modes in the nodes, and large Kapitza-
Dirac effect in transmission and reflection. Our numerical
simulations confirmed the analytical results.
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