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Comparative studies of the nonlinear effects occurring when highly charged projectiles collide
with hydrogen, a free electron gas, and a harmonic oscillator
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We calculate the nonlinear effects that appear at the level of the stopping cross section when heavy bare
projectiles collide with both atomic hydrogen and a free electron gas. Calculations are carried out by using
distorted-wave methods. For hydrogen targets we employ the continuum-distorted-wave eikonal initial-state
approximation, while for the free electron gas we use the Coulomb-Lindhard approach. Results are compared
with exact results for the quantum harmonic oscillator target. Ratios to the first-order stopping are analyzed in
detail and their structures are interpreted in terms of Padé approximants. We also investigate the dependency of

the stopping ratios on the impact parameter.
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I. INTRODUCTION

It is well known that when a heavy projectile of charge Zp
penetrates matter at a high velocity v, the stopping power
behaves as Z%,. However, as the velocity decreases, nonlinear
terms, i.e., the ones behaving as Z;, with j=3, become im-
portant. The calculation of these terms has been the subject
of numerous publications and excellent summaries can be
found in the literature [1-3].

For a fast heavy projectile moving through an idealized
random medium, the energy loss per unit path length, also
called stopping power cross section, is generally written as

22 +°
wpZ
S=$L, L=>7'L,. (1)
n=0

where wy is a natural frequency, which is defined in accord
with the considered medium. If the medium is a free electron
gas (FEG), w, is defined as the plasmon energy w,, if the
target is an atom, w, is the mean excitation energy w;, and if
the target is a harmonic oscillator (HO), then w is simply the
oscillatory frequency. For these two latter cases, the density
of targets should also be included in S. In Eq. (1), L is the
stopping number, whose first term—the primary stopping
number—reads Ly=In(2v>/ wy).

For our purpose, it is convenient to re-write Eq. (1) in
terms of the Sommerfeld parameter a=Zp/v, by defining the
ratio
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v
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where the B; factors do not depend on Zp, and B,=1. The
factor Bj, here called the relative Barkas correction factor,
provides the Z;-correction term [4,5] to the stopping power.
The next factor, B,, determines the Zj‘,-correction term of the
stopping and it was introduced by Bloch [6]. The factor B
has been largely investigated for the three targets considered
here—FEG, atomic hydrogen, and HO. For a FEG, the Z;
contribution was calculated in the context of the many-body
perturbation theory without exchange [7-10], while for
atomic hydrogen and HO targets, the factor By was simply
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derived from the second Born approximation [11,12].

For high impact velocity, the behavior of the Barkas and
Bloch correction factors has attracted a great deal of atten-
tion. For v— +o0, Lindhard derived the following expres-

sions [Egs. (15) and (16) of Ref. [5]]: B3,4—>B§°2, with

377w 1.202
B(°°) — _0, B(OC) = — 3
3 20° 4 In(2v%/ w,) ®)

This high-energy limit has been recently reexamined within
the classical scheme [13], proving to be accurate when it was
compared with a set of experimental data of channeled fast
ions, as reported by Araujo et al. [14,15].

In spite of the efforts devoted to evaluate the B, factor, the
Barkas term is not enough to describe the energy loss at
intermediate velocities or for large Zp, where higher-order
Born terms are required [16]. If only the Barkas contribution
is included, the calculation yields unacceptable negative val-
ues of stopping when Zp— —. In a similar manner, calcula-
tions including only the Bloch and Barkas contributions pro-
vide negative values of the stopping in both limits, as Zp
— %, because B, <0.

In this paper we report stopping cross sections for bare
ions colliding with FEG and atomic targets at intermediate
and high impact velocities. Results are obtained by using
distorted-wave methods which take into account, albeit in an
approximate way, all orders in Zp. For the FEG we employ
the Coulomb-Lindhard (CL) [17] approximation, while for
atomic targets we use the well-established continuum
distorted-wave eikonal initial-state (CDW) [18,19] approach.
The CL approximation is a distorted-wave method based on
the impulse approximation. It tackles the many-body prob-
lem that arises when a fast bare ion penetrates a FEG, in-
cluding nonlinear effects in the projectile charge and collec-
tive modes [17]. In a similar fashion, the CDW describes
higher perturbative terms for single ionization of atomic tar-
gets by impact of bare projectiles. CDW cross sections for
large Zp were studied in detail and compared with the ex-
periments by Gilbody [20].
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Present distorted-wave results will be compared, when
possible, with exact calculations for HO targets extracted
from Ref. [21]. In the last years, the HO has become a sort of
wild card which has been used to simulate targets ranging
from a FEG to any atom. As pointed out by Mikkelsen and
Flyvberg [21], although attractive, the HO is by no means an
exact atomic model. For example, the HO does not hold the
charge exchange process, which represents an important
mechanism of energy loss at low velocities. It does not even
take into account many-body collective excitations, as ob-
served in a FEG. Anyway, there is a huge amount of litera-
ture devoted to the HO: its perturbative expansion in term of
Zp [12,16,22,23], its classical solution [13,24], and its exact
numerical evaluation [21].

The questions that this work intends to solve are the fol-
lowing. First, to what extent can both distorted-wave
methods—the CL and CDW approaches—reproduce previ-
ous predictions for Barkas and Bloch terms? And second,
how similar are CL and CDW stopping cross sections to each
other, and both to the exact HO one, as a function of the
projectile charge? To answer these issues, we will report re-
sults for two different targets: Al FEG and hydrogen in its
ground state. This comparison is not arbitrary because both
targets have very similar associated oscillator frequency w.
Following Cabrera-Trujillo [25], for H(ls), w,~(r?)~?
=0.577 a.u., which is very near to the plasmon energy w,
=0.566 a.u. of Al. For the HO target we will resort to the
exact calculation of Ref. [21] for 2v%/ wy=10 a.u. Therefore
if we consider the same oscillation frequency wy=0.57, the
impact velocity is then v=1.68 a.u.

It is important to mention that we will deal just with bare
projectiles, while the measured stopping cross sections in-
volve the different charge states of the projectile. Capture
processes will not be considered here. Atomic units are used
along the work.

II. BASIC DEFINITIONS

We consider bare projectiles, with charge Zp, impinging
with velocity v on two different targets: an Al FEG and
atomic hydrogen in its ground state. For Al FEG, the process
can be schematically represented by

Zp+ AI(FEG) — Zp + AI(FEG)®, (4)

where the asterisk indicates that the FEG ends in an excited
or ionized state. We employ the CL approximation [17] to
evaluate the energy loss per unit path, SglL, associated with
this reaction. In order to compare with Eq. (2), we introduce
the ratio
§CL
c Al
Ry = SL (5)
Al
where SIL“ represents the first-order stopping cross section,
depending on Z2, as calculated by Lindhard [26] and Ritchie
[27].
In similar way, the ionization of the hydrogen atom can be
represented as
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Zp+H(ls) —» Zp+e+H'. (6)

The corresponding stopping cross section, SEDW, is calcu-
lated here by using the CDW method [18,19]. The first-order
term, Sﬁ, proportional to Zz, is evaluated within the first-
order Born approximation. Then, the ratio defined by Eq. (2)
is expressed as

REPV = Sa

—. 7)
5 (
Sh
From the exact numerical result [21], we have extracted
the ratio Ryq for the virtual case

Zp+HO — Z,+HO". (8)

In all cases, we expect the perturbative limit to hold,

namely, RglL, RﬁDW, Ryo—1 as a—0.

III. RESULTS

To calculate the ratios RS"™ and RS}, defined by Egs. (5)
and (7), respectively, we have developed two different codes.
In the case of ionization of hydrogen, the calculation of the
CDW is standard and simple [18,19]. It requires a four-
dimensional numerical integration of a positive quantity,
which involves hypergeometric functions. Relative errors
were set to be much less than 0.1%. For the penetration of
ions in the FEG the calculation of the CL approximation is
far more complicated. The CL approach [17] involves a five-
dimensional numerical integral of a complex and very-
oscillatory function, which includes hypergeometric func-
tions. Two major improvements have been made to our
original code of Ref. [17]. First, we have used the fact that
(in the notation of Ref. [17]) K~=K*", which reduces almost
half the computing time [28]. And second, we built a sub-
routine for specific values of the argument of the hypergeo-
metric function in terms of the digamma function [see Eq.
(15.3.11) of Ref. [29]]. In spite of these modifications, our
CL code can only provide results with less than 1% of rela-
tive error, within a reasonable CPU time. The CL expression
requires an effective charge to invoke the self-consistency
[17]. As in the previous work, the charge has been chosen to
be ZpRe[1/€,(g,0)], where g is the momentum transfer and
€, 1s the Mermin-Lindhard dielectric function.

Al FEG is described with a Wigner-Seitz radius r
=2.07 a.u. (plasmon energy wp=0.566 a.u). and with a life-
time A=0.0375 a.u. For both targets, Al FEG and atomic
hydrogen, we will report results for Sommerfeld parameters
a=Zplv within the range —2<a =<2, and for impact veloci-
ties v =2, to be sure that distorted-wave methods work ad-
equately. Of course, projectiles with Zp,<<—1 have no physi-
cal meaning, but their calculation is necessary to evaluate
perturbative series.

A. Stopping cross sections

We start the analysis by comparing our results with avail-
able experiments for antiproton and negative muon impact.
We have considered these negative ions as projectiles to dis-
card capture channels, not included in our calculations.
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FIG. 1. (a) shows the stopping cross section per atom for nega-
tive ions on molecular hydrogen. Empty square, experiments for wp~
impact and empty circles, experiments for p~ from Agnello et al.
[30]. Solid line the CDW calculation for atomic hydrogen. (b) dis-
plays the stopping cross section per unit path length for antiproton
impact on Al target as a function of the projectile velocity. Dashed
line S, FEG contribution; dotted line SV contribution of the Al
inner shells (2s and 2p); and solid line, the sum. Full circles and
squares experiments from Moeller ef al. [31]. (c) displays the the-
oretical ratios RS} and RG®Y as introduced in the text.

In Fig. 1(a) energy-loss experiments for antiprotons and
ne%ative muons impinging on H, are compared with our
SSPW values. For atomic hydrogen, CDW results follow the
tendency of the experiments. However, this agreement
should be taken with caution because the experimental target
is molecular, not atomic, hydrogen, and the excitation chan-
nel is not included in the theory.

In Fig. 1(b) we display two sets of energy-loss experi-
ments for antiprotons moving in Al, as a function of the
impact velocity. In order to compare our results with the
experimental data, we need to add FEG and inner-shell con-
tributions. We calculate the energy loss per unit path origi-
nated by ionization from the 2s and 2p shells of Al by using
the CDW approximation, noted as Sgllj V. The total stopping
cross section, SSF+SSPY, is in very good agreement with
experimental values for v=1.8 a.u. Below this velocity,
which is of the order of twice the Fermi velocity of the FEG,
the CL approximation fails, as a consequence of including
the impulse hypothesis. At low energies the stopping is
known to increase linearly with v, and the screening plays a
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FIG. 2. Upper figure displays the ratio RﬁDW as a function of the
Sommerfeld parameter a for different impact velocities, as indi-
cated. Empty star symbols, close coupling results reported by Schi-
wietz [35]. Similarly, the lower figure shows the ratio RS-

very important role [32,33]. For antiprotons moving at low
velocities the stopping can be calculated by using an effec-
tive screened potential in the momentum-transfer cross sec-
tion [34].

A very interesting point is shown in Fig. 1(c), where we
plot together the theoretical ratios RE"" and RS for Zp
=—1, as a function of the projectile velocity. The coincidence
between both theories for v=1.8 a.u. is impressive. It dem-
onstrates the total equivalence at a level of the energy-loss
cross section of the H(1s) and Al (FEG) targets, as posed by
the relation of Cabrera-Trujillo [25].

Figures 2(a) and 2(b) display the ratios REDW and RglL,
respectively, as a function of the parameter a=Zp/v for dif-
ferent velocities (v=2, 3, 4, and 5 a.u.). Similarities in the
shape of the curves for FEG and H(ls) targets are again
remarkable. We considered the agreement of S5°V with ex-
periments reported in Ref. [20] as an indication of the reli-
ability of the CDW theory in the considered energy region.
Further, in Fig. 2(a) we have included the numerical results
for v=2 derived by Schiwietz [35] by using an atomic close-
coupling calculation. Such results display good agreement
with our CDW values. For strong distortions (a=1 a.u.) the
CL approximation presents a small oscillatory pattern, also
observed in Fig. 1(c), which might be a deficiency of the
approximation.
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FIG. 3. The ratios of the calculated stopping with respect to
their first order for v=1.68 as a function of the Sommerfeld param-
eter. In the solid line labeled with Ryg we plot the results reported
by Mikkelsen ef al. [21] for the harmonic oscillator; in dotted line,
labeled with Rg{‘, for charged bared ions on Al FEG; and in dashed
line labeled with RSPV, the continuun distorted wave for atomic
hydrogen targets.

Since the HO target has been largely used to evaluate
nonlinear contributions to energy loss, before proceeding, it
is convenient to compare present ratios with exact calcula-
tions for the HO target. In Fig. 3, we plot R;"™ and RSy
together with the exact ratio for the HO target, Ry, as re-
ported in Ref. [21] for 2v?/wy=10 a.u. The associated im-
pact velocity is v=1.68 a.u., which is not large enough to
fully trust on the distorted-wave methods used here. We ob-
serve that for Zp<<0 the ratios corresponding to the three
targets—Al FEG, atomic hydrogen, and HO—behave much
alike. Some differences arise for Zp>0, especially when the
CL and CDW ratios are compared with the HO values. It
would be indicative of the importance of the capture channel
when the velocity decreases.

B. Series expansions

We are interested in evaluating the relative correction fac-
tors B,,, associated with the expansion of the ratio R in terms
of the Sommerfeld parameter a, as given by Eq. (2). We have
found that the direct polynomial interpolation of the numeri-
cal results RG°Y and RSF, shown in Fig. 2, is not reliable to
determine the B, factors. For example, nine numerical values
of the ratio R in the range a € [-1, 1] give rise to a polyno-
mial, which behaves (wrongly) as a® for large values of a.
This asymptotic behavior does not satisfy the high-charge
limit.

To include the experimentally observed saturation effect
we resorted to Padé approximants, which allows us to obtain
an interesting mathematical insight about nonlinear contribu-
tions. By using the Padé [N,N+2] approximant we can write
Eq. (2) as follows:
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N
2 P’
R~ RM(a) = 55— 9)
2 0,d"
m=0
with Py=Q,=1, where the number N determines the order of

the approximation. For Al (FEG), Eq. (9) implies that when a
increases,

P
r (10)
N+2

ST = SERNN 2 (g) — w,szo

which is a constant independent of Zp, in agreement with the
observed saturation phenomena. Similar expressions can be
also derived for the other two targets, H(1s) and HO.

The first Padé, corresponding to N=0, can be expressed in
terms of the relative correction factors B,, as

1

R~ R*(a)= :
(@) 1 - Bya+ (B3 - B,)d®

e (11)

T(a-a)a-a)

Bs / 3
., =—=+11/B,——B 12
a, 5 4 4 3 (12)

are the poles of RI%(a). The poles a, are expected to be
conjugated complex because the stopping cross section ratio
R does not diverge for any value of the parameter a=Zp/v.
To examine this aspect we consider the high-energy limit,
v — +o, for which the Barkas and Bloch correction factors
display closed expressions, as given by Eq. (3). In this limit
case, the poles of RZ(a) verify a,—a' with o

where

=[a"T", where
1 37w, 1 202
Re[al™] — —— 20 ol 1 (—)
e T A T

(13)

When the velocity increases, that is, as a—0, Re[afo)] ap-
proximates to zero very rapidly and the function RIO2)(q)
becomes a symmetric function. It means that the effect of the
sign of the charge Zp on the energy loss tends to disappear,
and the Barkas correction becomes negligible. In addition, as
a—0, Im[afc)] increases very slowly, determining the per-
turbative limit R— 1. It is important to note that our Padé
[0,2] is built at the level of ratio of stopping cross sections; it
is not developed from the Schwinger variational principle
using trial wave functions, as it was recently developed by
Nazarov et al. [36].

For the different considered targets, we use the Padé
structure RI%2)(a) to represent the stopping ratio by fitting the
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FIG. 4. Ratios for the three targets H(1s), Al (FEG), and HO as
a function of the Sommerfeld parameter, for v=1.68. The symbols
are the numerical results. For the case of the HO, the values were
extracted from Mikkelsen et al. as reported in Ref. [21]. The dotted
line shows the Padé [0,2] using the asymptotic values a7, given by
Eq. (13). The dashed line shows the Padé [0,2] using the best fitted
values of «;,. The solid line shows the Padé [2,4] using the best
fitted values « and .

pole positions «a, from the theoretical values. Results for
RI92] obtained from this fitting are displayed with the dashed
line in Fig. 4. Full symbols represent present theoretical ra-
tios, evaluated with the CDW and CL approximations for
H(1s) and Al (FEG), respectively, and the exact values re-
ported by Mikkelsen er al. [21] for the HO. The Padé ap-
proximant is a general and very powerful strategy. It allows
us to combine saturation effects along with Barkas and Bloch
corrections to derive two poles in the complex plane «, and
a_, which contain all the relevant information.

We also examine the use of the simple asymptotic values
a? of Eq. (13) to give RE?‘z](a). which is displayed in Fig. 4
with dotted lines. Again, the three different targets—H(1s),
AI(FEG), and HO—are considered. In all the cases the
asymptotic closed form Rc[f’z] predicts qualitatively the shape
of the curve. Note that, paradoxically, the worst prediction
corresponds to the HO target, from which asymptotic factors
were extracted.

For higher N orders, we found it convenient to introduce
roots by couples, that is, by using even numbers for N. The
Padé [2,4] structure reads
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FIG. 5. Upper figure, Bloch factor BEDW as given by Eq. (2)
calculated by expanding the CDW energy-loss cross section in pow-
ers of the Sommerfeld parameter. Dashed lines, the asymptotic
value Bj given by Eq. (3). Lower figure, similar for the Barkas
factor. Vertical lines represent the estimate error.

4 2
H a; H (a-pB)
R~RPHq) =2 (14)

HBiH(a_aj)

=1 j=1

where «; and B; are parameters derived by fitting the theo-
retical ratio R. For the three targets, R24(q) is also plotted in
Fig. 4 with a solid line. It reproduces very accurately the
distorted-wave and exact predictions. We found that
R[2’4](a) never becomes negative and it can be used with
confidence for a — + .

After proving the success of Eq. (14) to represent the
stopping cross section, we employ the fitted Padé [2,4] struc-
ture to derive Barkas and Bloch correction factors for Al
(FEG) and H(ls) targets. To that end, we first calculate the
Padé [2,4] approximant by fitting the CL and CDW results,
shown in Fig. 2, in the range a=[-1,1] a.u. And then, we
expand it in a power series in terms of a. In this way, we
derive the Barkas (B;) and Bloch (B,) factors, which are

shown in Fig. 5 along with the asymptotic values Bgi‘) , given
by Eq. (3). We have verified that the Padé [4,6] does not
change appreciably the factors obtained with the Padé [2,4].

When the velocity augments, the agreement with the
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asymptotic values is quite good for Bng and reasonable for
BSPY and BS". The factor BS", instead, behaves differently
at high velocities, although it displays the appropriate sign
and order. Within the CL approximation, used to evaluate the
Al (FEG) target, the numerical procedure to determine the
coefficients B" is not precise due to the uncertainty intro-
duced by the numerical relative error (1%). The larger v, the
nearer the ratio to unity, and so the larger the relative error.
The estimated errors are displayed in the figure with vertical
lines.

C. Impact parameter dependency

Several articles deal with the dependency of nonlinear
contributions on the impact parameter p associated with the
collision. Based on a HO target, Ashley er al. [37] argued
that only large impact parameters contribute to the Z?, cor-
rection, and introduced a lower limit for the impact param-
eter, pmin=1 a.u. (atomic radius). Later, Jackson and Mc-
Carthy [38] and Lindhard [5] modified slightly the value of
Pmin- Mikkelsen er al. published a series of articles for the
HO target, starting from the second order [22] and ending in
the exact calculation [21] of the stopping in terms of the
impact parameter. Examining the exact stopping for the HO
target, they estimated py,=~Zp/v> only for |a|=|Zp/v]|
>1 a.u. For |a|=1 a.u., the Barkas contribution was found
to be relevant for small and intermediate values of the scaled
magnitude pwgy/v.

In collisions with a quantum FEG, as considered within
the CL approximation, electrons are described by totally ex-
tended plane waves. As a consequence, there is no quantity
that can be identified with the impact parameter. For heavy
ion-atom collisions, instead, it is possible to define an impact
parameter p, measured with respect to the target nucleus. By
using the eikonal approximation [39], we derive the impact-
parameter distributions of the energy loss per unit path
within the CDW and first-order Born approximations,
SSPY(Zp,p) and SB(Zp,p), respectively. We have explicitly
introduced the parameter Zp in the notation to identify the
charge of the bare ions impinging on H(1s). This mathemati-
cal task involves an additional two-dimensional numerical
integration, which is particularly laborious for large p values.

In order to separate the contributions of even (a®") and
odd (a®*!) terms in the series given by Eq. (2), we define the
following parity contributions:

SV (Zpp) + SEPV (= Zpp) - 255(Ze p)

Peven(ZP p) - )
" ’ 2Sﬁ(ZP,P)

Se"(Zpp) = SE™V (= Zp p)
28%(Zp p)

PY(Zp p) = (15)
Results for v=2 a.u. and for projectile charges Zp=1, 2, and
3 are plotted in Fig. 6. From the figure we can undoubtedly
state that even Zp terms dominate the stopping cross section
for small values of p, while odd terms are small in this im-
pact parameter region. This behavior was also observed in
closed coupling calculations at higher velocities [40]. For
large impact parameters, even and odd parities give similar
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FIG. 6. Odd and even contributions defined in Eq. (15) for bare
ions colliding with hydrogen in its ground state as a function of the
impact parameter p for v=2. Values calculated with the CDW for
three different projectile charges Zp as indicated.

contributions to the stopping. These findings support the pre-
vious idea, based in the HO target, for which large p values
essentially contribute to the Barkas correction. From Fig. 6 it
is also concluded that the even contribution is important in
the small impact-parameter range, where the stopping cross
section is relevant.

Finally, in Fig. 7 we compare the energy-loss distribu-
tions, as a function of the impact parameter, for idealized
projectiles with Zp=+1.68 colliding with H(1s) and HO tar-
gets, with velocity v=1.68 a.u. Both targets have similar
frequencies wy. Even though the curves for H(1s) display a
sharper distribution than the corresponding to the HO target,
the ratios with respect to first-order Born results become
rather similar when they are plotted in terms of the universal
parameter pwgy/v.

IV. SUMMARY AND CONCLUSIONS

We can now answer the two questions posed in the intro-
duction. First, the distorted-wave methods (both the CL and
CDW) do incorporate higher order in Zp, including Barkas
and Bloch corrections, but differing from each other, little for
the Barkas factors and relatively large for the Bloch ones.
Anyway, both targets give nearly the same ratios for large
impact velocities. And second, for the case reported by
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HO as indicated. Lower figures
show the corresponding ratios in
terms of the scaled impact
parameter.
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Mikkelsen [21], at v=1.68, we find remarkable similarities
among the three targets, viz. H, FEG, and HO, for Z, <0, but
some differences are observed for Zp>0. The FEG results
run very near to those of the H(ls) target, and both run
below the HO prediction for a>1. For 0<a <1, the three
targets run together warranting similar contribution to the
Barkas effect. The capture channel, which is absent in the
HO case, may play a role for atomic targets originating the
differences found for a>0.

It is difficult to find a physical reason to support any simi-
larity among the nonlinear terms for the different targets. For
example, if we analyze the agreement for Zp <0 to put aside
the capture obstacle, it is clear that if such negative charges
existed, the physics involved in the collision should be dif-

p oV

ferent. Why do both the FEG and H(ls) targets give similar
ratios to the HO (see Fig. 3)? This is puzzling. The numerical
similarities between the FEG and H(ls) targets [see Fig.
1(c)] is another interesting point to discuss. Although both
have the binary channel, the FEG case has, in addition, the
collective oscillation mode which contributes as importantly
as the binary one. As a consequence, a plasmon peak appears
in the differential energy-loss spectrum, which certainly is
not present at all in the atomic spectrum. At this stage we
should keep in mind that the CL approximation studied here
is a distorted-wave method developed in the same spirit as
the CDW for ionization. Perhaps the strong numerical simi-
larities may be a consequence of the equal approach to the
problems.
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The output of the study of the present theoretical methods
have two contradictory readings. On one hand, we can state
that there are distorted-wave methods—such as the ones
studied here—which provide adequate descriptions consider-
ing the real target under study, being either a FEG or an
atom. And this is what we want to stress in this paper. But on
the other hand, we cannot but admire those researchers who,
using the HO model, unveil the core of the problem with
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very simple algebra, something that today illuminates our
understanding of the numerical results.
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