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The hyperspherical R-matrix method with semiclassical outgoing waves, designed to provide accurate
double-ionization cross sections, is extended to allow for the computation of ionization-excitation data of
comparable quality. Accordingly, it appears now as a complete method for treating the correlated dynamics of
two-electron atoms, in particular above their full fragmentation threshold. Cross sections �n and asymmetry
parameters �n are obtained for single photoionization of helium with excitation of the residual ion up to as high
a level as n=50 at 0.1 eV above the double-ionization threshold. These data are extrapolated to infinite values
of n in order to check widespread assumptions regarding this limit. Our data are found consistent with the
assumed n−3 dependence of the partial ionization cross sections. However, the ��=−0.636 obtained still lies far
from the −1 value expected at the double-ionization threshold.
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I. INTRODUCTION

Describing the double-electronic continuum that arises
from such fundamental processes as electron impact ioniza-
tion of H or double photoionization of He has remained a
challenge for computational atomic physics until very re-
cently. It is only in the last few years that methods have
appeared which deal with this problem quantitatively �see �1�
for the results up to 2000 and �2� for more recent work�. As
a result, it is now possible to compute electron impact ion-
ization cross sections of H and double-photoionization cross
sections of He which reproduce absolute measurements
within the experimental uncertainty. However, full control of
the intricate dynamics initiated by electron impact on H
above the single-ionization threshold or by photon impact on
He above the double-ionization threshold will not be demon-
strated until one masters the resulting distribution of the out-
going flux between all members of the infinite set of avail-
able exit channels. For electron impact on H, this means that
one should be able to disentangle precisely the elastic scat-
tering channel e+Hn=1, the ionization channel e+e+H+, and
the infinite series of excitation channels e+Hn=2¯�. Simi-
larly, for photon impact on He, one should separate
the single-ionization channel e+Hen=1

+, the double-
ionization channel e+e+He2+, and the infinite series of
single-ionization channels with excitation of the residual ion

e+Hen=2¯�
+ accurately. Accordingly, one should be capable

of checking numerically the continuity between excitation to
high-lying bound states and excitation to the continuum
which is expected at threshold. However, to the best of our
knowledge, this program has not been completed yet. It was
brought to our attention after submission of this paper that
this program has been completed in the limit of very high
photon energies �25�. This is why we have set out to fill this
gap. The present paper reports on our first progress in this
direction. It shows that the hyperspherical R-matrix method
with semiclassical outgoing waves �HRSOW�, which has
provided accurate double-ionization cross sections, can be
complemented to yield single-ionization data as well. Inter-
estingly, the method yields cross sections for single ioniza-
tion with excitation up to levels as high as n=50, which
have not been considered in the numerous previous calcula-
tions based on standard close-coupling and R-matrix tech-
niques and on their various sucessful avatars including
convergent-close-coupling �CCC�, hyperspherical-close-
coupling �HSCC�, eigenchannel R-matrix, or R-matrix with
pseudostates methods. The data obtained can then be ex-
trapolated to n=�. Section II recalls the hyper-radial propa-
gation scheme inherent to the method and presents recent
improvements of its numerical implementation. Section III
demonstrates the fixed hyper-radius projection technique
used to separate the various single-ionization channels from
each other and from the double-ionization one in the course
of propagation. Section IV presents cross sections and asym-
metry parameters for ionization excitation up to n=50 at
0.1 eV above the double-ionization threshold. It reports our
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attempts at extrapolating these data to n=�. The concluding
Sec. V announces further developments.

II. HYPER-RADIAL PROPAGATION

A. General framework

The HRMSOW method proposes a simple scheme to
compute the wave function of a helium atom, initially in its
ground state �0�r�1 ,r�2� of energy E0, after it has absorbed a
single photon carrying an energy larger than the He double-
ionization potential. This photoionization wave function, de-

noted �̄�r�1 ,r�2�, is obtained by solving the stationary inho-
mogeneous Schrödinger equation

�H − �E0 + ����̄�r�1,r�2� = −
1

2
E� · D� �0�r�1,r�2� �1�

for an outgoing-wave asymptotic condition. In Eq. �1�, H

denotes the field-free two-electron Hamiltonian, and D� the
dipole operator that couples the atom to the external electric

field of amplitude E� and frequency �. This equation is solved
in a set of partially collective coordinates which consists of
the hyperspherical radius R=�r1

2+r2
2, the radial correlation

angle �=tan−1�r2 /r1�, and the spherical angles �1 ,�1, and
�2 ,�2, that specify the directions of the unit vectors r̂1 and
r̂2. For convenience, we introduce the compact notations
	1= ��1 ,�1�, 	2= ��2 ,�2�, and 	= �� ,	1 ,	2�. The R−1 de-
pendence of the three-body Coulomb potential

C�R,�,�12� = −
1

R� Z

cos �
+

Z

sin �
−

1
�1 − sin 2� cos �12

	
= −

Zef f��,�12�
R

, �2�

where �12=cos−1�r̂1 · r̂2� and Z=2, suggests separating con-
figuration space into two regions: an inner region R
R0
where the R dependence is strong, and a complementary
outer region where it is weak enough to support a semiclas-
sical treatment. The inner-region calculation provides the so-

lution �̄�R0 ;	� on the hypersphere R=R0. It does so by
expressing both the R-matrix condition derived from Eq. �1�
and the outgoing-wave asymptotic condition at R=R0 within
the adiabatic angular basis defined on this hypersphere.
The details of this inner-region treatment can be found in
�3–5� and do not matter here. By contrast, the outer-region
treatment is highly relevant to our present purpose. We recall
its main features below in more detail than in previous
publications.

B. Approximations

The outer-region treatment consists in neglecting the
short-range right-hand side of Eq. �1� and in looking for the
solution in the form

�̄�R;	� =
1

R5/2 sin 2�

1
�p�R,E�

�exp�ı

R0

R

p�R�,E�dR�	�̄�R;	� , �3�

where E=E0+� denotes the total energy of the system. The
first term, related to the volume element in the current coor-
dinates, is introduced for computational convenience and
does not imply any approximation. The second term is the
semiclassical outgoing wave �SOW� that is outlined in the
very name of the method. The last term is a reduced function
that is supposed to depend only weakly on R. In writing Eq.
�3�, one is making two assumptions: �i� that the bulk of the
hyper-radial �R� motion can be separated from the angular
�	� motion to a reasonable extent, and �ii� that this motion
can be described by a unique, semiclassical, outgoing wave
associated with a local momentum p�R ,E� that remains to be
specified.

The idea behind assumption �i� is that R, which measures
the overall size of the electron-ion-electron triangle, is less
critical to the dynamics than the angular parameters � and
�12 that control the shape of this triangle. This idea, which
will be supported by the success of the resulting approach,
can hardly be justified a priori by the quantitative estimate of
any relevant quantity. Practically, it implies that the energy
and momentum associated with the R dependence of the re-

duced function �̄ are negligible with respect to their coun-
terparts arising from the SOW, which can be expressed by
the two conditions

�2�̄

�R2  p2�̄,
��̄

�R
 p�̄ . �4�

To figure out what the bulk of the R motion looks like, let
us consider more carefully the three-body potential of Eq. �2�
that determines this motion. At fixed R�R0, C�R ,� ,�12� has
the well-known shape of a saddle: two infinite barriers at
��=� /4 ,�12=0� and ��=� /4 ,�12=2�� and two infinite
wells at ��12=� ,�=0� and ��12=� ,�=� /2� break through
the large plateau that extends around the saddle point
��=� /4 ,�12=��. Paying tribute to the work of Wannier, we
denote by ZW the saddle-point effective charge, which deter-
mines the level of the plateau. The barriers, which define
forbidden areas, have no influence on the definition of an
effective local momentum. The wells, by contrast, play an
important role which can nevertheless be reduced drastically
by a proper redefinition of the outer region function. Figure 1
suggests the proper scheme in the illustrative case where
R=R0=25 a.u. It shows that the lowest three hydrogenic lev-
els En of the He+ ion are located below the top of the poten-
tial barrier. Accordingly, each of these levels is associated
with two separate classically allowed intervals of width ��n
located around �=0 and � /2, respectively. In addition, for
n=1 and 2, R0��n turns out to be very close to the range rn
of the nth hydrogenic level. This means that single ionization
leaving the residual ion in the levels 1 and 2 can be properly
described at R0=25 a.u. In other words, the two-electron
wave function of energy E�0 extracted at this distance has
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components, confined within ��n sectors about �=0 and
� /2, which can be associated with single ionization leaving
the residual ion in the level n—the photoelectron taking
away the excess energy E−En. The simplest way to disen-
tangle these components from the bulk of the wave function
is to expand the latter over the “locally adapted” angular
basis vectors �also referred to as “adiabatic” angular basis
vectors� which diagonalize the Hamiltonian at fixed R=R0.
We have shown indeed in previous publications that the
groups of adiabatic channels �1�, �2–4�, �5–9� defined at
R0�50, for instance, could be associated with ionization ex-
citation to the levels 1, 2, and 3, respectively, the multiplicity
of each group of adiabatic channels being equal to the first-
order Stark degeneracy of each hydrogenic level. This pos-
sibility of disentangling the lowest single-ionization channels
from the rest of the wave function at R0 is the key that makes

assumption �ii� work. From the total wave function �̄�R0 ;	�
derived from the inner region, let us indeed subtract the
single-ionization channels n=1, . . . ,nR0

that can be identified
at R0, thus defining a new function ��R0 ;	�. This simple
operation amounts to filling the wells in Fig. 1 up to the level
EnR0

. The effective potential experienced by the new function

then reduces approximately to a flat surface at −ZW /R. From
the latter, a unique local momentum

p�R,E� =�2�E +
ZW

R
	 �5�

can be defined. The condition that guarantees the validity of
the semiclassical approximation can then be written in terms
of the local wavelength ��R ,E�= p−1�R ,E� as

�R��R,E�  1. �6�

Figure 2 shows that Eq. �6� is satisfied within a wide
energy�hyper-radius domain. In particular, very-low-energy
calculations can be accommodated within inner regions of
manageable sizes. As the outgoing-wave boundary condition
has already been imposed at R0 by the inner-region treat-
ment, we do not introduce any additional approximation
when we assume an outgoing-wave behavior for the outer-
region wave function. As a result, we can state that the new

function �, cleared of all single-ionization channels that can
be identified at R0, will be described reasonably well by a
unique SOW of the form given in Eq. �3� with the momen-
tum given by Eq. �5�.

C. Propagators

Details regarding the subtraction of the single-ionization
channels at R0, as well as the definition of a more refined
expression of the charge that enters the local momentum
p�R ,E� can be found in previous publications, notably in �6�.
It is sufficient for our present purpose to state that we are
now left with a new wave function ��R ;	�, which is known
at R0 from the inner-region calculation, which depends on a
new reduced wave function ��R ;	� according to Eq. �3�,
and which satisfies the homogeneous counterpart of Eq. �1�
for R�R0. The approximation expressed by Eq. �4� implies
that the second-order partial derivative of � with respect to
R can be neglected. This reduced wave function then satisfies
a partial differential equation of first order in R that can be
rewritten in the standard form of a propagation equation if
one shifts from the variable R to the new variable � such that
Rp�R ,E�d�=dR. One gets

ı
�

��
���;	� = H���;	� , �7�

where H is obtained from H by �i� neglecting the second-
order derivative with respect to R, �ii� suppressing the terms
that depend only on R, since they would contribute to the R
evolution only through an overall irrelevant phase factor, and
�iii� multiplying the resulting expression by R.

Introducing an appropriate representation of � reveals the
different properties of the various terms in H. Assuming lin-
ear polarization along the z axis makes � a 1PM=0

o wave
function which is conveniently expanded on orthonormal
symmetrized bipolar harmonics �Y��+1

10 �	1 ,	2� according to

���;�,	1,	2� = �
�=0

n�−1

�
�=±1

a�
���;���Y��+1

10 �	1,	2� , �8�

where �= +1 indicates symmetry in the exchange of the two
electrons and �=−1 antisymmetry. Inserting this expansion
into Eq. �7� yields the following set of coupled partial differ-
ential equations for the coefficients a�

��� ;��:

FIG. 1. Qualitative cut of the three-body Coulomb potential
C�R ,� ,�12� along � at �12=� rad and R0=25 u.a. The horizontal
segments depict the �-intervals which are classically allowed at the
energies En=−Z2 /2n2 of the n=1 to 3 levels of He+ which lie below
the top of the barrier at −ZW /R0.

FIG. 2. Contour lines of �R��R ,E�.
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ı
�

��
a�

���;�� = �−
1

2R���
�2

��2 + U���;��	a�
���;��

+ V���;��a�
−���;�� + �

��

W���
� ���a��

� ��;�� ,

�9�

where

U���;�� =
2�� + 1�2

R���sin2 2�
−

Z

cos �
−

Z

sin �
,

�10�

V���;�� =
2�� + 1�cos 2�

R���sin2 2�
,

and

W���
� ��� = ��Y��+1

10 W�Y����+1
10 �	1,	2

�11�

where W = R/r12 =
1

�1 − sin 2� cos �12

,

integration over the two solid angles 	1 and 	2 being as-
sumed in the first of Eqs. �11�. Equation �9� shows two
groups of terms with contrasted properties. W���

� ���, on one
hand, does not depend on �, shows no singularity in �, and
couples far-distant partial waves � and �� at given � and �.
On the other hand, the remaining terms depend on �,
U��� ;��, and V��� ;��, show singularities at �=0 and � /2,
and V��� ;�� connects symmetric and antisymmetric compo-
nents at given � and � while the differential operator couples
neighboring values of � at given � and �. It would then be
convenient to consider the respective contributions of these
two groups of terms to the propagation process separately.

The split-operator method �7� meets this need. It allows
one to write the elementary propagator over d� under the
influence of H=A+B as

P�d�;A + B� = P�d�/2;A�P�d�;B�P�d�/2;A� �12�

within third order in d�, so that the propagator over �=n d�
reads

P��;A + B� = P�d�/2;A��P�d�;B�P�d�;A��nP�− d�/2;A� .

�13�

It is clear from Eq. �13� that A and B contribute on an equal
footing to the core of the propagation that is represented by
the central square brackets. Let us then take A=W and
B=H−A—it being understood that the opposite choice
would be essentially equivalent.

The evolution controlled by A obeys

ı
�

��
a�

���;�� = �
��

W���
� ���a��

� ��;�� , �14�

whereas that controlled by B is expressed more simply in
terms of the alternative coefficients

b�
±��;�� =

1
�2

�a�
+��;�� ± a�

−��;��� , �15�

which satisfy the following set of partial differential
equations:

ı
�

��
b�

���;�� = �−
1

2R���
�2

��2 + B�
���;��	b�

���;��

�16�
where B�

���;�� = U���;�� + �V���;��

with � taking the values ±1.
Before considering the resolving schemes appropriate to

these two equations, we need to complete our representation
of the five-dimensional configuration space 	. As regards �,
it is convenient to use a nonuniform grid with a high density
of points in the vicinity of the singularities of the three-body
potential. Here we take

�i = �xi −
1

4
sin 4xi	, xi =

i�

2�n� + 1�
, i = 1, . . . ,n�,

�17�

which ensures an n�
−3 step size in the neighborhood of

�=0 and � /2. The local potentials in Eqs. �14� and �16�
are then represented by their values at the grid points
W���

� ��i� and B�
��� ;�i� and the differential operator in

Eq. �16� by a second-order difference formula that reads
yi�=siyi−1+ciyi+diyi+1, the differentiation weights associated
with the nonuniform grid being given by

si =
2

��i−1 − �i���i−1 − �i+1�
, ci =

2

��i − �i−1���i − �i+1�
,

�18�

di =
2

��i+1 − �i−1���i+1 − �i�
.

The propagation equations �14� and �16� can be rewritten
in matrix form as

ı
�

��
a��� = Aa��� , �19�

ı
�

��
b��� = B���b��� , �20�

the matrix elements in the relevant N-dimensional represen-
tations labeled ���i� and ���i� being given by

��iA����i�
= �����ii�W���

� ��i� , �21�

��iB����i�
��� = − ��������� si

2R���
�i,i�+1 + � ci

2R���

− B�
���;�i�	�ii� +

di

2R���
�i,i�−1� �22�

with N=2n�n�. Equations �21� and �22� evidence the con-
trasted properties of the two propagation equations �19� and
�20� already noted: the �-independent operator A induces
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“long-range” couplings in �, whereas the �-dependent opera-
tor B induces “short-range,” namely, tridiagonal, couplings
in i. Accordingly, different resolution schemes are applied to
these two equations.

With Eq. �19�, we associate the elementary propagator

P�d�;A� = exp�− ı d� A� . �23�

We take as its matrix representation the exponential of the
matrix representation of −ı d� A, defined as a series expan-
sion in powers of −ı d� A, which preserves unitarity to all
orders in d�. As A is free of singularities and independent of
�, this computation can be performed safely once for all be-
fore propagation starts. As a result, the only task that has to
be performed repeatedly to ensure the A part of the propaga-
tion is the N-dimensional matrix�vector multiplication

a�� + d�� = P�d�;A�a��� . �24�

Due to the block-diagonal structure of the matrix A, which is
conserved in P�d� ;A�, the latter reduces to 2n� independent
n�-dimensional matrix�vector multiplications.

The above technique is not recommended for the B part of
the propagation. Indeed, as B depends on �, −ı d� B should
be exponentiated at each step. This would be a rather heavy
task that in addition could fail due to the singularities in B. It
is by far more convenient to use an elementary propagator of
the Crank-Nicholson form

P�d�;B� = �1 + ı
d�

2
B	−1�1 − ı

d�

2
B	 �25�

since the latter is unitary to all orders in d� and allows one to
take the best advantage of the particular structure of the ma-
trix B, which is not only diagonal by blocks but also tridi-
agonal within each block. Performing an elementary propa-
gation step thus amounts to solving the N-dimensional
inhomogeneous linear system

�1 + ı
d�

2
B	b�� + d�� = �1 − ı

d�

2
B	b��� , �26�

which reduces to a set of 2n� independent n�-dimensional
tridiagonal systems.

D. Numerical implementation

The elementary propagation step described by the propa-
gator P�d� ;B�P�d� ;A� requires one to accomplish �i� 2n�

independent n�-dimensional matrix�vector multiplications
to propagate a, �ii� 2n�n� independent two-dimensional lin-
ear combinations to pass from a to b, �iii� 2n� independent
solvings of an n�-dimensional tridiagonal system to propa-
gate b, and �iv� 2n�n� independent two-dimensional linear
combinations to come back from b to a, n� being of the order
of a few tens and n� of a few thousands. Independent opera-
tions appear at each stage but for different fixed labels: �� at
�i�, ��� at �ii�, �� at �iii�, ��� at �iv�. Any parallelization
procedure will therefore require communications between
succesive propagation steps, which will reduce its perfor-
mance, the more so the larger the number of processors in-
voked. As a result, the problem is no good candidate for

massive parallelization, although its resolution could benefit
from a moderate parallelization. This is why we have chosen
to parallelize on �, which has a reduced range of variation,
and to vectorize on �. The vector�matrix multiplication at
stage �i�, as well as the linear combinations at stages �ii� and
�iv�, are obviously highly vectorizable operations, but this is
not so for the resolution of the tridiagonal system at stage
�iii�. However, we have implemented a cyclic reduction al-
gorithm that allows vectorization within each reduction step.
See for instance �8� in which it is also called recursive dou-
bling. Here, we only wish to point out the interesting perfor-
mances we obtain this way on the moderately parallel vector
computer at IDRIS. Typically, we are able to perform about
90 000 propagation steps for a 50-partial-wave wave func-
tion discretized on a 4000-point � grid within 2 h 50 min
monoprocessor time. This corresponds to propagating from
R0=60 to 106 a.u. at 0.1 eV above the double-ionization
threshold. This increased efficiency of the outer-region
propagation is crucial for investigating the progressive de-
coupling of the increasingly excited single-ionization chan-
nels in the course of the R expansion of the system, a subject
that is dealt with in the following section.

III. FIXED HYPER-RADIUS PROJECTION

A. Purpose

Until recently, the HRMSOW method had produced only
very few single-ionization data, namely, integrated cross sec-
tions for single ionization leaving the residual ion in the
three lowest hydrogenic levels n=1–3. These were extracted
on the hypersphere R=R0 that limits the inner region by
identifying the corresponding single-ionization channels with
sets of adiabatic channels defined on this hypersphere as
noted in Sec. II B. A reduced function, cleared of these few
single-ionization channels, was further propagated through-
out the outer region till Rmax. The analysis of the wave func-
tion at Rmax was only qualitative. It was based on the fact that
as R→�, single ionization corresponding to r2 finite and r1
infinite or the opposite becomes confined within vanishingly
small � sectors about �=0 and � /2, whereas double ioniza-
tion, corresponding to both r1 and r2 infinite, is described by
the complementary � values in the open interval �0,� /2�.
These values are then related to the sharing of the excess
energy between the two electrons since �� tan−1�E2 /E1. No
attempt was made to analyze the final wave function in terms
of the various single-ionization channels, which were consid-
ered as a whole. As a result, the HRMSOW method did not
appear as a complete method for studying the above-the-
double-ionization-threshold dynamics of the model three-
body system He.

A first attempt to fill this gap was presented in �9�. It was
based on projecting the photoionization wave function on the
successive hydrogenic levels n of the He+ ion at appropriate
distances Rn. It demonstrated the feasibility of this approach,
which is presented in more detail below.

B. Method

In the following, we will label the two electrons of the

system by i and ī, respectively, with ī=2 if i=1 and ī=1 if
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i=2. Let us then denote by n�m ; i� the hydrogenic eigenstate
n�m of electron i in the He2+ core. It is given in the position
representation by

�r�n�m;i� = Fn��ri�Y�m�	i� , �27�

where Y�m stands for a normalized spherical harmonic and
Fn� for the normalized radial function

Fn��r� =
2Z3/2

n2 ��n − � − 1�!
�n + ��!

exp�− Zr

n
	

��2Zr

n
	�

Ln−�−1
2�+1 �2Zr

n
	 , �28�

the Laguerre polynomials Lp
q being defined according to the

conventions of Abramowitz and Stegun �10�. The projector
n�m ; i��n�m ; i onto this state is termed Pn�m

i . The projected
wave function �nlm

i = Pn�m
i � describes an ionization-

excitation process in which electron i is excited to the state

n�m whereas electron ī is ejected. The corresponding fully
integrated cross section �n�m

i follows as the total outgoing
flux of �n�m

i through a hypersphere R=Rn of adequately
large hyper-radius divided by the incoming photon flux. It
can be expressed in terms of the reduced wave function �n�m

i

associated with �n�m
i according to Eq. �3� by

�n�m
i =

2��

c



R=Rn

d� d	id	ī�n�m
i ��,	i,	ī�2. �29�

The corresponding differential cross section can be written
similarly in terms of the outgoing flux through the elemen-
tary surface defined on the hypersphere R=Rn by the solid
angle d	 centered on 	 as

d�n�m
i

d	
=

2��

c



R=Rn

d� d	i�n�m
i ��,	i,	ī = 	�2. �30�

�Note that, here, 	= �� ,�� denotes the current direction of
the photoelectron, and not, as in Sec. II, the set of five angles
�� ,	1 ,	2�.� The fully integrated and differential cross sec-
tions for ionization excitation leaving the residual ion in the
level n follow from

�n = �
�mi

�n�m
i �31�

and

d�n

d	
= �

�mi

d�n�m
i

d	
. �32�

The asymmetry parameter �n, defined by

d�n

d	
=

�n

4�
�1 + �nP2�cos ��� , �33�

where P2 stands for the second-order Legendre polynomial,
can then be expressed from Eqs. �29�–�33� as

�n = �20�

��mi 

R=Rn

d� d	id	ī�n�m
i 2Y20

* �	ī�

��mi 

R=Rn

d� d	id	ī�n�m
i 2

. �34�

It is worth noting that one can rewrite �n and �n in
terms of the reduced wave function �n associated with
the projected wave function �n=��mi�n�m

i which
describes single ionization with excitation to the level n;
namely

�n =
2��

c



R=Rn

d� d	1d	2�n2 �35�

and

�n = �20�

�
R=Rn

d� d	1d	2�n2Y20
* �	1�

�
R=Rn

d� d	1d	2�n2
, �36�

where the symbol � implies that integration over � must be
restricted to the interval �0,� /4�. Note, however, that Eqs.
�35� and �36� are inappropriate for numerical evaluation pur-
poses as they introduce a lot of irrelevant crossed terms of
vanishing value.

C. Approximation

It appears then from Eqs. �29�, �31�, and �34� that a
complete description of single ionization with excitation to
the level n can be obtained from the reduced wave function
�nlm

i �Rn ;	�. In principle, the computation of the latter
should involve three steps: �i� interpolation of
��R ,� ;	1 ,	2� on a two-dimensional r1�r2 grid to get
��r1 ,r2 ;	1 ,	2�, �ii� projection onto the hydrogenic
state n�m of electron i, which implies integration over
ri at fixed rī, to get �n�m

i �r1 ,r2 ;	1 ,	2�, and �iii� interpola-
tion of �n�m

i �r1 ,r2 ;	1 ,	2� on the one-dimensional � grid
at R=Rn to get �n�m

i �Rn ,� ;	1 ,	2� and hence
�n�m

i �Rn ;	�.

FIG. 3. Accuracy of the fixed-R projection method for a given
level n as R increases. �The width of the allowed angular sector has
been magnified for clarity.�
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This heavy task would be much alleviated if integration
over ri at fixed rī could be approximated by integration
over � at fixed R. The useful range of integration being given
by the range rn of the hydrogenic state n, this will be the case
at distances Rn such that the arc �n=tan−1�rn /Rn� can be
assimilated to its tangent. This can be done to a good ap-
proximation if �n
��, where ���10−2 rad will be re-
ferred to as the allowed angular sector in the following �see
Fig. 3�. If the resulting condition Rn�102rn is met, the three
steps outlined above reduce to a single one, which consists in
letting the projector Pn�m

i act at fixed R=Rn. In this case, the
cross section and asymmetry parameter �n and �n can be
expressed simply in terms of the integrals

In�L
± �Rn� =

1
�2



0

�/2

d� sin �Fn��Rn sin ��

��aL
+�Rn;�� ± aL

−�Rn;��� , �37�

involving the expansion coefficients �8� of the propagated
wave function and the hydrogenic radial orbitals �28�. One
gets

�n = 2
2��

c
R3��

�=0

n−2

In�+1�
+ �R�2 + �

�=0

n−1

In��
− �R�2	 �38�

and

�n =

�
�=0

n−3
� + 1

2� + 5
In�+2�+1

+ �R�2 − 6�
�=0

n−2 ��� + 1��� + 2�
2� + 3

Re�In�+1�
+ In�+1�+1

−* � + �
�=0

n−1
� + 2

2� + 1
In��

− �R�2

�
�=0

n−2

In�+1�
+ �R�2 + ��=0

n−1
In��

− �R�2
. �39�

The fully correlated limit of �n is obtained as E→0 and
n→�, when single ionization with excitation to the level n
merges into threshold double ionization. Then, symmetric
components and high � values prevail, so that In�+2�+1

+ 2
�In��

− 2�In�+1�
+ 2�Re�In�+1�

+ In�+1�+1
−* � in Eq. �39�, and �n

approaches −1, as expected. The opposite uncorrelated limit
is obtained for n=1, when ionization occurs without excita-
tion. The summations in Eq. �39� reduce then to the only
term �=0 and one gets �1= +2 as required.

The above analysis suggests extracting all ionization-
excitation data at the largest possible hyper-radius Rmax since
the latter will satisfy Rmax�102rn for the largest possible set
of hydrogenic levels n. This procedure, however, would fail
for reasons which show clearly on closer inspection of
Fig. 3. At Rn�, the nth hydrogenic state does not fit the
��=10−2 rad allowed angular sector: accordingly, Eqs. �38�
and �39� produce spoiled values at this distance. At Rn, the
nth hydrogenic state fits the allowed angular sector and its
description benefits from the contribution of all �-grid points
contained within this sector: the results of Eqs. �38� and �39�
should therefore attain their best precision. At Rn�, the de-
scription of the hydrogenic state n deteriorates as the number
of �-grid points that span its range decreases. This qualita-
tive analysis prepares one to observe a complex behavior of
�n and �n as a function of R. We will see in the next section
that the results meet our expectations.

IV. RESULTS

A. Numerical workload

Before presenting the results, it is worth giving an idea of
the associated numerical workload, which can be appreciated

from a few parameters. Those related to the inner-region cal-
culation are N�, the number of partial waves in the expansion
of the photoionization wave function over bipolar harmonics;
N�, the number of � basis functions; NR, the number of
points in the Lagrange-Jacobi mesh representation of the
hyper-radius R; and R0, the hyper-radius of the inner region.
Their role was discussed in �5� and previous publications.
The values needed to converge the present very-low-energy
calculation of ionization-excitation cross sections are N�=5,
N�=29, NR=90, and R0=60 a.u. The parameters relevant to
the outer-region calculation are n�, the number of partial
waves included in expansion �8�; n�, the number of points in
the variable-step-size � grid �17�; d�, the elementary mock
time step; and Rmax, the end point of the hyper-radial propa-
gation. As the cumulated effect of the bielectronic interaction
in the course of the propagation is to populate higher and
higher partial waves, one has to allow their number to in-
crease substantially in passing from the inner to the outer
region. In addition, our goal being to extract ionization-
excitation cross sections up to the level n=50, taking
n�=50 guarantees that no contribution to these cross sections
will be discarded arbitrarily. We have thus retained this very
high value of n� for the sake of simplicity. We have noted in
previous publications that the larger R, the higher the re-
quirements on the description of the regions around �=0 and
� /2. Here, the need to achieve accurate projections of the
photoionization wave function on ionization-excitation chan-
nels which are strongly localized at the edges of the � inter-
val makes these requirements still more severe. They
are met, however, by the cubic grid defined by Eq. �17�
with n�=4000. Note indeed that for this working grid, the
variable � step reaches a minimum of about 0.16
�10−9 rad at �=0 and � /2, and a maximum of the order
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of 0.78�10−3 rad at �=� /4. The elementary constant
time step is taken to be d�=0.001 a.u., which corresponds
to a variable R step ranging from 0.025 a.u. at
R0=60 a.u. to 86 a.u. at Rmax=106 a.u.—for the current en-
ergy E=0.1 eV. Finally, Rmax=106 a.u. proves enough to
converge the cross sections of the various processes of
interest.

B. Behavior of the cross sections with R

Figure 4 illustrates the behavior of the cross section and
asymmetry parameter as a function of R for selected levels n.
In all cases, two rather chaotic zones at small and large R,
respectively, are separated by a large �note the logarithmic
scale� and flat plateau which moves toward large R as n
increases. This is consistent with our expectations based on
the analysis of Fig. 3. To extract the relevant physical infor-
mation, we compute for each R the running averages
�n�R� ,�n�R� and the corresponding standard deviations
��n�R� ,��n�R� over a hyper-radial interval R±�R includ-
ing 100 neighboring values of R �in a subset of the radial
propagation grid comprising one value of R in 100�. We then
take �n=�n�Rn

�� and �n=�n�Rn
��, where Rn

� and Rn
� minimize

the standard deviations ��n�R� and ��n�R�, respectively.
The associated uncertainties are ��n=��n�Rn

�±�Rn
�� and

��n=��n�Rn
�±�Rn

��, where �Rn
� and �Rn

� define the edges
of the R interval corresponding to the above-mentioned pla-
teau. So, in principle, either we may choose the
uncertainties—with some arbitrariness—thus defining the
plateau unambiguously, or alternatively, we may choose the
plateau, thus fixing the uncertainties. However, common
sense puts constraints on the relevant R intervals. Clearly, for
any value of n, Rn

�±�Rn
� and Rn

�±�Rn
� must have a large

overlap so that a reasonable ionization-excitation wave func-
tion �n, yielding reasonable integrated and differential cross
sections, could be extracted within a reasonably large inter-
val Rn±�Rn. In addition, the evolution of this latter interval
with n must be smooth enough. Accordingly, we have chosen
our uncertainties to be as small as possible while complying
with the above requirements regarding the resulting hyper-
radial intervals. The latter are shown on Fig. 5. Their evolu-

tion with n mimics that of the quotient rn /�� of the range of
the nth hydrogenic orbital by the allowed angular sector as
anticipated in Sec. III C.

C. Ionization-excitation cross sections and asymmetry
parameters

The values of �n and �n extracted at the appropriate radii
Rn are listed on Table I for n=4–50. The cross sections and
asymmetry parameters for n=1–3, derived from the adia-
batic channels defined at R0, have been added for complete-
ness.

The cross section for single ionization without excitation
is 5% �30 kb� higher than the reference value given in �11�.
This results from the very localized character of the 1s or-
bital which is not perfectly well accounted for by the present
inner-region basis of dimension N�=29. By contrast, the
cross section �2 is in good agreement with the value of

FIG. 4. Calculated cross sections �n �in kb�
and asymmetry parameters �n versus R �in a.u.�
for n=7, 19, and 39. The vertical dashed lines
locate the hyper-radial range where physical data
can be extracted.

FIG. 5. Hyper-radial range Rn±�Rn for the extraction of rel-
evant ionization-excitation data for n=4–50. Error bars, Rn±�Rn

�in 105 a.u.�; continuous line, 102� range of Fn n−1�r�; dashed line,
102� range of Fn 0�r�. �The range of a radial orbital is defined here
as the largest radius where the orbital amplitude is reduced to 1% of
its maximum.�
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57±3 kb that can be inferred from the same reference. The
cross section �3=13.75 kb is again overestimated with re-
spect to the recommended value of the order of 11 kb. But
this inaccuracy has nothing to do with the finite dimension of
the � basis in the inner region. Indeed, it indicates that the
level n=3 does not fully decouple adiabatically from the rest
of the wave function at R0=60 a.u. The results obtained for
n=4 should therefore be taken with caution since part of the
flux that should go into this level is inappropriately sup-
pressed by the truncating of the wave function at R0. This
slight inaccuracy inherent in the adiabatic truncating at R0,
however, does not affect the results obtained for higher lev-
els. Regarding the asymmetry parameter, �=2 is obtained for
n=1 as required, but nothing more can be said, as no results
are available for comparison at this very low energy.

From n�10 �12�, we observe a smooth monotonic decay
of �n ��n� with n, as shown by Figs. 6 and 7. This behavior
reflects the increasingly correlated character of the
ionization-excitation process to increasingly high levels n:
namely, low �n implies strong electron-electron correlations,
while low �n evidences how difficult it is to maintain strong
correlations over the very large spatial range of highly ex-
cited levels n. Note that our previously published values of
�n for n=10–24 �9� cannot be distinguished from the present
ones at the scale of the figure.

It is difficult to find relevant material for comparison with
the present calculations. To our knowledge, no previous data
have ever been obtained regarding ionization excitation to
levels beyond n=10. Moreover, previous work regarding the
partial ionization cross sections and asymmetry parameters
for excitation to the levels n
10 has focused on photon
energies different from the present 79.1 eV. A large number
of these studies including recent ones �12–14� are motivated
by the interest in the doubly excited states of helium. The

photon energies considered therefore span a region where the
strong effects of resonances preclude any comparison with
above-the-double-ionization-threshold data. More relevant
to our present purpose is a series of HSCC �15�, eigenchan-
nel R-matrix �16�, and CCC �17� calculations of the ratio
�n=�n

+ /�1
+ for n=2–4, 2–6, and 2–6, respectively, in the

80 eV–1 keV photon energy range. These theoretical predic-
tions are in excellent agreement with each other and with the
available experimental results �18� above 100 eV. Despite a
slight deterioration of their agreement at lower photon en-
ergy, these data can nevertheless be tentatively extrapolated
down to the double-ionization threshold, yielding values
of about 8.5%, 1.75%, 0.65%, 0.25%, and 0.1% for �n,
n=2–6, respectively. These estimates can be compared with
our calculations at 79.1 eV photon energy yielding 8.1%,

TABLE I. Ionization-excitation cross sections and asymmetry parameters. Estimated uncertainties are
given within parentheses in units of the last digit.

n �n±��n �kb� �n±��n n �n±��n �kb� �n±��n n �n±��n �kb� �n±��n

1 681 2 18 0.0410�38� −0.508�3� 35 0.0053�26� −0.575�7�
2 55 0.86 19 0.0350�36� −0.515�3� 36 0.0049�24� −0.58�1�
3 13.75 0.14 20 0.030�3� −0.523�3� 37 0.0045�24� −0.58�1�
4 1.834�5� −0.296�2� 21 0.026�3� −0.529�3� 38 0.00405�220� −0.58�1�
5 2.324�5� −0.344�2� 22 0.022�3� −0.534�3� 39 0.0038�22� −0.58�1�
6 1.024�5� −0.354�2� 23 0.0195�30� −0.539�5� 40 0.0035�22� −0.58�2�
7 0.8075�50� −0.418�2� 24 0.0168�30� −0.544�5� 41 0.0032�20� −0.58�2�
8 0.625�5� −0.399�2� 25 0.015�3� −0.548�5� 42 0.003�2� −0.58�2�
9 0.351�5� −0.456�2� 26 0.0132�30� −0.552�5� 43 0.0028�18� −0.58�2�
10 0.240�4� −0.464�2� 27 0.0120�28� −0.556�5� 44 0.0026�18� −0.59�2�
11 0.184�4� −0.455�2� 28 0.0104�28� −0.559�5� 45 0.0024�18� −0.59�2�
12 0.145�4� −0.456�2� 29 0.0093�28� −0.562�5� 46 0.0023�18� −0.59�2�
13 0.114�4� −0.463�2� 30 0.0084�28� −0.564�5� 47 0.00215�160� −0.59�2�
14 0.090�4� −0.472�2� 31 0.0080�28� −0.567�5� 48 0.0020�14� −0.59�2�
15 0.072�4� −0.485�2� 32 0.0070�26� −0.569�7� 49 0.0018�14� −0.59�2�
16 0.0600�38� −0.493�2� 33 0.0063�26� −0.571�7� 50 0.0018�14� −0.59�2�
17 0.0500�38� −0.500�3� 34 0.0058�26� −0.573�7�

FIG. 6. Ionization-excitation cross sections from n=10–50. Full
circles with error bars, calculated values of �n �in kb�; dashed line,
best n−3 fit �see text�.
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2%, 0.27%, 0.34%, and 0.15%. The two sets of data are
roughly compatible, it being understood that our value of �4
has to be taken with caution as explained previously. Simi-
larly, the �2 parameter reported in �15� can be extrapolated to
a value of 0.8 at threshold, consistent with our calculated
value of 0.86 at 0.1 eV above this threshold.

Comparisons can also be made, at least qualitatively,
between our data and the results of threshold photoelectron
measurements performed in resonance-free energy ranges
�19–21�. Focusing on the highest levels available, we note
that the cross sections �8=0.77�7�, �9=0.43�7�, and
�10=0.37�6�, recorded at the respective thresholds of 78.12,
78.30, and 78.46 eV �19� seem consistent with our 79.1 eV
values of 0.625�5�, 0.351�5�, and 0.240�4� kb. As to the �5

and �6 parameters reported in the same and a subsequent
study �20�, they do not exhibit the expected decay with in-
creasing n and decreasing energy, so that we prefer to discard
them from the present discussion. By contrast, the asymme-
try parameter �10 measured at 78.11 eV photon energy,
which amounts to 0.25 eV above the threshold �21�, takes
the value −0.48 which appears to be consistent with our re-
sult of −0.464 at 79.1 eV.

On the other hand, definite predictions have been formu-
lated regarding the limit of the partial ionization cross sec-
tions as n→� at fixed energy E. It is indeed widely accepted
�18,22,23� that in this limit, the ionization-excitation cross
section per unit energy range in the quasicontinuum formed
by highly excited states of the residual ion tends toward the
energy-differential cross section for double ionization under
fully asymmetric energy sharing. This can be written

limn→�� dn

dEn
�n�E�	 =

d�2+

dE1
�E,E1 = E� . �40�

As the arguments behind �40� concern the ionization-
excitation process as a whole it is tempting to theorize that

limn→��n�E� = �2+�E,E1 = E� . �41�

Then, one advantage of having such an extended set of par-
tial ionization cross sections and asymmetry parameters as

the one available here is that one can attempt extrapolating to
infinite values of n in order to check the above conjectures.

Extrapolation, however, is a delicate task that can be per-
formed with full confidence only if the functional depen-
dence of the dependent variable on the independent variable
is known for sure. This turns out to be the case, at least to
some extent, for �n. As dEn /dn=Z2 /n3, Eq. �40� indeed im-
plies that �n behaves as n−3 for large n. However, no precise
indication is available as regards the values of n beyond
which this behavior sets in. To get an idea of this value, we
have plotted n3�n /Z2 for n ranging from 4 to 50. Figure 8
evidences a stabilization of this product at about 2.2 kb/eV
from n=10 to 20, followed by a steady decay leading to a
value of 2 kb/eV at n=50. However, it is possible to draw a
horizontal line at 2.2 kb/eV through the error bars from
n=10 to 50—the latter being magnified by the same factor
n3 /Z2 as the cross sections for consistency. We can thus state
that our data are consistent with the n−3 law setting in from
n=10. Accordingly, we have fitted the expression Z2C /n3 to
the cross-section data in Fig. 6, obtaining an excellent fit for
C=2.25 kb/eV in agreement with what we could infer from
Fig. 8.

The case of the asymmetry parameter is more difficult as
the rate of its evolution toward an n-independent constant at
n=� is unknown. To get an idea of this rate, we have fitted
expressions of the form C�1+C� /np� to our data in Fig. 7 for
p=0.5,1 ,1.5. A significantly better fit is obtained for p=1,
yielding a tentative value C=−0.636 for the limit of interest,
which lies still far from the −1 value predicted at threshold in
�24�. The forthcoming study of double ionization at the same
very low excess energy of 0.1 eV will shed more light on
this apparent contradiction.

V. CONCLUSION

We have presented a fixed-R projection technique which
allows the HRMSOW method to provide ionization-
excitation cross sections and asymmetry parameters. Thanks
to this extension, this method now supplies a comprehensive

FIG. 7. Ionization-excitation asymmetry parameters from
n=12 to 50. Full circles with error bars, calculated values of �n;
dashed line, best fit �see text�.

FIG. 8. Extrapolating the ionization-excitation cross sections to
infinite n. Dots with error bars, calculated values of n3�n /Z2 �kb/
eV�; horizontal line, best constant fit �see text�.
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description of the dynamics of the helium atom above its full
fragmentation threshold. We have chosen to illustrate its ca-
pabilities in the near-threshold region which is characterized
by a strong competition between the infinite set of open
channels including single ionization, single ionization with
excitation, and double ionization. Ionization-excitation cross
sections and asymmetry parameters at 0.1 eV above the
double-ionization threshold are presented here for levels up
to n=50, and tentative asymptotic limits n� and �� are pro-
posed. A forthcoming study will present the complementary
double-ionization data and discuss the relation between
ionization-excitation to very weakly bound states and double
ionization in detail. It will thus complete the demonstration

that the HRMSOW method provides control of the three-
body Coulomb dynamics at very low energy. This property
will be exploited in future work: we consider revisiting the
Wannier threshold law as well as moving below the double-
ionization threshold to explore the region of high-lying dou-
bly excited states.
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