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Definitive results for elastic positron-hydrogen collisions are obtained using the Schwinger variational prin-
ciple in the momentum space at low and intermediate energies corresponding to momenta in the range
k;=0-3.5 atomic units. The discrete basis set used in the calculation makes allowance for long-range dipole
polarization, atomic distortion, and infinite-order short-range positron-electron correlation. Results for the

scattering parameters, such as the scattering length, phase shifts for all significant partial waves, and total cross
section, are in conformity with other accurate variational and nonvariational calculations available in the

literature.
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I. INTRODUCTION

Since the early developments of quantum mechanics,
variational methods have proved to be very useful techniques
for solving bound-state problems. It was only much later that
the application of variational principles in quantum collision
phenomena was proposed by Hulthen [1], Tamm [2],
Schwinger [3], and Kohn [4]. A number of methods followed
their work [5].

Variational principles applicable to quantum collision
theory can conveniently be classified into two categories,
namely, differential and integral forms. The first are based
directly on the solution of differential equations resulting
from the corresponding Schrodinger equation and require the
trial functions to satisfy the boundary conditions of the prob-
lems concerned. The Kohn-Hulthen variational principle
[1,4] is based on the differential aspect of the variational
principles. The integral forms, on the other hand, are derived
from the corresponding Euler-Lagrange (or Lippmann-
Schwinger) integral equations and therefore the boundary
conditions, being taken into account through the Green’s
function, need not be incorporated into the trial functions. In
the following sections we shall discuss our primary interest
of study, the Schwinger variational principle [3], relying on
the corresponding integral equations.

About 57 years ago Schwinger [3] proposed a variational
technique for solving Schrodinger’s equation in its integral
form. The method was analyzed in different ways by Blatt
and Jackson [6], Kato [7], and Blatt and Biedenharn [8] for
single- and multichannel scattering problems. Excellent re-
views of the method are given in the monographs of Mott
and Massey [9], Moiseiwitsch [10], Joachain [11], Burke
[12], Bransden [13], Schmid and Ziegelmann [14], Nesbet
[15], and Newton [16].

The first application of Schwinger’s variational method
to atomic collisions was made by Altshuler [17]. He used a
set of polynomial functions to investigate the scattering
of electrons by square-well and Yukawa potentials as well
as the static potential of the hydrogen atom. He further
made a comparative analysis of the results for the scattering
phase shifts, amplitudes, and total cross sections determined
by the Schwinger variational method, Kohn’s method
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[9,10,15], and the second Born approximation, and arrived at
the following points. (i) Schwinger’s variational phases
are closer to the exact ones than Kohn’s phases, when the
same trial functions are used in both cases. (ii) Scattering
amplitudes obtained by Schwinger’s method are better than
those from the second Born approximation. Schwartz [18]
also carried out a comparative analysis of the Schwinger
phase shifts of S-wave electron scattering by Yukawa poten-
tials V(r)=—2e~"""0 with the corresponding Kohn variational
results and made the following conclusions: (a) The
Schwinger variational method leads to smooth curves which
converge as the number of terms in the trial function in-
creases; (b) The Kohn phases converge much faster and their
values at the same number of terms in the trial function are
more accurate.

As a matter of fact, the point (b), which does not agree
with the earlier conclusions of Altshuler [17], has led to dif-
fering opinions about the quality of the phase shifts produced
by the Schwinger variational method and Kohn’s method
(Abdel-Raouf [19]).

Saraph [20] showed with a trial expansion space of three
components that the singlet and triplet scattering lengths of
electron hydrogen scattering agree well with those calculated
by John [21] using exact numerical integration.

During the last three decades, McKoy and co-workers, in
a number of applications in the field of atomic and molecular
collisions [22-43], have demonstrated the efficiency of the
Schwinger variational principle and emphasized that the
Schwinger variational principle provides better results when
a discretization technique is employed. Indeed, Takatsuka
and McKoy [27] compared their Schwinger results with
those determined by Harris and Michels [30] and Nesbet and
Oberoi [31] using anomaly-free variational methods, and es-
tablished faster convergence of Schwinger’s phase shifts
compared with other variational methods.

Important investigations using the Schwinger variational
principle were carried out by many authors within the frame-
work of the separable approximation. Mention may be made
of the findings of Sugar and Blankenbecler [44], Sloan and
Adhikari [32], Zubarev and co-workers [33,34], Hahn [40],
Nuttal [35], Watson [42], Moiseiwitsch [10,45], and Maleki
and Macek [38].
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It is also interesting to discuss the application of the
Schwinger variational principle to bound-state problems,
which was originally explored in the work of Sugar
and Blankenbecler [44] and strongly emphasized by
Schwartz and Zemach [36] through their successful treat-
ment of Bethe-Salpeter problems. Singh and Stauffer [46]
and Zubarev [47] presented the explicit formulation of
this method for the Bethe-Salpeter problems. Because of
the difficulties associated with the evaluation of matrix
elements involving the Green’s function operators, the
Schwinger variational principle has seldom been applied
to atomic, molecular, and nuclear bound-state problems,
where the superiority of the Rayleigh-Ritz method is
beyond any doubt. However, Maleki and Macek [37,38]
indicated the usefulness of the Schwinger variational
principle within the framework of quantum defect theory for
the calculation of bound and continuum states of high
Rydberg atoms.

A number of important contributions toward various as-
pects and applications of the Schwinger variational principle
have been made during the last 30 years. In particular Hahn
[40] generalized the Schwinger principle by projecting the
Lippmann-Schwinger equation with an arbitrary operator W.
Different choices of W are then considered; some of the re-
sults obtained by Takatsuka and McKoy [26,28] are shown to
follow special choices of W. In important work, Moisei-
witsch [45] proved that the linear algebraic equation method
(Sneider and Collins [48]) for evaluating a phase shift from
the integral equation for scattering is equivalent to using the
Schwinger variational principle. He further showed that a
modification of the linear algebraic method ensures a varia-
tional bound in the phase shifts for potentials having a defi-
nite sign at all points.

In a further development, Domcke [41] showed that
the Schwinger variational principle is a variational approxi-
mation for the poles of the analytically continued 7" matrix
(or S matrix) and applied it to calculate the bound states,
virtual states, and resonances of a simple model problem,
namely, the S-wave scattering by an attractive square-well
potential, to obtain accurate results with few basis functions.
In similar studies, Watson [42] quite independently obtained
accurate resonance energies and total and partial widths
for multichannel scattering problems by considering the
complex momentum phase for the poles of the Schwinger
T matrix.

However, of late certain anomalies of Schwinger varia-
tional phase shifts in momentum space were studied by
Adhikari [39]. Adhikari demonstrated that these anomalies
were related to the appearance of continuum bound states in
approximate calculations and had no relevance in a realistic
calculation. He observed that the anomalies were in no way
related to the spurious singularities that had appeared in the
Kohn variational calculation.

Finally, a major development toward the applications of
the Schwinger variational principle to positron-hydrogen col-
lisions was made by Roy and Mandal [49] and Kar and Man-
dal [50,51]. Roy and Mandal [49] utilized a type of corre-
lated function in the form
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&,(r.rp) =exp(= a,,ry = x ri)l(@+b rip)™,

(1)
m=1,2,...,.N, mg=1,2,...,

within the framework of the Schwinger variational principle
to study elastic positron-hydrogen collisions, in which 7, de-
notes the position vector of the positron, 7, that of the elec-
tron, and 7j,=7,—7», relative to the infinitely heavy proton at
the center of the coordinate system. They were able to report
accurate results for elastic scattering for all partial waves
below 10.2 eV using only n=4 terms.

Subsequently Kar and Mandal [50] employed a correlated
basis set

w(F1,75) = (= 1) (71, ) €, (r1r10), (2)
where the plane-wave states in the incident channel are
Oy(ry,ry) = eXP(i/zi ) @), (3)

and the correlation function &,(r,r;,) is given by

gm("l,rlz) = exp(— a,r — X 712)/(0 +b rlz)mo—l/Z’

4)
m=1,2,...,.N, mg=1,2,....

They reported accurate results for the elastic scattering for all
partial waves below 30 eV using only N=8 terms in the
basis. The basis functions were, however, of no use for
higher energies.

These findings are in conformity with the definitive Kohn-
Hulthen variational results and other calculations available in
the literature (Schwartz [52], Bhatia et al. [53,54], Chan and
Fraser [55], Chan and McEachran [56], Humberston [57],
Brown and Humberston [58], Mitroy [59], Winick and Rein-
hardt [60]).

A noteworthy deficiency in the above choice of correlated
basis sets (1) and (3) is that none of them explicitly includes
the effect of atomic distortion, which has been found to play
a vital role in determining accurate results, although both of
the basis sets duly take care of electron-positron correlation.

The main objective of our present investigation is to pro-
pose a discrete basis set that will be applicable to low as well
as intermediate energies for elastic positron-hydrogen colli-
sions. The present Schwinger variational calculation is an
extension of the earlier theoretical methodology incorporat-
ing a trial function that includes a dipole polarization-
response term. In this work, we use an exponential basis,
while all of our earlier publications dealt with inverse corre-
lated basis functions. For elastic positron-hydrogen scatter-
ing, the present calculation seems to work better at all inci-
dent energies. Our investigation endeavors to make an in-
depth study of this process and performs reliable predictions
of the scattering parameters such as the scattering length,
phase shifts for all significant partial waves, and total cross
sections.

The plan of the paper is as follows. In Sec. II we discuss
the underlying theory of choosing the basis set. Section III is
devoted to the discussion of the results as obtained by the
present calculation. Finally in Sec. IV we make our conclud-
ing remarks.
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II. THEORY

We know that short-range correlations play an important
role in determining the detailed nature of atomic, molecular,
and nuclear collisions. Proper account of electron-electron
correlation in bound-state calculations of atoms and mol-
ecules is of vital importance for obtaining definitive answers
to the structural properties. For positron-atom and positron-
molecule collisions, in addition to the short-range positron-
electron correlation, there occur distortion of the target atom
and the long-range positron-induced polarization of the tar-
get charge cloud, which are of much greater significance in
predicting accurate scattering parameters. Since these two
interactions are attractive and act in opposition to the repul-
sive static interaction, any noteworthy calculation must take
proper account of these interactions to obtain meaningful
results.

In this work, we investigate the elastic positron-hydrogen
collisions and study the usefulness of incorporating the ef-
fects of dipole distortion of the atom by means of a polariza-
tion response function in addition to the exponential correla-
tion in the basis of Schwinger variational principle. Such
prescriptions have a parallel in polarization pseudostates in-
troduced by Damburg and Karule [61] in electron-atom scat-
tering and intensively used in electron-molecule scattering
by others.

We choose an exponential correlated basis set as

um(Fl?F2)=q)i(F17F2)§(;1a;2) (5)
in which the correlation function is taken in the form

(1 = PPl 4 G (7, 7).

g(;h;Z) =

my=1,2,3,4,
(6)

Gd(FI’FZ) = ®(r1 - rz)rglfd(rl,rz)cos o,

where p, B, and 7y are the nonlinear variational parameters to
be optimized with cos =77, and O(y)=1 for y>0, O
=0 otherwise. The function f, is found to satisfy [62]

2 2 ) (4)1’%
——-=+—-1 r,rm)=(—| —Se™ 7
(dr% l’% r fd( 1 2) - ;% ( )
with the solution
l 1/2,,2
fd(rlvrz):_< ) 5 1+ 2 e, (8)
i r 2

It is to be mentioned that the potential generated by the func-
tion

Gd(Fl,Fz) = @(rl - r2)r51fd(r1,r2)cos o

is of the form
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The noteworthy feature of our basis set is that it accounts
well for dipole distortion effects, including particularly long-
range polarlzatlon by means of the dipole distortion term

G (rl,rz) in addition to the infinite-order positron-electron
correlatlon being taken into account by the term e™12,
Temkin and Lamkin [63] first used this dipole distortion term
in the trial function of Kohn’s variational method to study
electron-hydrogen collisions and reported reasonably accu-
rate results. Furthermore, existence of the term ¢#2 in our
basis has made it possible to have holdover effects due to
distortion of the atom by the incoming positron.

We have used the above basis set in the Schwinger varia-
tional amplitude as obtained by Roy and Mandal [49], and
Kar and Mandal in the momentum space [50]:

[Af (kp, k)] = EEAfﬁ)(kf’k D, Aﬂ?(kf"k") (10)

which is a function of the scattering energies for any partial
wave L. Here A}L)(kf,k) A (ks,k;) are the input two-body

ni
amplitudes and D( PD™ are the inverse matrix elements of
the double- scatterlng matrix D (pq) The evaluation of the
relevant amplitudes is shown 1n the Appendix. These are
obtained in closed analytic forms.

III. RESULTS AND DISCUSSIONS

We have evaluated the stationary scattering amplitude
(10) using correlated basis functions (5) and have optimized
the nonlinear variational parameters p, B, and v, by setting
my=1. Our well-defined prescription of optimization has
been to find the stationary values of the scattering amplitude
(10) for a reasonable range of values of the nonlinear varia-
tional parameter p given the other two nonlinear variational
parameters B and vy. Using the basis set (5), the “input” two-
body amplitudes are conveniently obtained as a function
of the incident energy for each partial wave [. The effects
of the dominant interactions for low-energy collisions are
taken care of by the correlated basis functions which are
quite flexible.

A. Zero-energy scattering; scattering length

The scattering length plays a fundamental role in zero-
energy scattering. At low energies the scattering occurs pre-
dominantly in the S wave, and the scattering length gives a
measure of scattering. This quantity has been calculated very
accurately by using variational methods [53,64,65] and pro-
vides a severe test for the validity of our calculation in the
zero-energy region. It provides also a direct check on the
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TABLE I. Stationary values of the S-wave phase shifts, the ratio
(tan &)/k; along with the nonlinear variational parameters p, 3, and
v as functions of the incident positron energy k;.

k; (a.u.) p B y & tan &/ k;
0.09 1.5 0.4436 0.0303 0.1396 1.5516
0.08 1.4 0.4586 0.0267 0.1290 1.6124
0.07 1.4 0.4724 0.0232 0.1171 1.6735
0.06 1.4 0.4892 0.0197 0.1041 1.7348
0.05 1.4 0.5043 0.0164 0.0899 1.7977
0.04 1.4 0.5151 0.0131 0.0742 1.8564
0.03 1.4 0.5198 0.0100 0.0575 1.9166
0.02 1.4 0.5335 0.0068 0.0395 1.9768
0.01 1.3 0.5500 0.0035 0.0203 2.0328
0.007 1.3 0.5626 0.0025 0.0144 2.0547
0.005 1.3 0.5742 0.0018 0.0103 2.0673
0.003 1.3 0.5841 0.0011 0.0062 2.0818
0.001 1.3 0.5894 0.0004 0.0021 2.0977
0.000 (=2.10)*

“Scattering length a,=-lim; [ (tan &)/k;], dy=S-wave phase

shift.

reliability of the basis set due to the fact that in our approach
the scattering information is supposed to be included in the
basis set.

Table I lists the ratio Ky,=(tan &))/k; as obtained by the
present calculation as a function of the incident positron en-
ergy. The limit of this term as k;— 0 gives the value of the
scattering length. Figure 1 shows the graphical representa-
tion of the convergence of this ratio K, with decreasing en-
ergy. The convergence is linear and monotonic. We have,
however, used a parabolic extrapolation formula to find the
limit of (tan &))/k; as k;— 0 and obtained the accurate value
of the scattering length. It is important to note that the effect
of distortion of the target atom by the incoming positron for
S-wave e*-H scattering dominates over the positron-electron
correlation at the zero-energy level. This effect of distortion
is maximum near zero energy while the effect of correlation
is negligible therein as is evident from a comparison of the
variational distortion parameter 3 and correlation parameter
v in Table L.

B. Positron energy below 13.6 eV

The problem of elastic scattering in this energy region is
generally viewed in three different aspects based upon open-
ing and nonopening of scattering channels as follows: (i)
Scattering below the positronium formation threshold 6.8
eV—only the elastic scattering is energetically possible in
this region; (ii) Scattering in the Ore gap (6.8-10.2 eV)—
both elastic and positronium formation channels are open in
this energy region; (iii) Scattering above the first excitation
threshold but below the ionization threshold (10.2-13.6
eV)—besides elastic scattering and positronium formation,
all excitation channels are open.

The problems of elastic scattering for the cases (i) and (ii)
are considered to be solved with accurate values of the phase

PHYSICAL REVIEW A 72, 042709 (2005)

464 e + H(ls) e’ + H{ls)

—tand
kl
P
1

297 Scattering length = -2.10 (a.u.)

-2.1 4

v T v T v r v T v
0.00 0.02 0.04 0.06 0.08 0.10
Incident positron momentum {(a.u.)

FIG. 1. Scattering length for elastic e*-H collisions.

shift and the differential cross section now available in the
literature. In the elastic region (i), we have the accurate
variational results of Schwartz [52], Kleinman et al. [66],
Armstead [67], Bhatia ef al. [53,54], and Roy and Mandal
[49]. These results stand as benchmark and provide the stan-
dard by which the accuracy of other methods of approxima-
tion is judged. In the Ore gap region (ii), studies of elastic
scattering were elaborately made by Humberston and co-
workers [57,58], Gien [68,69], Mitroy [59], Chan and Fraser
[55], Kar and Mandal [50]. However these authors except
those of [50] limited their calculations to only a few lower
partial waves. As a consequence, the elastic differential cross
section (the evaluation of which requires higher partial-wave
contributions) has been studied in detail only by the authors
of Refs. [49,50]. Above the positronium formation threshold
[case (iii)], the reported works are not as numerous as in the
previous two cases. It is basically due to the fact that an
infinite number of channels are open in this energy region,
and it becomes a difficult task to take into account the effects
of all such channels in order to obtain accurate results. Re-
cently Kar and Mandal [50] have reported Schwinger varia-
tional results in this energy region; their results are in agree-
ment with those obtained by Winick and Reinhardt [60]
using the moment 7-matrix method.

We have, however, tested our wave function in these en-
ergy regions for all partial waves and have optimized the
nonlinear variational parameters to obtain stationary values
of the scattering amplitudes. The S-wave results are dis-
played in Table II, whereas the first six partial-wave contri-
butions to the elastic cross sections have been compared in
Table III. The agreement of our results in the elastic region
(i), the Ore gap region (ii), and last in the most complicated
region (iii) establishes satisfactory representation of the scat-
tering mechanism by the present basis set. Besides, we have
already shown the ability of our basis set to obtain a con-
verged scattering length. Therefore it is plausible to assume
that our basis set is also able to predict satisfactory results for
incident positron energies beyond the ionization energy
threshold.

C. Positron energy beyond 13.6 eV

The description of positron-hydrogen scattering in this en-
ergy region is a formidable proposition for two reasons.
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TABLE II. The stationary values of the S-wave elastic scattering amplitudes (a.u.) and phase shifts in
e*-H collisions for incident positron energy k;=0.1-1.0 a.u. along with nonlinear variational parameter p.
The numbers within the parentheses indicate the standard deviation in the last figure.

Phase shifts

Present Kar et al. Bhatia Schwartz
kfa.u.) p D 1 results [50] et al. [53] [52]
0.10 1.4 0.4390(1) 0.0657(1) 0.1485 0.1482 0.1483 0.151
0.20 1.5 0.5501(1) 0.1045(0) 0.1877 0.1876 0.1877 0.188
0.30 1.6 0.4952(1) 0.0841(0) 0.1682 0.1676 0.1677 0.168
0.40 1.7 0.3589(0) 0.0436(1) 0.1208 0.1200 0.1201 0.120
0.50 1.7 0.2028(1) 0.0138(0) 0.0678 0.0622 0.0624 0.062
0.60 1.8 0.0229(1) 0.0002(2) 0.0076 0.0037 0.0039 0.007
0.70 1.8 -0.1617(1) 0.0087(1)  —0.0540 -0.0515 -0.0512 -0.054
Chan and Fraser = Humberston
[55] [57]
0.71 1.8 -0.1916(1) 0.0123(0) -0.0641 -0.0580 -0.057 -0.058
0.75 1.8 -0.2478(1)  0.0206(0)  —0.0830 -0.0761 —-0.085 -0.076
0.80 1.8 -0.3306(1) 0.0369(0) -0.1111 -0.1021 -0.110 -0.102
0.85 1.8  -0.4058(1) 0.0559(0) -0.1370 -0.1247 -0.133 -0.125
0.866 1.8 -0.4239(1) 0.0612(0) -0.1433 -0.1324 —-0.140
0.90 1.8 -04781(2) 0.0782(1) -0.1622 —-0.1398
1.00 2.0 -0.5898(1) 0.1208(1) -0.2021 -0.1765

First, it is necessary to have a large square-integrable basis of
hydrogen states to provide an adequate description of the
positron-hydrogen ionization continuum. Second, a genuine
particle transfer process, namely, positronium formation, also
possible. The possibility of positronium formation makes it
necessary to include two different manifolds of basis sets, the
positron-hydrogen channels and the positronium-proton
channels, in the approximation. Thus the conventional varia-
tional and other approximate calculations become increas-
ingly complicated and convergence becomes slow. This
makes the situation in this energy region rather difficult and
there has been a scarcity of calculations which are expected
to give a realistic description of the elastic positron-hydrogen
scattering. Then if in the trial function of variational methods
the effects of the essential desirable factors of the scattering
process are included, a realistic description of the scattering
problem can hopefully be achieved. The flexibility of the
present wave function lies in its capacity to take proper ac-
count of the dynamics of the collision problem at the ener-
gies considered.

1. S-, P-, and D-wave phase shifts

Tables IV and V include the S-, P-, and D-wave phase
shifts obtained by our present calculation. For § waves the
effect of distortion decreases monotonically with the increase
in energy and disappears at the incident positron momentum
of 2.6 a.u. whereas the effect of correlation increases first to
attain its maximum at 0.5 a.u. of incident positron momen-
tum and then starts decreasing monotonically to become zero
at 1.2 a.u. of incident momentum. For P waves the effect of
distortion is nil at very low energy; it then gradually in-

creases and falls down, while the correlation has a very small
amount of contribution at very low energy, but like distortion
it then gradually rises up and falls down.

The case of D waves is very similar to that of P waves
but the effects of both distortion and correlation shift toward
higher energy. In Fig. 2 we have plotted S-, P-, and D-wave
phase shifts as a function of incident positron momenta.
This figure presents three smooth curves of nearly the same
nature.

2. F-, G-, H-, and higher-partial-wave phase shifts

Tables IV and V include the results for /=3, 4, 5, 6
partial-wave phase shifts. The scenario for the effects of dis-
tortion and correlation for F and G waves is the same as for
the D waves, but for H and higher partial waves only static
and polarization potentials are enough to produce accurate
phase shifts. Figure 3 displays the graphs of F-, G-, and
H-wave phase shifts as a function of incident positron mo-
menta. The nature is almost identical to those of the S-, P-,
and D-wave graphs.

D. Total elastic cross sections

In this section, we compare in Fig. 4 the total elastic cross
section as obtained by the present calculation (as recorded in
Tables IV and V) with the 33-state coupled-channel calcula-
tion of Kernoghan et al. [70] and convergent close-coupling
approximation of Bray and Stelbovics [71] in the incident
energy range 1-120 eV. It has already been found (Table III)
that the partial-wave contributions to the total elastic cross
section predicted by us are in conformity with those of
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TABLE III. Present partial-wave contributons to the elastic cross section in e*-H collisions for incident
positron momenta 0.1-1.0 a.u.

kia.u.) 0 1 2 3 4 5 So;

0.1 8.7558° 0.0897° 0.0036 0.0006 0.0001° 3.8498
8.7328° 0.0942° 0.0035° 0.0005" 0.0001°
8.6279° 0.0944° 0.0037° 0.0006° 0.0002°
8.7328¢ 0.0929° 0.0034° 0.0006° 0.0001°

0.2 3.4836° 0.3331° 0.0142° 0.0023% 0.0006 0.0002° 3.8341
3.4746" 0.3207° 0.0151° 0.0022° 0.0006" 0.0002°
3.4490° 0.3207° 0.0151° 0.0023° 0.0006° 0.0002°
3.4819¢ 0.3426% 0.0147° 0.0022° 0.0006° 0.0002°

0.3 1.2457° 0.5703" 0.0301° 0.0051° 0.0013° 0.0005° 1.8533
1.2280° 0.5747° 0.0370° 0.0051° 0.0013° 0.0004°
1.2237° 0.5747° 0.0370° 0.0052° 0.0013¢ 0.0005°
1.2382¢ 0.5888¢ 0.0352° 0.0051° 0.0014° 0.0005°

0.4 0.3631° 0.7629" 0.0699* 0.0089° 0.0024° 0.0008° 1.2087
0.3553° 0.7505° 0.0726° 0.0098° 0.0024° 0.0008°
0.3529° 0.7505° 0.0732° 0.0100° 0.0024° 0.0008°
0.3589¢ 0.7715¢ 0.0689° 0.0088° 0.0023° 0.0009°

0.5 0.0735 0.8095 0.1186° 0.0144 0.0037° 0.0013* 1.0220
0.0614° 0.8128° 0.1254° 0.0175° 0.0040° 0.0013°
0.0616° 0.8141¢ 0.1260° 0.0178¢ 0.0040° 0.0014¢
0.0622¢ 0.8178¢ 0.1165° 0.0198° 0.0037° 0.0013°

0.6 0.0006 0.7764% 0.1950° 0.0203° 0.0053° 0.0019° 1.0010
0.0001° 0.7884° 0.1978° 0.0302° 0.0064° 0.0020°
0.0001° 0.7863° 0.1984° 0.0305° 0.0065° 0.0021¢
0.0002¢ 0.7914¢ 0.1948° 0.0202¢ 0.0056° 0.0019°

0.7 0.0238? 0.7657° 0.3038* 0.0274 0.0070° 0.0025° 1.1323
0.0220° 0.7695° 0.3174° 0.0531° 0.0104° 0.0030°
0.0219° 0.7746° 0.3188° 0.0538° 0.0108° 0.0031°
0.0214¢ 0.7841¢ 0.3079° 0.0272° 0.0072° 0.0026°

0.8 0.0768" 0.6258" 0.4217* 0.1107 0.0198% 0.0033" 1.2608
0.0650" 0.5579" 0.4226" 0.2032f 0.0155 0.0037
0.065¢ 0.558" 0.423' 0.200/ 0.0153' 0.0034)
0.0653" 0.626" 0.483% 0.110% 0.0198"
0.0657" 0.626' 0.484' 0.111"
0.9 0.1288% 0.3324% 0.4270% 0.0960% 0.0274% 0.0041% 1.0190
0.0958" 0.4249" 0.4774 0.1338" 0.0233" 0.0066"
0.093/ 0.420 0.472 0.133 0.02219 0.00619
1.0 0.1611° 0.1043 0.3685 0.0795 0.0281° 0.0049° 0.7507
0.1231° 0.2972° 0.3959° 0.1447° 0.0395" 0.0138°
0.117 0.295 0.394 0.145 0.0396' 0.0133!
Present results. €Humberston [57].
bKuang and Gien [68]. FBrown and Humberston [58].
“Mitroy [59]. ‘Brown and Humberston [58].
9Bhatia et al. [53,54]. JWinick and Reinhardt [60].
“Roy and Mandal [49]. *Gien [69].
Kar and Mandal [50]. 1Mitroy [59].
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TABLE IV. The Schwinger partial-wave phase shifts &, (in radians) in elastic positron-hydrogen collisions for positron momenta 0.1-1.7
a.u.. x[—y] means x X 107, Here o(L) denotes the total elastic cross section from L partial-wave contributions, and 3, y are the non linear
variational parameters.

& 6 2 83 4 S5 S
B B B B B B B
k; Y Y Y b b b b o(L)
0.1 0.1485 0.0086  0.0013 0.448[-3] 0.203[-3] 0.108[-3] 0.650[—4] 8.8498(6)
0.4380 0.0 0.0 0.0 0.0 0.0 0.0
0.0331 0.0011 0.0 0.0 0.0 0.0 0.0
0.2 0.1877 0.0333  0.0053 0.179[-2] 0.813[-3] 0.435[-3] 0.260[-3] 3.8341(7)
0.4163 0.0 0.0 0.0 0.0 0.0 0.0
0.0587 0.0132 0.0 0.0 0.0 0.0 0.0
0.3 0.1682 0.0654  0.0116 0.401[-2] 0.183[-2] 0.980[-3] 0.585[-3] 1.8533(8)
0.4002 0.0 0.0 0.0 0.0 0.0 0.0
0.0773 0.0376 0.0 0.0 0.0 0.0 0.0
0.4 0.1208 0.1010  0.0237 0.711[-2] 0.325[-2] 0.174[-2] 0.104[-2] 1.2087(9)
0.3955 0.0 0.0 0.0 0.0 0.0 0.0
0.0840 0.0812  0.0140 0.0 0.0 0.0 0.0
05 0.0678 0.1302  0.0385 0.113[-1] 0.507[-2] 0.272[-2] 0.162[-2] 1.0220(9)
0.3863 0.0 0.0 0.0 0.0 0.0 0.0
0.0900 0.1334  0.0364 0.0019 0.0 0.0 0.0
0.6 0.0076 0.1532  0.0593 0.161[-1] 0.726[-2] 0.392[-2] 0.234[-2] 1.0001(10)
0.3733 0.0 0.0 0.0 0.0 0.0 0.0
0.0819 0.1944  0.0870 0.0042 0.0 0.0 0.0
0.7 -0.0540 0.1778  0.0864 0.219[-1] 0.976[-2] 0.532[-2] 0.318[-2] 1.1323(11)
0.3655 0.1161 0.0 0.0 0.0 0.0 0.0
0.0604 03121  0.1880 0.0100 0.0 0.0 0.0
0.8 -0.1111 0.1837  0.1164 0.503[-1] 0.187[-1] 0.691[-2] 0.415[-2] 1.2608(11)
0.3466 02336 0.0 0.0 0.0 0.0 0.0
0.0402 0.3874  0.3795 0.1558 0.0433 0.0 0.0
0.9 -0.1622 0.1504  0.1319 0.527[-1] 0.248[-1] 0.865[-2] 0.534[-2] 1.0190(11)
0.3289 03078 0.0 0.0 0.0 0.0 0.0
0.0201 02652  0.5561 0.1394 0.0655 0.0 0.0
1.0 -0.2021 0.0934  0.1362 0.532[-1] 0.280[-1] 0.105[-1] 0.653[-2] 0.7507(12)
0.3094 1.5258 0.0 0.0 0.0 0.0 0.0
0.0125 0.0 0.5681 0.1172 0.0690 0.0 0.0
1.1 —0.2402 0.0555  0.1318 0.520[-1] 0.307[-1] 0.124[-1] 0.781[-2] 0.6043(12)
0.2733 08512 0.0 0.0 0.0 0.0 0.0
0.0054 0.0 0.4836 0.0915 0.0688 0.0 0.0
1.2 -0.2712 0.0235  0.1013 0.510[-1] 0.320[-1] 0.143[-1] 0.924[-2] 0.4348(13)
0.2485 0.5332  0.1331 0.1017 0.0 0.0 0.0
0.0 0.0 0.2341 0.0711 0.0605 0.0 0.0
1.3 -0.2971 0.0016  0.0762 0.503[-1] 0.331[-1] 0.161[-1] 0.105[-1] 0.3508(13)
0.2192 0.4077  0.3331 0.3315 0.1246 0.0 0.0
0.0 0.0 0.0688 0.0525 0.0518 0.0 0.0
1.4 -0.3201 -0.0191  0.0478 0.486[-1] 0.327[-1] 0.178[-1] 0.119[-1] 0.2960(13)
0.1874 02991  0.7124 0.5242 0.3472 0.0 0.0
0.0 0.0 0.0 0.0225 0.0323 0.0 0.0
1.5 -0.3401 —0.0457  0.0340 0.448[-1] 0.323[-1] 0.194[-1] 0.133[-1] 0.2774(14)
0.1552 0.0 0.3451 1.2438 0.6312 0.0 0.0
0.0 0.0 0.0 0.0 0.0070 0.0 0.0
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TABLE IV. (Continued.)
o) 2 ) &3 04 Js s
B B B B B B B
k; Y Y Y 2 Y Y Y a(L)
1.6 -0.3542 -0.0586 0.0235 0.386[—1] 0.318[-1] 0.207[-1] 0.146[-1] 0.2559(14)
0.1430 0.0 0.1121 0.5857 1.1012 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.7 -0.3650 -0.0706 0.0162 0.345[-1] 0.311[-1] 0.218[-1] 0.158[-1] 0.2405(15)
0.1378 0.0 0.0 0.3275 0.7017 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kuang and Gien [68], Mitroy [59], Bhatia et al. [53,54], Roy
and Mandal [49], Kar and Mandal [50], Humberston [57],
Brown and Humberston [58], Winick and Reinhardt [60],
and Gien [69] in the incident energy range 0.1-1.0 a.u. We
have again listed the values of the total elastic cross section
in Table VI to compare our results with the Harris-Nesbet
algebraic method of Kuang and Gien [68], the 21-state close-
coupling calculation of Mitroy [59], the algebraic enlarged
six-pseudostate (E6PS) calculation by Gien [69], the
Schwinger variational calculation by Roy and Mandal [49]
and Kar and Mandal [50], and the five-state close-coupling
approximation (CCA) by Basu et al. [72] in the incident
energy range 0.1-1.0 a.u. It is found that the present results
are in accord with all above elaborate calculations.

IV. CONCLUSIONS

Schwinger’s variational principle has conveniently and el-
egantly been used in momentum space to study the elastic
positron-hydrogen scattering at low and intermediately ener-
gies. Our expression of the scattering amplitude is simple
and easy to interpret. In absence of any minimum principle
the method uses the stationary property of the scattering am-
plitude. So the choice of the basis set should be judicious to

.
021 e + H(ls) e’ + H(ls)
= 0.1
% D-wave
-
T 00
I}
9
5 011
13
-0.2
.u;.' P-wave
e
()
0 -0.3
% S—wave
o
o -0.4 4
-0.5 v T v T v T v T v T r T v
0.5 1.0 1.5 2.0 25 3.0 35

Incident positron momentum (a.u.)

FIG. 2. Display of S-, P-, and D-wave scattering phase shifts in
elastic positron-hydrogen collisions for the incident positron mo-
menta 0.1-3.5 a.u.

incorporate the essential physics of the underlying system.
Our present investigation uses a discrete basis set which be-
sides having the infinite-order effect of positron-electron cor-
relation duly takes care of the atomic distortion by means of
a dipole polarization function. Our findings indicate that for
low-energy elastic scattering the effect of the target atom
distortion is more than the effect of positron-electron corre-
lation. With the increase in the incident energy as well as in
the number of partial waves both these effects gradually de-
crease. For higher partial-wave contributions inclusion of the
static and polarization potentials is sufficient to obtain reli-
able results.

Finally, it is pertinent to make the point that, with
the completion of these studies, it is now possible to safely
conclude that the elastic positron-hydrogen collision problem
is solved below the ionization threshold for the following
reasons.

(a) All the theoretical models predicting definitive re-
sults [49,50,52,53,55,57,59,60,68] agree among themselves
within a few percent in accuracy in the incident energy range
0-13.6 eV for the first few partial waves.

(b) The Schwinger variational calculations have pro-
vided us with equally accurate higher-partial-wave results in
this energy range.

(c) All relevant information leading to elastic differen-

0.06
e + H(ls) e' + H(ls)

0.04 4
%) G-wave
@ 0.02 A
~
-E H-wave
L 000
H
Bl
c
%]
QO -0.024
%) F-wave
S
4

-0.04 T T T T T T

0.5 1.0 1.5 2.0 25 3.0 3.5

Incident positron momentum (a.u.)

FIG. 3. Display of F-, G-, and H-wave scattering phase shifts in
elastic positron-hydrogen collisions for the incident positron mo-
menta 0.1-3.5 a.u.
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TABLE V. The Schwinger partial-wave phase shifts & (in radians) in elastic positron-hydrogen collisions for positron momenta 1.8-3.5
a.u.. x[—y] means x X 10™. Here o(L) denotes the total elastic cross section from L partial-wave contributions, and B,y are the nonlinear
variational parameters.

o) o) 2 83 4 S5 S
B B B B B B B
k; Y Y Y b b Y Y o(L)
1.8 -0.3751 -0.0818 0.0095 0.307[-1] 0.304[-1]  0.227[-1] 0.169[-1] 0.2276(15)
0.1249 0.0 0.0 0.1283 0.4841 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.9 -0.3831 -0.0921 0.0029 0.276[-1] 0.287[-1]  0.233[-1] 0.179[-1] 0.2160(15)
0.1148 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.0 -0.3902 -0.1016 -0.0037 0.246[-1] 0.279[-1]  0.237[-1] 0.187[-1] 0.2054(15)
0.1009 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.1 -0.3953 -0.1102 -0.0101 0.213[-1] 0.269[-1]  0.239[-1] 0.194[-1] 0.1951(16)
0.0923 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 —0.4002 -0.1182 -0.0163 0.179[-1] 0.256[-1]  0.238[-1] 0.199[-1] 0.1860(16)
0.0765 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 -0.4052 -0.1254 -0.0223 0.143[-1] 0.241[-1]  0.236[-1] 0.203[-1] 0.1776(16)
0.0504 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
24 -0.4071 -0.1321 -0.0280 0.107[-1] 0.224[-1]  0.231[-1] 0.205[-1] 0.1682(16)
0.0437 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 -0.4082 -0.1381 -0.0336 0.710[-2] 0.205[-1]  0.225[-1] 0.206[-1] 0.1604(17)
0.0319 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.6 —0.4114 —0.1435 -0.0389 0.349[-2] 0.185[-1]  0.217[-1] 0.206[-1] 0.1529(17)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.7 —0.4110 —0.1485 -0.0439 —0.103[-3] 0.164[-1]1  0.207[-1] 0.205[-1] 0.1453(17)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.8 -0.4102 -0.1530 —0.0487 -0.365[-2] 0.143[-1]  0.197[-1] 0.202[-1] 0.1379(17)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
29 —0.4095 -0.1571 -0.0532 —0.713[-2] 0.121[-1]  0.185[-1] 0.198[-1] 0.1314(18)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.0 —0.4081 -0.1607 -0.0575 -0.105[-1] 0.988[-2]  0.173[-1] 0.193[-1] 0.1249(18)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.1 —0.4065 -0.1641 -0.0615 -0.138[-1] 0.762[-2]  0.160[-1] 0.187[-1] 0.1190(18)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.2 -0.4047 -0.1671 -0.0653 -0.171[-1] 0.534[-2]  0.146[-1] 0.180[-1] 0.1123(18)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
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TABLE V. (Continued.)
% Oy ) 5 0y Js %
B B B B B B B
k; Y Y Y 4 Y Y Y o(L)
33 -0.4027 -0.1698 —-0.0689 -0.202[-1] 0.306[-2] 0.131[-1] 0.173[-1] 0.1084(18)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
34 -0.4006 -0.1722 -0.0723 -0.232[-1] 0.798[-3] 0.116[-1] 0.165[-1] 0.1068(18)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.5 -0.3983 ~0.1744 -0.0755 -0.262[-1] -0.144[-2]  0.101[-1] 0.157[-1] 0.099(19)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
tial and total cross sections is now available, save the total &i(7>) = Niexp(= \;ry) (A1)

net reaction cross section including elastic, Ps formation, and
excitation cross sections in the energy range 10.2-13.6 eV.
(d) Beyond the positron energy 10.2 eV, however, fur-
ther definitive calculations are necessary to validate the ex-
isting theoretical results before any conclusion can be made.
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APPENDIX: EVALUATION OF TWO-BODY AMPLITUDES
FOR ELASTIC POSITRON-HYDROGEN COLLISIONS

In what follows we describe the evaluation of some of the
two-body amplitudes as defined in Sec. II in closed analytic
form. We have used the basis set (5) to calculate these two-
body amplitudes.

For elastic positron-H collisions, we have

where N;=\\}/ 7, \;=1/ay=1 a.u., and f=i.
1. Anm(Ef’Ei)

The amplitude Anm(Ef,Ei) is given by

Anm(lgfalgi) = <_ gﬁ)(vn|vi|um> = <_ 2ﬁ7§_> f U, * Viumd;ld’:}

(A2)

. . . *
which on using the expressions for v,, u,, and V;=1/r,
—1/r, becomes

TABLE VI. Integrated cross sections (ﬂaé) for elastic positron-hydrogen collisions in the incident mo-

menta range 0.1-0.8 a.u.

kia.u.)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Present result 8.8498 3.8341 1.8533 1.2087 1.0220 1.0010 1.1323 1.2608
Harris-Nesbet® 8.828 3.815 1.848 1.194 1.025 1.029 1.181 1.308
21-state CCA® 8.736 3.787 1.844 1.192 1.026 1.026 1.186 1.316
Algebraic E6PS® 8.835 3.818 1.849 1.194 1.023 1.025 1.179 1.311
Variational® 8.713 3.802 1.849 1.213 1.030 1.003 1.101 1.2679°
Five-state CCA' 8.839 3.838 1.866 1.209 1.031 1.020 1.160 1.239

Harris-Nesbet algebraic method; Kuang et al. [68].

®21-state close-coupling approach; Mitroy (1995) [59].

“Algebraic enlarged six-pseudostate calculation (E6PS); Gien [69].
dSchwinger variational principle; Roy and Mandal [49].

°Kar and Mandal [50].

'Five-state CCA; Basu et al. [72].
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FIG. 4. Integrated cross section (ﬂa(z)) for elastic scattering of
positron by hydrogen atom in the incident energy range 1-167 eV:
shaded squares, present Schwinger results; open circles, 33-state
results of Kernoghan et al. [70]; crosses, convergent close-coupling
approximation (Bray and Stelbovics [71]).

>z I
Ap(kyok) = (— z_ﬁ) N2

Xf ei,}.r'l(l _ e—prl)2e—b3r2—ym”r12r71710+n0—2

1 1 s
X| —=— drldrz,
rn T

(A3)

where ci=/€,-—/€f, by=2B+2\;, and 7,,,=27.
To evaluate the above integral (A3) we first evaluate the
following type integral:

- e . 1 1y . .
I(v,a,b,c,n) = f e’“"l_“’l_brz_”IZr'f<— - —)drldrz
ry I
(say).
(A4)

= Il(l})»a3b3c’n) - Iz(l})va’b7c7n)

Now

- o= : | R
Il(v,a,b,c,n)=fe’”'rl_“rl_brz_”ur'f—drldr2
r

=feiﬁ~Fl—arlr¥l<f e_brz_”lzdfz)dfl
r
_ f eiJ~Fl—arlrilll4—7T
ri (b= c)?
X[ ~ 8be (_b)
(52—02) r r

+2ce™ 4 2be‘”1]d71,

(A5)

where we have taken Fourier integral transforms for func-
tions of the form exp(—\r)/r, exp(—Ar):

PHYSICAL REVIEW A 72, 042709 (2005)

1 e

exp(— \r)/r= ﬁ mdp, (A6)
N e -

exp(—\r) = ? mdp (A7)

and utilized the S-function properties, such as

f S Nf(G)dG di = (2m)? f 8(G - Mf(§)dg = 2m>f(A).
(A8)

Similarly we obtain

- . |
Iz(v,a,b,c,n)=fe’”"l_“’l_b’f”lzrrf—drldrz
T2

_ eiﬁﬂ—arlrn e‘brz‘C’IZLdf d,;’
- 1 2 1
T2
— f ei5~7|—ar|rill 4m
(b°~c?)

« 2b (e_”l e‘brl) oy | g7
(bZ—Cz) ry r ¢ m

(A9)

Substituting integrals (A5) and (A9) in integral (A4), we
obtain

1(" b ) f iv-r—aryn 4 —8bc (6‘ o
a,b,c,n)=| e ¥
v l(bZ_CZ) (b2_c2)2 r%
—bry 2(b + —bry .
_e 5 >+ (2 C;)e +e‘b’1]dr1.
ry (b"=c%) r
(A10)

In order to bring the integral (A10) in a closed analytical
form we now compute the following integral:

ﬂinw=JwﬂﬁWH

4 (7
=— | e Nsingrdr
q Jo

4 & n+l ©
= —W(— 1)"”(—) f e Nsin gr dr
q I\ 0

4w I'n+2)

. 14
= p WSII]((H-’-Z)&HI lx>

(A11)

Now substituting the closed result of integral (A11) in (A10)
we finally have the analytical expression

042709-11



A. GHOSHAL AND P. MANDAL

- 4 -8b -
I(v,a,b,c,n) = » _7702) < - Cz)z[f(v,a +c,n-2)
— fG,a+bn-2)]+ %ﬂﬁ,aﬂ;,n— 1)
+f(17,a+b,n)). (A12)

Using (A12) we thus obtain Anm(Ef,Ei) as

Anm(lgf»]gi) = C[I(Cj,o’bz’ Yams Mo + 1o — 2) - 2I(q-)7p’b3v Yims Mo

+n0_2)+I(57,2P’b3,7nm7m0+n0_2)] (A13)

with C=(—u/2m)|N[*==1/27", p;=1 a.u.

2. Ayilky k)

The amplitude Ani(/Zf,/E[) is given by
Ani(lzfvlgi) = (— ﬁi><vn|vi|q)i> = (‘ ﬁ) f v, * Vi®drdr,
2 2
(A14)

which on using the expressions for U:, ®;, and V;=1/r;
—1/r|, becomes

PHYSICAL REVIEW A 72, 042709 (2005)
Ani(Ef,Ei) = <_ £)|Ni|2f ei‘i';l(l - e—Prl)e—b2’2—7f|2r’l10—‘
1 Iy . .
Xl —=— drldrz
rn o

= C[I(C;,O,bl,'}’,no_ l) _I(q—)’p’bl’ Y.no — 1)]
(A15)

with bl =B+ 2)\1
3. Apy,(kp,K;)
Similarly the amplitude Afm(lgf,lg,-) is given by

> - M M s > >
Aplkpk;) = (- 2_£_><(Df| Vi) = (‘ 2_7&) f &, Viu,drdr,
(A16)

which on using the expressions for ®, u,,, and V,=1/r
—1/ry, becomes

s s iq-F
Afm(kﬁki):(— Efr>|Ni|2J€q !

| T U
X(1 - e"”l)e_h3’2_7’12r'1”°_1<— - —)dr]drz
T

= C[I(q-)’o’b27 ’)/9m0_ 1) _I(q-),P,bb ')’,mo_ 1)]
(A17)

with by=B+2\,.
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