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I. INTRODUCTION

Calculations of the one-loop self-energy correction to all
orders in the parameter Z� �Z is the nuclear charge number
and � is the fine-structure constant� have a long history. For
several high-Z ions, a successful evaluation of this correction
was performed by Desiderio and Johnson �1� using the
method proposed by Brown, Langer, and Schaefer �2�. A
much more accurate and powerful method was developed by
Mohr �3�, who carried out high-precision calculations of this
correction in a wide range of Z for the ground and the first
excited states of H-like ions �4–6�. Various extensions of this
method provided highly accurate evaluations of the self-
energy correction for higher excited states �7,8�, for the
extended-nucleus Coulomb potential �9�, and for very small
nuclear charge numbers �10–12�. Indelicato and Mohr
�13,14� presented an important modification of the method,
in which renormalization is performed completely in coordi-
nate space.

A different method for evaluation of the self-energy cor-
rection, which can be conventionally termed as the potential-
expansion method, was introduced by Snyderman and Blun-
dell �15–17�. Various numerical schemes based on this
method were presented by other groups �18,19�.

There are also other methods developed for evaluation
of the self-energy correction which have been less widely
used so far. A noncovariant method of the so-called partial-
wave renormalization was developed by Persson, Lindgren,
and Salomonson �20� and by Quiney and Grant �21,22�. An-
other method proposed by Labzowsky and Goidenko �23� is
based on the multiple commutator expansion of the general
expressions.

Closely related to the self-energy is the other dominant
QED effect, the vacuum polarization. Evaluations of this cor-
rection to all orders in Z� were performed by Soff and Mohr
�24� and by Manakov, Nekipelov, and Fainstein �25�. More
accurate calculations of the vacuum-polarization correction
were carried out later by other groups �26,27�.

Evaluation of the self-energy correction for a tightly
bound electron is nontrivial, to a large extent, due to the
fact that this correction involves the Dirac-Coulomb Green
function that is not presently known in the closed analytical
form �contrary to the nonrelativistic Coulomb Green func-
tion�. Consequently, the self-energy correction is expressed
as an infinite expansion over the angular momentum of the

virtual photon �or, equivalently, the total angular momentum
of the virtual electron states j= ���−1/2, where � is the rela-
tivistic angular-momentum parameter of the Dirac equation�.
This expansion �further referred to as the partial-wave expan-
sion� greatly complicates calculations of the self-energy
corrections.

In the method by Mohr �3�, the summation of the partial-
wave expansion was performed numerically before integra-
tions over radial coordinates. A large number of terms in-
cluded into the summation ��104� and usage of the
quadruple arithmetics ensured a high accuracy of the numeri-
cal results obtained but made the computation rather time
consuming. In the extension of this method by Jentschura et
al. �10–12�, several millions of expansion terms included
into computation were reported, which became possible due
to an elaborate convergence-acceleration technique devel-
oped by the authors and an extensive usage of modern par-
allel computer systems.

On the contrary, calculations based on the potential-
expansion method �16–19� are usually performed with much
smaller numbers of partial-wave expansion terms actually
included into the computation ��15–40�. This is achieved �i�
by employing a more complete set of renormalization terms
that are calculated separately in a closed form, �ii� by per-
forming the radial integrations before the partial-wave sum-
mation �for the discussion of how this influences the conver-
gence rate see Eqs. �1� and �2� of Ref. �14� and the related
text there�, and �iii� by using extrapolation to estimate the
contribution of the tail of the expansion. The price to pay is
a more complex structure of the subtraction terms �espe-
cially, in coordinate space� and the necessity to keep the
accuracy of numerical integrations well under control for
each partial-wave term, in order to provide a reasonable ex-
trapolation for the tail of the expansion. Still, the method is
computationally very cheap and can be directly generalized
for calculations of higher-order QED diagrams, where the
self-energy loop enters as a subgraph. These advantages have
determined the fact that most calculations of higher-order
self-energy corrections have been performed by extensions
of the potential-expansion method up to now.

The one-loop self-energy correction is traditionally repre-
sented in terms of the dimensionless function F�Z��, which
is connected to the energy shift �in units �=c=m=1� by
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�E =
�

�

�Z��4

n3 F�Z�� , �1�

where n is the principal quantum number. Practical calcula-
tions performed within the potential-expansion method in the
Feynman gauge show that the general behavior of individual
partial-wave expansion contributions to the function F�Z��
roughly follows the dependence

F��� �
n3

10�Z��2���3
. �2�

This makes clear that, while the nominal rate of convergence
of the partial-wave expansion is always close to ���−3 in this
method, the actual convergence is governed by the parameter
n3 / �Z��2, whose numerical value can be rather large for ex-
cited states and small nuclear-charge numbers. Taking into
account that the extension of the partial-wave summation
beyond the typical limit of ���=30–40 leads to serious tech-
nical problems within the numerical scheme employed, we
conclude that the parameter n3 / �Z��2 defines the region of
the practical applicability of the potential-expansion method.

A similar situation persists in calculations of self-energy
corrections to higher orders of perturbation theory. In such
calculations, the convergence of the partial-wave expansion
also worsens with decrease of Z and increase of n. In par-
ticular, a slow convergence of this expansion turned out to be
the factor limiting the accuracy in evaluations of the self-
energy correction to the 1s and 2s hyperfine splitting in low-
Z ions �28–30�. This convergence also posed serious prob-
lems in calculations of the self-energy correction to the
bound-electron g factor in light H-like ions �31–34�.

The convergence rate of the partial-wave expansion be-
comes most crucial in the case of two-loop self-energy cor-
rections, for which the summation should be performed over
two independent expansion parameters, both of which are
unbound �35,36�. A calculation of the two-loop self-energy
correction for very low nuclear charge numbers �and, specifi-
cally, for hydrogen� is a challenging problem, which appar-
ently cannot be solved within a straightforward generaliza-
tion of the potential-expansion method. �The present status
of calculations of the two-loop self-energy correction can be
found in Ref. �37�.� One of the problems to be solved to this
end is to find a way to improve the convergence properties of
the partial-wave expansion.

The goal of the present investigation is to formulate a
scheme for evaluation of the one-loop self-energy correction,
which yields the fastest convergence of the partial-wave ex-
pansion among the methods reported so far in the literature.

II. FORMALISM

The energy shift of a bound electron due to the first-order
self-energy correction is given by the real part of the
expression

�E = 2i��
−�

�

d�� dx1dx2D	
��,x12��a
†�x1��	

�G�a − �,x1,x2��
�a�x2� − �m� dx�a
†�x���a�x� ,

�3�

where �	= �1,�� ,�, and � are the Dirac matrices,
G�� ,x1 ,x2�= ��−H�1− i0��−1, H=H0+V�x�, H0=� ·p+� is
the free Dirac Hamiltonian, V�x� is a local potential �not
necessarily the Coulomb one�, and �m is the mass counter-
term. D	
 is the photon propagator defined in the Feynman
gauge as

D	
��,x12� = g	

exp�i	�2 + i0x12�

4�x12
, �4�

where x12= �x12�= �x1−x2�, and the branch of the square root
is fixed by the condition Im�	�2+ i0��0. In Eq. �3� it is
assumed that the unrenormalized part of the expression and
the mass counterterm are regularized in a certain covariant
way and that the limit removing the regularization is taken
after the cancellation of the divergent terms.

Ultraviolet divergencies in Eq. �3� can be conveniently
isolated by separating the first two terms in the expansion of
the bound-electron propagator G in terms of the binding
potential V,

G�E,x1,x2� = G�0��E,x1,x2� + G�1��E,x1,x2� + G�2+��E,x1,x2� ,

�5�

where G�0�= ��−H0�1− i0��−1 is the free Dirac Green func-
tion, G�1� is the first-order expansion term

G�1��E,x1,x2� =� dzG�0��E,x1,z�V�z�G�0��E,z,x2� , �6�

and G�2+� is the remainder. The three terms in Eq. �5�, after
substitution into Eq. �3�, lead to the separation of the self-
energy correction into the zero-potential, one-potential, and
many-potential parts �15�:

�E = �Ezero + �Eone + �Emany, �7�

with the mass-counterterm part naturally ascribed to the
zero-potential term. Converting the first two terms into mo-
mentum space and cancelling the ultraviolet divergences, one
obtains

�Ezero =� dp

�2��3 �̄a�p��R
�0��a,p��a�p� , �8�

�Eone =� dp1

�2��3

dp2

�2��3 �̄a�p1��R
0�a,p1;a,p2�V�q��a�p2� ,

�9�

where q=p1−p2, �̄a�p�=�a
†�p��0, and �R

�0��p� and �R
	�p1 , p2�

are the renormalized free self-energy and vertex functions
�for their exact definition and calculational formulas see,
e.g., Ref. �19��.
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The many-potential term is represented by the following
expression:

�Emany = 2i��
C

d�� dx1dx2D	
��,x12��a
†�x1��	

�G�2+��a − �,x1,x2��
�a�x2� , �10�

where G�2+�=G−G�0�−G�1� and the contour C of the � inte-
gration does not necessarily go along the real axis but can be
chosen differently in order to simplify the numerical evalua-
tion of this expression. In our approach, we employ the con-
tour CLH that consists of the low-energy part �CL� and the
high-energy part �CH� and is similar to the one introduced in
our previous work �19�. The low-energy part of the contour
CL extends from 0− i0 to −i0 on the lower bank of the
branch cut of the photon propagator and from +i0 to 0+ i0
on the upper bank of the cut. In order to avoid appearance of
poles of the electron propagator near the integration contour,
each part of CL is bent into the complex plane if the calcu-
lation is performed for excited states. �The analytical struc-
ture of the integrand and a possible choice of the contour are
discussed in Ref. �19�.� The high-energy part of the contour
is CH= �0− i� ,0− i0�+ �0+ i0,0+ i��. The parameter 0

separating the low- and the high-energy part of the contour is
chosen to be 0=Z�a in this work. �It is assumed that the
condition a−1s�0 is fulfilled for the states under consid-
eration, where 1s is the ground-state energy.�

Due to a lack of a closed-form representation for the
Dirac Coulomb Green function, the evaluation of the many-
potential term has to be performed by expanding G �and
therefore G�2+�� into eigenfunctions of the Dirac angular mo-
mentum with the eigenvalue �. As discussed in Introduction,
the convergence rate of the resulting partial-wave expansion
is of crucial importance for the numerical evaluation of the
self-energy correction.

Until this moment, our description closely followed the
standard potential-expansion method �15�. We would like
now to modify this method in order to achieve a better con-
vergence of the partial-wave expansion in the many-potential
term �Emany. To this end, we look for an approximation Ga

�2+�

to the function G�2+� that fulfills the following requirements:
�i� it can be evaluated in a closed form �i.e., without the
partial-wave expansion� and �ii� the difference G�2+�−Ga

�2+�

inserted into Eq. �10� yields a rapidly converging partial-
wave series.

We start with the expansion of the bound-electron Green
function in terms of the binding potential,

G�E,x1,x2� = G�0��E,x1,x2� +� dzG�0��E,x1,z�V�z�

�G�0��E,z,x2� +� dz1dz2G�0��E,x1,z1�V�z1�

�G�0��E,z1,z2�V�z2�G�0��E,z2,x2� + ¯ . �11�

It is well known that the dominant contribution to radial
integrals like those that appear in Eq. �10� originates from
the region where the radial arguments are close to each other,
x1�x2. This region is also responsible for the part of the

partial-wave expansion of the Green function that has the
slowest asymptotic convergence in 1/ ��� �3�. In this region
the commutators of the potential V with the free Green func-
tion G�0� are small and can be neglected, which corresponds
to expanding V�z� in a Taylor series around z=x1 �or x2� and
keeping only the first term. Commuting V out to the left in
Eq. �11� and repeatedly employing the identity

� dzG�0��E,x1,z�G�0��E,z,x2� = −
�

�E
G�0��E,x1,x2� ,

�12�

we obtain the approximation Ga to the bound-electron Green
function G,

Ga�E,x1,x2� = G�0��E,x1,x2� − V�x1�
�

�E
G�0��E,x1,x2�

+ V2�x1�
�2

�E2G�0��E,x1,x2� + ¯ . �13�

This expansion has a form of the Taylor series and can be
formally summed up, yielding

Ga�E,x1,x2� = G�0��E + �,x1,x2� , �14�

where �=−V�x1�=Z� /x1. Commuting V out to the right in
Eq. �11�, we obtain the same representation for Ga but with
�=Z� /x2.

It should be noted that the idea of commuting the poten-
tial V outside in the one-potential term was originally pro-
posed by Mohr �3�, who proved that this procedure does not
influence the asymptotic ultraviolet behavior of this term �we
recall that ultraviolet divergences originate from the region
x1�x2 in configuration space�. Later, it was also demon-
strated �13,14� that all ultraviolet divergences in the one-loop
self-energy correction could be identified by isolating several
first terms of the power-series expansion of the potential V
and the reference-state wave functions �a around the point
x1=x2.

Expression �14� yields an approximation for the bound-
electron Green function that has a form of the free Green
function with a shifted energy argument. Taking into account
that the free Green function is known in a closed form �3�

G�0��E,x1,x2� = − 
� c

x12
+

1

x12
2 �i� · x12 + � + E

�
exp�− cx12�

4�x12
�15�

�c=	1−E2�, we can employ this expression for the evalua-
tion of Ga.

An analogous to Eq. �14� approximation for the function
G�2+� is obtained by subtracting the first two terms of the
Taylor expansion from Ga,

Ga
�2+��E,x1,x2� = G�0��E + �,x1,x2� − G�0��E,x1,x2�

− �
�

�E
G�0��E,x1,x2� . �16�
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According to the derivation, the functions Ga�E ,x1 ,x2�
and Ga

�2+��E ,x1 ,x2� approximate, correspondingly,
G�E ,x1 ,x2� and G�2+��E ,x1 ,x2� in the region where x1�x2.
This means, in particular, that instead of the original expres-
sion for � in Eq. �14�, �=Z� /x1, one can use its arbitrary
symmetrization with respect to x1 and x2. In our actual cal-
culations, the following choice of � was employed:

� =
2Z�

x1 + x2
, �17�

which turned out to be more convenient from the numerical
point of view.

We now use the approximate expression for the Green
function obtained above in order to separate the many-
potential term �10� into two parts, one of which contains
Ga

�2+� instead of G�2+� and is evaluated in a closed form in
configuration space, whereas the remainder is calculated by
summing a rapidly converging partial-wave series. Bearing
in mind that the partial-wave expansion for the low-energy
part of Eq. �10� is already converging very fast �if the pa-
rameter 0 of the integration contour CLH is chosen as de-
scribed above�, we apply this separation to the high-energy
part only. The many-potential term is thus written as a sum
of the subtraction and the remainder term,

�Emany = �Emany
sub + �Emany

remd . �18�

The subtraction term is obtained from the high-energy part of
Eq. �10� by the substitution G�2+�→Ga

�2+�. Its explicit expres-
sion in the Feynman gauge reads

�Emany
sub =

i�

2�
�

CH

d�� dx1dx2
exp�i���x12�

x12
�a

†�x1��	

�Ga
�2+��a − �,x1,x2��	�a�x2� . �19�

The remainder term is obtained from Eq. �10� by applying
the substitution G�2+�→G�2+�−Ga

�2+� in the high-energy part.
Calculational formulas for the remainder term �Emany

remd are
obtained by obvious modifications of the corresponding ex-
pressions for the many-potential term that can be found, e.g.,
in Ref. �19�. In order to obtain the subtraction term in a form
suitable for the numerical evaluation, one has first to perform
the angular part of integrations over x1 ,x2 analytically. To do
so, we utilize the fact that both Ga

�2+� and the scalar part of
the photon propagator depend on angular variables through
x12 only. Their product can be written as

Ga
�2+��a − �,x1,x2�

exp�i���x12�
x12

= F1i� · x12 + F2� + F3.

�20�

Here, Fi�Fi�� ,x1 ,x2 ,�� are scalar functions depending on
the radial variables through x1 ,x2, and �= x̂1 · x̂2 only, where
x̂=x /x. Explicit expressions for Fi are immediately obtained
from the definition of Ga

�2+� �Eq. �16�� and the expression for
the free Green function G�0� �Eq. �15��. The functions Fi can
be expanded over the set of spherical harmonics by

Fi��,x1,x2,�� = 4��
l,m

Vl
�i���,x1,x2�Ylm�x̂1�Ylm

* �x̂2� ,

�21�

where

Vl
�i���,x1,x2� =

1

2
�

−1

1

d�Fi��,x1,x2,��Pl��� �22�

and Pl��� is a Legendre polynomial.
Substituting Eq. �21� into Eq. �19� and performing simple

angular-momentum algebraic manipulations, we obtain

�Emany
sub = 2i��

CH

d��
0

�

dx1dx2�
−1

1

d��x1x2�2�F1��,x1,x2,��

�ga�x1�fa�x2��x1Pl̄a
��� − x2Pla

����

+ F1��,x1,x2,��fa�x1�ga�x2��x2Pl̄a
���

− x1Pla
���� + 2F2��,x1,x2,���ga�x1�ga�x2�Pla

���

− fa�x1�fa�x2�Pl̄a
���� − F3��,x1,x2,��

��ga�x1�ga�x2�Pla
��� + fa�x1�fa�x2�Pl̄a

����� , �23�

where la= ��a+1/2�−1/2, l̄a=2ja− la, and ga�x� and fa�x� are
the upper and the lower radial components of the reference-
state wave function �a�x�. The integration over � in Eq. �23�
can be carried out analytically in terms of the exponential
integral function, as described in the Appendix, leaving a
three-dimensional integration over the radial variables to be
performed numerically.

III. NUMERICAL EVALUATION

The numerical evaluation of the self-energy correction
within the present scheme is in many respects similar to that
in the standard potential-expansion approach. Since the
potential-expansion method is well documented �see, e.g., a
detailed description in Ref. �19��, here we concentrate on
distinct features of our evaluation as compared to the stan-
dard approach. They appear in the calculations of �i� the
high-energy part of the many-potential remainder term
�Emany

remd and �ii� the many-potential subtraction term �Emany
sub .

The radial integrations over x1 and x2 in the remainder
term �Emany

remd are performed after the change of variables
�x1 ,x2�→ �r ,y� �4�:

r = min�x1,x2�/max�x1,x2�, y = 2	1 − a
2x2. �24�

Numerical evaluation of the radial integrals is complicated
�specifically, for small values of Re���� by the presence of
the function G�0��E+�� in the integrand. To explain this, we
recall that the analytical behavior of G�0��E+�� is governed
by the parameter c�=	1− �E+��2. Since E�a−�=a−0

− iw in the high-energy part �w�R�, the energy argument is

E + � = a − 0 − iw +
2Z�

x1 + x2
. �25�

For certain values of x1 and x2, Re�E+��=1. When w is
small, a fast change of the phase of the square root

YEROKHIN, PACHUCKI, AND SHABAEV PHYSICAL REVIEW A 72, 042502 �2005�

042502-4



	1− �E+��2 occurs in the vicinity of this point, which can
lead to a numerical instability of the radial integrations. This
problem was handled by breaking the integration interval at
the point where Re�E+��=1 and employing a larger number
of integration points in this region.

The numerical evaluation of the subtraction term �Emany
sub

consists of a three-dimensional integration over the radial
variables, which has a structure of the standard two-electron
integral,

J = �
0

�

dx1dx2�
−1

1

d�
�x1x2�2

x12
f�x1,x2,�� , �26�

where the function f has a finite limit for x12→0. The inte-
grable singularity in this expression is removed by employ-
ing the perimetric coordinates �38�,

u = x1 + x2 − x12, �27a�

v = x1 − x2 + x12, �27b�

w = − x1 + x2 + x12. �27c�

In the new variables, the integral J is

J =
1

4
�

0

�

du dv dw x1x2f�x1,x2,�� . �28�

Performing the integrations in this expression numerically,
one should have in mind that the function f contains a square
root, whose argument changes its sign for certain combina-
tions of the radial variables, similarly to the case described
for the remainder term �Emany

remd . The point at which the argu-
ment of the square root vanishes is

a − 0 +
2Z�

x1 + x2
= 1. �29�

This feature was taken into account by breaking the integra-
tion intervals at the singular point and by employing a larger
number of integration points in its vicinity.

IV. RESULTS AND DISCUSSION

In Tables I–III we present a comparison of two different
schemes for the evaluation of the self-energy correction for
the 1s ,2s, and 2p1/2 states. The labels “A” and “B” stand for
the subtraction scheme introduced in this work and for the
standard potential-expansion approach, respectively. The en-
try “Free” denotes the sum of the zero- and one-potential
terms �this part is the same in both methods�, “Subtraction”

TABLE I. Individual contributions to the one-loop self-energy correction for the 1s state, in units of
F�Z��. “A” denotes the new subtraction scheme, whereas “B” indicates the standard potential-expansion
approach.

Z=5 Z=10 Z=92

A B A B A B

Free −767.728001 −767.7280 −184.021481 −184.02148 −0.171545 −0.171545

Subtraction 30.582424 11.527613 0.290350

���=1 739.691981 759.8308 175.775040 183.50551 1.371144 1.632207

2 3.435185 8.8559 1.260600 3.33931 −0.001514 0.012042

3 0.227353 2.2995 0.094384 0.86390 0.001728 0.008313

4 0.029960 1.0284 0.012972 0.36777 0.000469 0.003806

5 0.007001 0.5682 0.002982 0.19345 0.000155 0.001988

6 0.002592 0.3520 0.001033 0.11457 0.000062 0.001158

7 0.001246 0.2347 0.000457 0.07333 0.000029 0.000731

8 0.000682 0.1648 0.000231 0.04960 0.000015 0.000490

9 0.000403 0.1202 0.000127 0.03499 0.000008 0.000344

10 0.000250 0.0904 0.000073 0.02552 0.000005 0.000251

11 0.000162 0.0697 0.000044 0.01912 0.000003 0.000188

12 0.000108 0.0548 0.000028 0.01465 0.000002 0.000145

13 0.000074 0.0438 0.000018 0.01144 0.000001 0.000114

14 0.000052 0.0355 0.000012 0.00908 0.000001 0.000091

15 0.000037 0.0292 0.000008 0.00732 0.000001 0.000074

����=16
35 0.000115 0.1678 0.000020 0.03882 0.000002 0.000420

����=36
� �extr.� 0.000003�2� 0.034�3� 0.000001�1� 0.0072�4� 0.000000 0.000099�3�

Total 6.251627�2� 6.252�3� 4.654162�1� 4.6541�4� 1.490916 1.490916�3�
Ref. �6� 6.251627�8� 4.6541622�2� 1.4909160�3�
Behavior 30/ ���5 100/ ���3 100/ ���6 25/ ���3 0.5/ ���5 0.25/ ���3
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stands for the many-potential subtraction term �Emany
sub �ab-

sent in the standard approach�, whereas the individual
partial-wave expansion contributions correspond to the
many-potential remainder term �Emany

remd and to the many-
potential term �Emany in the “A” and “B” schemes, respec-
tively. The entry “Behavior” indicates the approximate de-
pendence of the terms of the partial-wave expansion on ��� in
the region of interest, i.e., for ���=10–30. The numbers in
parentheses represent the uncertainties in the last digit. If no
uncertainties are indicated, numerical values are believed to
be accurate to all digits specified. Our results obtained within
the two approaches are compared with the numerical values
by Mohr �6�.

The comparison of the data listed in the tables demon-
strates that the additional subtraction introduced in this work
leads to a significant improvement of the convergence prop-
erties of the partial-wave expansion in all the cases studied.
It also indicates that this approach is applicable for the evalu-
ation of the self-energy correction in the low-Z region, where
the standard potential-expansion approach fails to yield ac-
curate results.

In the low-Z region, one has to deal with numerical can-
cellations between individual contributions to the self-energy
correction. The origin of these cancellations are spurious
terms of order ��Z��2ln Z� that appear in the Feynman
gauge when the self-energy correction is separated into the
zero, one, and many-potential terms �15� and that have to be
canceled numerically in order to obtain the physical contri-

bution to order ��Z��4. In our approach, the numerical inte-
grations can be relatively easily performed up to a sufficient
accuracy, so that the numerical cancellations do not pose any
serious problems. Even in the most difficult case, Z=1, the
present numerical scheme yields a result with a reasonable
accuracy, F1s�1��=10.31685�10�, which is in a good agree-
ment with the most precise value by Jentschura et al. �11�,
F1s�1��=10.316793650�1�.

In Table IV we present the numerical results for the self-
energy correction in the region that was not previously tabu-
lated in the literature, 5�Z�10, and compare our numerical
values for Z=5 and 10 with evaluations by other authors. It
is noteworthy that unlike the previous calculations summa-
rized in Table IV, our evaluation is computationally very
cheap. The time of the calculation for one value of Z is less
than 1 h on a modern personal computer. This feature makes
the present approach very promising for extensions to the
higher-order self-energy corrections.

To sum up, we have developed a highly efficient scheme
for the evaluation of the one-loop self-energy correction
for an electron bound in a symmetric local potential
�not necessarily the Coulomb one�. The approach presented
inherits the attractive features of the standard potential-
expansion method but yields a much better convergence
rate for the resulting partial-wave expansion. As a result,
the applicability of the potential-expansion method is
extended into the region of large values of the parameter
n3 / �Z��2. We expect that the approach developed will

TABLE II. The same as Table I, but for the 2s state.

Z=5 Z=10 Z=92

A B A B A B

Free −1457.418809 −1457.4188 −356.528846 −356.5288 −1.962337 −1.962337

Subtraction 31.058101 11.890558 0.275605

���=1 1410.715203 1429.1466 339.733982 346.7984 3.548480 3.796632

2 16.099356 20.3423 6.979535 8.5642 0.228968 0.201262

3 3.688342 5.4752 1.722985 2.3950 0.073832 0.078764

4 1.379780 2.5818 0.646882 1.1191 0.023291 0.034477

5 0.563792 1.5028 0.263506 0.6433 0.007670 0.017634

6 0.233686 0.9791 0.108871 0.4140 0.002586 0.010043

7 0.096744 0.6851 0.044967 0.2863 0.000889 0.006184

8 0.039919 0.5039 0.018535 0.2081 0.000312 0.004042

9 0.016454 0.3845 0.007645 0.1571 0.000114 0.002770

10 0.006808 0.3019 0.003174 0.1220 0.000044 0.001972

11 0.002852 0.2425 0.001340 0.0969 0.000018 0.001449

12 0.001228 0.1985 0.000585 0.0785 0.000008 0.001094

13 0.000555 0.1650 0.000270 0.0645 0.000004 0.000845

14 0.000271 0.1390 0.000136 0.0538 0.000003 0.000665

15 0.000147 0.1184 0.000076 0.0453 0.000002 0.000533

����=16
35 0.000400 0.8396 0.000207 0.2978 0.000005 0.002851

����=36
� �extr.� 0.000036�10� 0.35�8� 0.000011�7� 0.082�10� 0.000000 0.00062�3�

Total 6.484865�10� 6.54�8� 4.894417�7� 4.898�10� 2.199494 2.19949�3�
Ref. �6� 6.4848�2� 4.89445�6� 2.1994938�3�
Behavior 5 / ���4 100/ ���2.5 10/ ���4.5 40/ ���2.5 10/ ���5 2 / ���3
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allow one to significantly improve accuracy of evaluations
of the self-energy correction to the hyperfine splitting and
of the screened self-energy correction in the low-Z region
and could be also applied for higher-order self-energy
corrections.
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APPENDIX: INTEGRALS OVER THE VIRTUAL PHOTON
ENERGY IN THE SUBTRACTION TERM

The integral over � in Eq. �23� can be expressed as a
linear combination of the basic integrals Ji,

TABLE III. The same as Table I, but for the 2p1/2 state.

Z=5 Z=10 Z=92

A B A B A B

Free −1520.728283 −1520.7283 −377.853426 −377.8534 −3.966890 −3.966890

Subtraction 14.376901 6.031862 0.094695

���=1 1481.688696 1483.5248 361.003647 361.8092 3.886215 3.910643

2 18.863382 21.1676 8.100485 9.1216 0.219596 0.221754

3 3.816241 5.8808 1.740929 2.6519 0.058070 0.074793

4 1.186255 2.8327 0.546763 1.2671 0.017578 0.032082

5 0.417922 1.6746 0.193629 0.7373 0.005943 0.016268

6 0.155297 1.1039 0.072407 0.4774 0.002214 0.009235

7 0.059471 0.7794 0.028021 0.3309 0.000913 0.005686

8 0.023323 0.5772 0.011192 0.2405 0.000420 0.003724

9 0.009401 0.4427 0.004654 0.1811 0.000215 0.002560

10 0.003945 0.3489 0.002053 0.1402 0.000122 0.001830

11 0.001764 0.2811 0.000985 0.1109 0.000074 0.001350

12 0.000866 0.2304 0.000528 0.0893 0.000048 0.001024

13 0.000479 0.1917 0.000318 0.0730 0.000033 0.000794

14 0.000300 0.1615 0.000212 0.0605 0.000023 0.000628

15 0.000209 0.1375 0.000153 0.0507 0.000016 0.000505

����=16
35 0.000928 0.9610 0.000668 0.3203 0.000054 0.002747

����=36
� �extr.� 0.00013�3� 0.32�8� 0.00008�2� 0.079�10� 0.000002 0.00061�3�

Total −0.12277�3� −0.11�8� −0.11484�2� −0.113�10� 0.319341 0.31934�3�
Ref. �6� −0.1228�2� −0.11483�4� 0.3193408�4�
Behavior 2 / ���3.5 130/ ���2.5 7 / ���4 200/ ���3 10/ ���5 2 / ���3

TABLE IV. One-loop self-energy correction, in terms of F�Z��.

Z 1s 2s 2p1/2 2p3/2 Ref.

5 6.251627�2� 6.484865�10� −0.12277�3� 0.12564�4�
6.251627�8� 6.4848�2� −0.1228�2� 0.1256�1� �6�
6.251627078�1� 6.48486042�1� −0.12277494�1� 0.12562330�1� �11�
6.251620�3� �14�

6 5.817887�1� 6.052312�10� −0.12143�3� 0.12643�4�
7 5.4580261�8� 5.693756�10� −0.11995�3� 0.12731�3�
8 5.1520291�8� 5.389169�9� −0.11835�3� 0.12827�3�
9 4.8870042�8� 5.125656�8� −0.11665�2� 0.12929�4�
10 4.6541624�8� 4.894417�7� −0.11484�2� 0.13036�4�

4.6541622�2� 4.89445�6� −0.11483�4� 0.13036�2� �6�
4.6541619�1� 4.8944444�6� −0.114852�2� 0.1303507�3� �14�
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Ji = i�
CH

d�f i���exp��i��� − c�x12� , �A1�

where c=	1− �−��2, CH= �0− i� ,0− i0�+ �0+ i0,0

+ i��, 0�0 is the parameter of the contour,  is either a or
a+�, and the functions f i are

f1��� = 1, �A2�

f2��� = x12
 − �

c
, �A3�

f3��� = c , �A4�

f4��� =  − � , �A5�

f5��� = x12
� − ��2

c
. �A6�

Let us evaluate, e.g., the integral J1. Introducing the new
variable y by �=0+ iy ��=0− iy� in the upper �lower� part
of the contour, we obtain

J1 = − 2 Re exp�i0x12�

� �
0

�

dy exp�− �y + 	1 + �y + i��2�x12� , �A7�

where �=−0. This integral is evaluated by introducing the
new variable

t = y + 	1 + �y + i��2 − 	1 − �2, �A8�

with the result

J1 = − Re exp��i0 − a�x12�

� 
 1

x12
+

1

z
− x12exp�zx12�E1�zx12� , �A9�

where a=	1−�2, z=a+ i�, and E1�z� is the exponential in-
tegral function. The results for other basic integrals are

J2 = − Im exp��i0 − a�x12�

� 
1 −
x12

z
+ x12

2 exp�zx12�E1�zx12� , �A10�

J3 = −
1

2
Re exp��i0 − a�x12�
 1

x12
2 +

z

x12
+

1

2z2 −
x12

2z

+ �2 +
x12

2

2
�exp�zx12�E1�zx12� , �A11�

J4 = −
1

2
Im exp��i0 − a�x12�
 1

x12
2 +

z

x12
−

1

2z2 +
x12

2z

−
x12

2

2
exp�zx12�E1�zx12� , �A12�

J5 = −
1

2
Re exp��i0 − a�x12�
− 4i� −

1

x12
−

2

z
+ z −

x12

2z2

+
x12

2

2z

+ x12�2 −

x12
2

2
�exp�zx12�E1�zx12� . �A13�

All the expressions for the integrals Ji can readily be evalu-
ated numerically. A detailed description of an algorithm for
the computation of the exponential integral function of a
complex argument can be found in Ref. �14�.
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