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We derive the optimal input states and the optimal quantum measurements for estimating the unitary action
of a given symmetry group, showing how the optimal performance is obtained with a suitable use of entangle-
ment. Optimality is defined in a Bayesian sense, as minimization of the average value of a given cost function.
We introduce a class of cost functions that generalizes the Holevo class for phase estimation, and show that for
states of the optimal form all functions in such a class lead to the same optimal measurement. As a first
application of the main result is the complete proof of the optimal efficiency in the transmission of a Cartesian
reference frame. As a second application, we derive the optimal estimation of a completely unknown two-qubit
maximally entangled state, provided that N copies of the state are available. In the limit of large N, the fidelity
of the optimal estimation is shown to be 1−3/ �4N�.
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I. INTRODUCTION

Many of the most surprising advantages offered by the
new technology of quantum information �1� arise from the
concept of quantum entanglement. Computational speedup
�2,3�, quantum teleportation �4� and dense coding �5�, secure
protocols in cryptography �6�, and precision enhancement in
quantum measurements �7,8� are just a short summary of
some of the main lines of research inspired by entanglement.

After such a promising list, it is natural to expect remark-
able improvements coming from entanglement also in the
context of quantum estimation theory �9,10�, in particular in
the typical problem of estimating an unknown physical trans-
formation drawn from a given set. With a heuristic argument
inspired by dense coding, we could expect that the accuracy
in the discrimination of a set of quantum channels can be
increased by letting them act locally on a fixed side of a
maximally entangled state. Even more, one is tempted to
guess that a maximally entangled state is the optimal input
for the estimation of an unknown black box. Even though
these are both reasonable conjectures, in general they turn
out to be false: for example, a maximally entangled input
state is always useless—and often suboptimal—for the dis-
crimination of two unitary transformations �7,11�. The ques-
tion then arises: is it really possible to make some general
statement about the role of entanglement in the optimal esti-
mation of an unknown transformation?

In this paper we will answer this question in the covariant
case, which corresponds to the estimation of unitary trans-
formations randomly picked out from a given representation
of some group. To face the problem, we will choose the

Bayesian approach, assuming a uniform a priori distribution
for the unknown group parameters, and defining optimality
as the minimization of the average value of a given cost
function. Within the Bayesian framework, some results about
the optimality of maximally entangled states have been pre-
sented in �7,12�. Other results in the same direction have
been derived in �13,14� within a different approach based on
the quantum Cramér-Rao bound. However, all the mentioned
results are limited to particular cases, and their extension to
arbitrary representations of arbitrary groups is not straight-
forward.

Another nontrivial question is which kind of entangle-
ment is really useful for the estimation of group transforma-
tions? In Ref. �12�, the estimation of unitary transformations
Ug in SU�d� in the form Ug

�N, was considered corresponding
to N copies of the same unknown black box. The result is
that the optimal performance can be attained by entangling
the N d-level systems that undergo the unknown transforma-
tion with another set of N d-level systems playing the role of
a reference system. However, as pointed out in Ref. �15�, the
entanglement with an additional set of N reference systems
actually is not needed: what really matters is something more
subtle, namely, the entanglement between spaces where the
action of the group is irreducible and spaces where the action
of the group is trivial. In the language of group theory, what
is needed is maximal entanglement between representation
spaces and multiplicity spaces. This kind of entanglement
can be obtained not only by adding an external reference
system as in �12�, but also via the use of the multiple equiva-
lent representations that appear in the Clebsch-Gordan de-
composition of the representation �Ug

�N�.
The concept of entanglement between representation

spaces and multiplicity spaces will be the protagonist of this
paper. In the following, we derive the optimal scheme for
estimating an unknown group transformation, showing how
this kind of entanglement allows one to achieve the ultimate
precision limits allowed by quantum mechanics. To do this,
we introduce a class of cost functions that generalize the
well-known Holevo class for phase estimation �10�, and

*Electronic address: chiribella@unipv.it
†Also at Center for Photonic Communication and Computing, De-

partment of Electrical and Computer Engineering, Northwestern
University, Evanston, IL 60208. Electronic address:
dariano@unipv.it

‡Electronic address: msacchi@unipv.it

PHYSICAL REVIEW A 72, 042338 �2005�

1050-2947/2005/72�4�/042338�10�/$23.00 ©2005 The American Physical Society042338-1

http://dx.doi.org/10.1103/PhysRevA.72.042338


show that all functions in such a class lead to the same op-
timal measurement. We give also an explicit expression for
the average cost so that the optimization of the estimation
scheme is reduced to a simple eigenvalue problem.

In Sec. II, before starting the analysis about optimal esti-
mation strategies, we introduce the notation �Sec. II A� and
some group theoretical tools �Sec. II B� that will be exploited
throughout the paper. In Sec. III, we present the problem of
estimating an unknown group transformation �Sec. III A�,
introducing a generalization to arbitrary groups of the
Holevo class of cost functions �Sec. III B�. The optimal input
states are then derived �Sec. III C�, and the entanglement
between representation and multiplicity spaces is recognized
to be the basic resource for an optimal estimation strategy. In
order to find the optimal measurement for the estimation of a
group transformation, we show in Sec. III D how the special
form of the optimal input states reflects on the covariance
properties of the optimal measurement. Exploiting this
analysis, we will show in Sec. III E that, for input states of
the optimal form, all cost functions in the generalized
Holevo class lead to the same optimal measurement. Finally,
Sec. IV is devoted to applications of the general results. Our
first application �Sec. IV A� is the optimality proof of the
protocol �15� for the absolute alignment of two reference
frames. As a second application, we derive �Sec. IV B� the
optimal estimation of a completely unknown two-qubit
maximally entangled state with N identical copies of the
state. Section V concludes the paper, while the most techni-
cal proofs are provided in the Appendix.

II. THEORETICAL TOOLS

A. Notation for bipartite states

A simple notation can be introduced to deal with bi-
partite states. Given two Hilbert spaces HA and HB, and
fixed two orthonormal bases BA= ���n� �n=1,… ,dA� and
BB= ���n� �n=1,… ,dB� for HA and HB, respectively, it is
possible to associate in a one-to-one way any vector �C��
�HA � HB with an operator C�B�HB ,HA� via the relation
�16�

�C�� = 	
m,n


�m�C��n���m���n� . �1�

With this notation, one has the simple relations



C�D�� = Tr�C†D� �2�

and

A � B�C�� = �ACBT�� , �3�

for any A�B�HA� and B�B�HB�, where the transposition
T is defined with respect to the fixed bases. Such relations
allow us to greatly simplify the calculation involving en-
tangled states, and will be extensively used throughout the
paper.

B. Elements of group theory

Here we recall some simple tools of group theory �17�
that will be exploited throughout the paper.

Suppose we are given a Hilbert space H and a unitary
representation R�G�= �Ug�B�H� �g�G� of a compact Lie
group G. The Hilbert space can be decomposed into orthogo-
nal subspaces in the following way:

H � �
��S

H� � Cm�, �4�

where the sum runs over the set of irreducible representa-
tions of G that appear in the Clebsch-Gordan decomposition
of R�G�. The action of the group is irreducible in each rep-
resentation space H�, while it is trivial in the multiplicity
space Cm�, namely

Ug � �
��S

Ug
�

� 1m�
, �5�

1d denoting the identity in a d-dimensional Hilbert space.
The projection �� onto the subspace H� � Cm� is given by
the integral formula

�� = d�� dg ��*�g�Ug, �6�

where dg denotes the normalized invariant Haar measure
�dg=d�kg�=d�gk� for any k ,g�G�, d��dim�H��, and
���g��Tr�Ug

�� is the character of the irreducible representa-
tion �. Note that here we are considering G as a continuous
group only for fixing notation; nevertheless-here and all
throughout the paper-G can have a finite number of ele-
ments, say �G�, and in this case we have simply to replace
integrals with sums and dg with 1/ �G�.

Moreover, any operator O�B�H� in the commutant of
R�G�-i.e., such that �O ,Ug�=0 ∀ g�G-has the form

O = �
��S

1d�
� O�, �7�

where O� is an m��m� complex matrix. In particular, the
group average 
A�G�dg UgAUg

† of a given operator A with
respect to the invariant Haar measure is in the commutant of
R�G�, and has the form


A�G = �
��S

1d�
�

1

d�

TrH�
�A� , �8�

where TrH�
�A� is a short notation for TrH�

���A ��� ,��

being the projection onto H� � Cm�. Here and throughout the
paper we assume the normalization of the Haar measure
Gdg=1.

Remark 1: Entanglement between representation spaces
and multiplicity spaces. The choice of an orthonormal basis
B�= ���n

���Cm� �n=1,… ,m�� for a multiplicity space fixes
a particular decomposition of the Hilbert space as a direct
sum of irreducible subspaces:

H� � Cm� = �
n=1

m�

Hn
�, �9�

where Hn
��H� � ��n

��. In this picture, it is clear that m� is
the number of different irreducible subspaces carrying the
same representation �, each of them having dimension d�.
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Moreover, with respect to the decomposition �4�, any pure
state ����H can be written as

��� = �
��S

c������ , �10�

where ����� is a bipartite state in H� � Cm� and 	��S�c��2
=1. With respect to the direct sum decomposition �9�, the
Schmidt number of such a state is the minimum number of
subspaces carrying the same representation ��S that are
needed to decompose ���.

Remark 2: Maximum number of equivalent representa-
tions in the decomposition of a pure state. The Schmidt num-
ber of any bipartite state ������H� � Cm� is always less
than or equal to k�=min�d� ,m��. This means that any pure
state can be decomposed using no more than k� irreducible
subspaces carrying the same representation ��S.

III. OPTIMAL ESTIMATION OF GROUP
TRANSFORMATIONS

A. Background problem

Suppose we are given a black box that performs on a
system S an unknown unitary transformation Ug randomly
drawn from a group representation R�G�. In order to esti-
mate the transformation Ug, we can prepare the system in an
input state �S, send it through the black box, and try to esti-
mate the parameter g from the output state

�g
S � Ug�SUg

†. �11�

More generally, we can also exploit an additional reference
system R and prepare an entangled state �SR, so that the
output state becomes

�g
SR � �Ug � 1R��SR�Ug

†
� 1R� . �12�

Our task is to find the best input states and the best estima-
tion strategies allowed by quantum mechanics to determine
the parameter g. Since we are interested in ultimate in-
principle limits, we assume complete freedom in preparing
any physical state and in realizing any quantum measure-
ment. This means that we are allowed to choose the state �SR

with minimal stability group, reducing the set of unitaries
that are not discriminable to those that differ just by a phase
factor. Therefore, the stability group can be only a �non-
trivial� center for G, made of multiples of the identity, cor-
responding to �a subgroup of� U�1�. The quotient group is
then a group itself, and in the following we will use the same
symbol G for such a quotient group. Notice that the require-
ment of the central stability group U�1� is satisfied by choos-
ing the state �SR as pure, and with maximal Schmidt number.

The most general estimating strategy allowed by quantum
mechanics, including both quantum measurements and clas-
sical data processing, can be described by a positive operator
valued measure �POVM� M that associates with any estimate
ĝ�G a positive semidefinite operator M�ĝ�, satisfying the
normalization condition

�
G

dg M�g� = 1 . �13�

The probability density of the estimate ĝ in the state �g is
given by the usual Born rule:

p�ĝ�g� = Tr��gM�ĝ�� . �14�

In this paper, the estimation problem will be faced in the
Bayesian setting with prior uniform probability density dg,
and the optimal estimation will be defined as the one that
minimizes the average value of a given cost function c�ĝ ,g�
that associates with any estimate ĝ a cost which increases
versus the “distance” of ĝ from the true value g. The average
of the cost function over the prior and the conditional prob-
ability distributions will be given by


c� =� dg� dĝ c�ĝ,g�p�ĝ�g� . �15�

B. A generalized Holevo class of cost functions

We will make two assumptions on the form of the cost
function c�ĝ ,g�.

First assumption. We require c to be group invariant,
namely,

c�ĝ,g� = c�kĝ,kg� ∀ ĝ,g,k � G �16�

�left invariance�, and

c�ĝ,g� = c�gk, ĝk� ∀ ĝ,g,k � G �17�

�right invariance�. By using Fourier analysis, one can prove
�see the Appendix � that this assumption is equivalent to the
expansion

c�ĝ,g� = 	
	

a	�	*�ĝg−1� , �18�

where �	�g��Tr�U	�g�� is the character of the irreducible
representation 	, and the coefficients a	 satisfy the identity
a	

* =a	* ∀ 	, in order to have a real cost function.
Second assumption. We require all nonzero coefficients a	

in the expression �18� to be negative, with the only exception
of the coefficient a	0

corresponding to the trivial representa-
tion U	0�g�=1 ∀ g, which is allowed to be positive �the 	0

term just adds a trivial constant to the cost function, since
�	0�g�=1 ∀ g�.

The class of functions that satisfies our two assumptions
is a direct generalization of the class of cost functions intro-
duced by Holevo for the estimation of phase shifts �10�. In
fact, such functions have the form

c��̂ − �� = 	
k�Z

ake
−ik��̂−��, �19�

where ak
0 for any k�0, and eik� is the character of the
unidimensional representation labeled by k.

C. Optimal choice of the input state

Since the average cost �15� is a linear functional of the
input state �, in the optimization problem we can restrict
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attention to pure input states �= ���
��. Then the problem
becomes equivalent to the optimal discrimination problem of
states in the orbit

O = ���g� � Ug��� �g � G� �20�

generated from ��� by the action of the representation R�G�.
Let us consider the Clebsch-Gordan decomposition �5� of

the unitaries Ug. From now on we will assume the algebraic
condition

m� = d� ∀ � � S . �21�

Lemma 1. The assumption �21� can be mode without any
loss of generality.

Proof. Suppose d��m� for some representation �. In this
case, we can introduce a reference system R whose dimen-
sion is

dR � max
��S

� d�

m�
� , �22�

and replace Ug with its extension Ug�=Ug � 1R, acting in the
tensor product Hilbert space H � HR. In this way, Ug� will
satisfy the condition m�� �m��dR�d� ∀ �. On the other
hand, as already mentioned at the end of Sec. II B, any pure
state ��� can be decomposed in the form �10� with no more
than k�=min�d� ,m�� irreducible subspaces for any �.
Therefore, we can switch our attention from the whole Hil-

bert space H � HR= � �H� � Cm�� to the invariant subspace
H�� � �H� � Cd�, which contains the input state ��� along
with its orbit �20�. In other words, without loss of generality
we can always consider an input state in the Hilbert space

H� = �
�

H� � Cd�, �23�

which can be thought of as embedded in a larger Hilbert
space H � HR. �

Remark 3. The need to add an external reference system
R arises only in the case when d��m� for some irreducible
representation �. In fact, the role of the reference system is
simply to increase the number of equivalent representations
until the extended Hilbert space H � HR reaches the thresh-
old m��d� ∀ �. This observation allows us to greatly re-
duce the dimension of the reference system with respect to
the customary estimation schemes inspired by dense coding,
with a reference system HR having the same dimension as
H.

Now we show that the best input state ��� for estimating
the group transformation of an unknown black box is a state
of the form �10�, with each ����� maximally entangled,
namely,

����� =
1

�d�
	
n=1

d�

��n
����n

�� , �24�

BA
�= ���n

�� �n=1,… ,d�� and BB
�= ���n

�� �n=1,… ,d�� being
Schmidt bases for H� and Cd�, respectively. Exploiting the
notation �1�-with fixed bases BA

� and BB
�-the optimal input

state ��� must have the form

��� = �
��S

c�

�d�

�W��� , �25�

with W��	n��n
��
�n

�� unitary operators.
Theorem 1 (optimal input states). With a suitable choice

of the coefficients �c��, any input state of the form �25�
achieves the minimum average cost.

Suppose that the minimum cost 
c�opt is achieved by
the input state ��= � �c����� along with the estima-
tion strategy described by the POVM M�g�. The operator
Kh� � ��1� � �d��W�

† Uh
���T� converts the orbit of an input

state �25� into the orbit of the optimal input state ��, since
using identity �3�, we have

Kh��g� = �gh� , �26�

where ��g�=Ug��� and �g�=Ug��. Consider now the
POVM M��g��dh Kh

†M�gh�Kh. The POVM M��g� is nor-
malized, since

� dg M��g� =� dg� dh Kh
†M�gh�Kh =� dh Kh

†Kh = 1 ,

where we exchanged integrals over g and h, used invariance
of the Haar measure dg, and finally used Eq. �8� and the
normalization of bipartite states ���� in the form
Tr��

† ��=1. A state ��� of the form �25� along with the
POVM M��g� achieves the minimum cost. In fact,


c� =� dg� dĝ c�ĝ,g�
�g�M��ĝ���g�

=� dg� dĝ� dh c�ĝ,g�
gh�M�ĝh��gh�

=� dg� dĝ� dh c�ĝh,gh�
gh�M�ĝh��gh�

=� dk� dk̂ c�k̂,k�
k�M�k̂��k� = 
c�opt,

where we used right invariance of both cost function and
Haar measure. �

D. Covariance properties of the estimating POVM

Since the whole orbit �20� is generated from the input
state ��� by the action R�G� of the group, there is no loss of
generality in restricting attention to estimating the POVM of
the covariant form �10�

M�g� = Ug�Ug
† �27�

with � a suitable positive operator satisfying the normaliza-
tion condition �13�. A covariant POVM yields a left-invariant
probability distribution, namely, p�kĝ �kg�= p�ĝ �g� ∀ k , ĝ ,g
�G. Using the left invariance of both the probability distri-
bution and the cost function, the average cost �15� can be
written as
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c� =� dg c�g,e�p�g�e� �28�

where e is the identity element of the group G.
For superpositions of maximally entangled states as in Eq.

�25�, the orbit O enjoys an additional symmetry that reflects
on an additional covariance property of the POVM. In fact,
using the decomposition �5� and the identity �3�, we can note
that

��g� = Ug��� = �
��S

c�

�d�

�Ug
�

� 1���W���

= �
��S

c�

�d�

�1� � �W�
† Ug

�W��T��W���

= Vg
†��� ∀ g � G ,

where

Vg � �
��S

�1� � �W�
† Ug

�W��*� �29�

is an element of a new unitary representation R��G� of the
group G. Notice that the two representations R�G� and
R��G� commute among themselves. Then, the following
lemma holds.

Lemma 2. There is no loss of generality in assuming a
covariant POVM M�g�=Ug�Ug

† with

��,UgVg� = 0 ∀ g � G , �30�

where Ug and Vg are given in Eqs. �5� and �29�, respectively.
Proof. For any possible POVM N�g� there is a covariant

POVM with the above property and with the same average
cost. In fact, the group average

M�g� =� dk� dh Uk
†Vh

†N�kgh−1�VhUk �31�

is covariant—namely, M�g�=Ug�Ug
† with �=M�e�—and

satisfies the required commutation relation �30�. Both prop-
erties follow simply from the invariance of the Haar mea-
sure. To prove that the cost of the covariant POVM M�g� is
the same as the cost of N�g� we use the property

UkVh��g� = ��kgh−1� ∀ k,h,g � G �32�

of the states generated from the input �25�. In this way,


c�M �� dg� dĝ c�ĝ,g�
�g�M�ĝ���g�

=� dg� dĝ� dk� dh c�ĝ,g�
�kgh−1�N�kĝh−1�

���kgh−1� =� dg� dĝ� dk� dh c�kĝh−1,kgh−1�

� 
�kgh−1�N�kĝh−1���kgh−1�

=� dr� dr̂ c�r̂,r�
�r�N�r̂���r� � 
c�N,

where we used the left and right invariance of the cost func-
tion c�ĝ ,g�. �

Let us diagonalize the operator � and express its �non-
normalized� eigenvectors in the decomposition �4�:

� = 	
i=1

r

��i�
�i� = 	
i

�
�,�

�d�d����
i ��

��

i � , �33�

where the factor �d� has been inserted just for later conve-
nience.

Lemma 3. Any covariant POVM M�g�=Ug�Ug
† with the

commutation property �30� must satisfy the two relations

	
i

��
i†��

i = 1� ∀ � � S �34�

and

	
i

��
i ��

i† = 1� ∀ � � S . �35�

Proof. The normalization �13� becomes


��G �� dg Ug�Ug
† = 1 . �36�

The group average 
��G can be expressed using Eq. �8�. In
this way, Eq. �36� becomes

1

d�

TrH�
��� = 1� ∀ � � S . �37�

By explicit computation,

1

d�

TrH�
��� = 	

i

TrH�
����

i ��

��
i ��

= 	
i

��
iTTrH�

��1���

1�����
i* = 	

i

��
iT��

i*.

Substituting this expression in Eq. �37� and taking the com-
plex conjugate we get Eq. �34�. Moreover, using the commu-
tation relation �30�, we can transform the group average with
respect to R�G� into a group average with respect to R��G�,
namely,


��G =� dg Ug�Ug
†Vg

†�UgVg�Ug
† =� dg Vg

†�Vg.

In this way, using Eq. �29�, Eq. �35� can be proved along the
same lines used to prove Eq. �34�. �

E. The optimal POVM

We are now able to find the optimal covariant POVM for
the estimation of group transformation with superpositions of
maximally entangled states.

Theorem 2 (optimal POVM). In the estimation of the
states in the orbit O generated from the input state

��� = �
��S

c�

�d�

�W��� , �38�

where W� are unitary operators, the covariant POVM given
by �= ���
�� with

OPTIMAL ESTIMATION OF GROUP TRANSFORMATIONS… PHYSICAL REVIEW A 72, 042338 �2005�

042338-5



��� = �
��S

�d�ei arg�c���W��� �39�

is optimal for any cost function c�ĝ ,g� of the form

c�ĝ,g� = 	
	

a	�	*�ĝg−1� , �40�

with a	
0 ∀ 	�	0.
The average cost corresponding to the optimal estimation

strategy is


c�opt = a	0
+ 	

�,�
�c��C���c�� , �41�

where

C�� � 	
	�	0

a	m	
����, �42�

m	
���� being the multiplicity of the irreducible represent-

ation 	 in the Clebsch-Gordan series of the tensor product
Ug

�
� Ug

�*.
Proof. We will show that Eq. �41� gives a lower bound for

the average cost, and that the POVM �= ���
�� with ���
given by Eq. �39� achieves this bound. By using identities �2�
and �3�, and the form �33� for the operator �, Eq. �28� be-
comes


c� =� dg c�g,e�	
i

	
�,�

c�
* c�Tr�W�

† Ug
���

i
� W�

TUg
�*��

i*� .

Let us expand c�g ,e� as in �40�. Subtracting from the aver-
age cost 
c� the constant term a	0

, which is not relevant for
the optimization, we get


c� − a	0
= 	

i
	
�,�

c�
* c� 	

	�	0

a	

d	

Tr��	
�������

i W�
†

� ��
i*W�

T�� ,

where we defined

�	
���� � d	� dg �	*�g�Ug

�
� Ug

�*. �43�

According to Eq. �6�, �	
���� is the projection onto the direct

sum of all the subspaces of H� � H� that carry the irreduc-
ible representation 	 in the tensor product Ug

�
� Ug

�*. Clearly
�	

���� is nonzero if and only if the Clebsch-Gordan series of
Ug

�
� Ug

�* contains 	 with nonzero multiplicity m	
����. Notice

also that Tr��	
�����=d	m	

����, by definition of �	
����.

Denoting by 	�,�,	� the sum over � ,�, and all 	 except 	0,
the average cost can be bounded as follows:


c� − a	0
� 	

�,�,	

�
a	

d	
�c�c�	

i

Tr��	
�������

i W�
†

� ��
i*W�

T���
� 	

�,�,	

�
a	

d	

�c�c����	
i

Tr��	
�������

i ��
i†

� 1����
� ��	

j

Tr��	
�����1� � W�

* ��
jT��

j*W�
T��� ,

since all a	 are nonpositive. The second inequality

follows from the Cauchy-Schwartz inequality with re-
spect to the scalar product 
A ,B��	iTr�Ai

†Bi�, where we
take Ai

†=�	
�������

i W�
†

� 1�� and Bi= �1� � ��
i*W�

T��	
����. Ex-

ploiting the relations �34� and �35�, and using that
Tr��	

�����=d	m	
����, we obtain the bound


c� � a	0
+ 	

�,�,	
�a	m	

�����c�c�� � 
c�opt. �44�

It is straightforward to see that the choice of a covariant
POVM with �= ���
�� with ��� given by Eq. �39� achieves
this lower bound. �

F. Remarks

Remark 4. Up to the constant term a	0
, the minimum cost

�41� is simply given by the expectation value of the cost
matrix �42� over the normalized vector v���c���. Therefore
the optimal input state is obtained just by finding the eigen-
vector corresponding to the minimum eigenvalue of the cost
matrix. In other words, the optimal state for the estimation of
an unknown parameter is always a superposition of maxi-
mally entangled states, with the coefficients in the superpo-
sition modulated by the particular choice of the cost func-
tion. Notice the simplification of the optimization problem
provided by Theorem 2: instead of optimizing a state in the
Hilbert space H= � ��SH� � Cm� we need only to optimize
a vector in R�S�, where �S� is the number of irreducible rep-
resentations contained in the action of the black box.

Remark 5. The optimal POVM of Theorem 2 is the same
optimal POVM arising from the maximum likelihood crite-
rion �18,19�. In fact, this criterion corresponds to the particu-
lar choice of the 	 cost function

c�ĝ,g� = − ��ĝ,g� = − 	
	

d	�	�ĝg−1� ,

which is of the form �40�. In other words, in the case of
superpositions of maximally entangled states, the result of
Theorem 2 can be viewed as the extension of the maximum
likelihood approach of Ref. �18� to arbitrary cost functions.

Remark 6. In the optimization of covariant POVM’s it is
often assumed that the operator � corresponding to an opti-
mal estimation can be taken with unit rank. However, for
mixed states some counterexamples are known �20,21�, and
for pure states there is no general proof that the POVM mini-
mizing the average Bayes cost can be chosen with rank 1.
Therefore, it is important to emphasize that here the rank-1
property of the optimal POVM of Theorem 2 is a result of
the derivation, not an assumption.

IV. APPLICATIONS

A. Optimal transmission of reference frames

The result of Theorem 2 can be exploited to give the
definitive proof of optimality of the protocol for the absolute
transmission of a Cartesian reference frame of Ref. �15�,
which concludes a long debate about the optimal way of
communicating a reference frame �22�. Such a protocol al-
lows two distant parties, Alice and Bob, to align their Carte-
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sian axes in an absolute way, i.e., without the need of any
kind of prior information about their relative orientations.
For this purpose, Alice sends to Bob N spin-1

2 particles, pre-
pared in some fixed state. The preparation procedure of the
state is related to the directions of Alice’s Cartesian axes: for
example Alice can align the angular momenta of some par-
ticles with her x-axis, some with her y-axis, and so on. When
Bob receives the particles, since his axes are mismatched
with Alice’s ones, each particle appears rotated by the same
unknown rotation. Then, instead of receiving the particles in
the same state prepared by Alice, Bob receives them in a
rotated state. Clearly, if he knows how the state should look
in absence of rotations, he can try to estimate the difference,
i.e., he can estimate the unknown rotation, inferring in this
way the directions of Alice’s axes. The precision of this
scheme is defined in a Bayesian way, by taking as cost func-
tion the transmission error, i.e., the distance between the
directions of Alice’s axes and Bob’s axes at the end of the
protocol. In terms of the estimated rotation ĝ and the true one
g, the transmission error can be written as �15�

e�ĝ,g� = 6 − 2�1�ĝg−1� , �45�

where �1�g��Tr�Ug
1� is the character of the three-

dimensional irreducible representation of the rotation group.
It is immediate to see that the transmission error is a cost
function the form �40�.

What is the best precision that can be achieved with the
mentioned protocol? To answer this question we need to
solve two problems: the first is to find what is the optimal
state for encoding rotations, and the second is to find the
optimal estimation strategy. It is important to stress that,
since we want to achieve an absolute transmission, we are
not allowed to use an external reference system, whose role
would correspond to a partially shared reference frame �15�.
For this reason we are allowed only to exploit the entangle-
ment coming from the multiple equivalent representations
that appear in the Clebsch-Gordan series of Ug

�N, where Ug is
the SU�2� matrix that represents the rotation g in the two-
dimensional Hilbert space H of a single spin-1

2 particle.
The tensor product Hilbert space H�N can be decomposed

as in Eq. �4�:

H�N = �
j=0 �1/2�

N/2

H j � Cmj . �46�

The irreducible representations are labeled by the quantum
number j of the total angular momentum, which ranges from
0� 1

2
� to N /2 for N being even �odd�, respectively. The dimen-

sion of the representation space H j is

dj = 2j + 1, �47�

while the multiplicities are given by �15,23�

mj =
2j + 1

N/2 + j + 1
� N

N/2 + j
� . �48�

Since mj �dj for any j�N /2, it is possible to have maximal
entanglement between representation spaces and multiplicity
spaces for any j, with the only exception of j=N /2.

However, as shown in �15�, the contribution of the sub-
space with j=N /2 is negligible in the asymptotic limit of
large N. Therefore we can restrict ourselves to the subspace
H�= � j=0 �1/2�

N/2−1 H j � Cmj, and consider the state

�A�� = �
j=0 �1/2�

N/2−1
cj

�dj

�1 j�� . �49�

According to Theorem 1 and to the result of �12�, this is the
optimal state in the subspace H� for the estimation of an
unknown SU�2� rotation.

Now we can use Theorem 2 to state that the optimal es-
timation strategy is described by the covariant POVM given
by �= ���
�� with

��� = �
j=0 �1/2�

N/2−1

�dj�1 j�� . �50�

The optimization of the coefficients cj in the state �49� has
been done in �15�, where the POVM �50� was assumed by
exploiting for simplicity the maximum likelihood approach.
In this way, the results of Theorems 1 and 2 provide the
optimality proof for the protocol proposed in Ref. �15�.
Therefore, we can definitely state that the asymptotic preci-
sion


e� =
8�2

N2 �51�

is the best that can be achieved for all input states and all
POVM’s, namely, it is the ultimate precision limit imposed
by quantum mechanics in the absolute alignment of two Car-
tesian reference frames.

B. Optimal estimation of a completely unknown maximally
entangled state

Maximally entangled states are a fundamental resource
for quantum teleportation �4� and for quantum cryptography
�6�. To achieve ideal teleportation, Alice and Bob must know
with precision which maximally entangled state they are
sharing, otherwise the fidelity of the state received by Bob
with the original state from Alice can be lowered. Similar
arguments apply to cryptographic schemes where the corre-
lations arising from entanglement are exploited to generate a
secret key.

Now we will consider the problem of estimating in the
best way a completely unknown maximally entangled state,
provided that N identical copies are available. This can be
done as an application of Theorem 2. Let us consider a state
�����H � H, with dim�H�=d. In terms of the notation �1�,
this state is maximally entangled if and only if �= �1/�d�U,
where U is some unitary operator. Using property �3�, any
maximally entangled state can be written as

��g�� =
1
�d

�Ug � 1��1�� , �52�

where Ug is an element of the group SU�d�.
If N identical copies of the unknown state ��g� are given,

then the problem becomes to find the best estimate for pa-
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rameter g that labels the states of the form ��g��= ��g���N.
Optimality is defined here in terms of maximization of the
Uhlmann fidelity between the true state and the estimated
one:

f�ĝ,g� = �

�g��ĝ���2. �53�

Using the definition �52� and the property �2�, we obtain

f�ĝ,g� =
1

d2 ���ĝg−1��2. �54�

where ��g�=Tr�Ug�. The maximization of the fidelity corre-
sponds to the minimization of the cost function

c�ĝ,g� = 1 − f�ĝ,g� , �55�

which is of the form �40�. In particular, for d=2, ���g��2=1
+�1�g�, where �1�g�=Tr�Ug

1� is the character of the irreduc-
ible representation of SU�2� with angular momentum
j=1,whence we have

c�ĝ,g� =
1

4
�3 − �1�g−1ĝ�� . �56�

All the states of the form ��g�= ��g���N are generated
from the input state

��� =
1

�dN
�1���N �57�

by the action of the representation

R�G� = ��Ug � 1��N�Ug � SU�d�� . �58�

Now we need to know how the input state is decomposed
with respect to the invariant subspaces of this representation.

Lemma 4. Using suitable bases for the muliplicity spaces
in decomposition �4�, the input state �57� can be written as

��� = �
��S

c�

�d�

�1��� , �59�

where the sum runs over the irreducible representations of
SU�d� occurring in the Clebsch-Gordan series of R�G� �58�,
and

c� =�d�m�

dN , �60�

d� and m� being, respectively, the dimension and the multi-
plicity of the representation � in the Clebsch-Gordan series
of �Ug

�N�.
Proof. See the Appendix .
Thank to this lemma we can exploit directly the result of

Theorem 2 to calculate the average fidelity. Now we will
carry on the calculation of the optimal fidelity in the simplest
case d=2. As usual, the irreducible representations of SU�2�
are labeled by the quantum number j, ranging from 0 � 1

2
� to

N /2 for N being even �odd�, respectively. The minimum cost
can be evaluated using Theorem 2 as


c�opt =
3

4
+ 	

i,j=0 �1/2�

N/2

�ci�Cij�cj� . �61�

Using Eq. �60� with the values of dimensions and multiplici-
ties given by �47� and �48�, the coefficients of the state be-
come

ci = g�i�� 1

2N� N

N/2 + i
� , �62�

where

g�i� =
2i + 1

�N/2 + i + 1
. �63�

On the other hand, the matrix Cij is calculated according to
the definition �42�, namely, by evaluating the multiplicity of
the representation with angular momentum k=1 in the
Clebsch-Gordan series of the tensor product Ug

i
� Ug

j* . In
this way we get

Cij = −
1

4
��i,j + �i,j+1 + �i,j−1� . �64�

Since 	i�ci�2=1, we have


c� =
1

2
�1 − 	

j=0 �1/2�

N/2−1

cjcj+1� . �65�

To obtain the asymptotic behavior of the optimal fidelity,
we can approximate the binomial distribution in Eq. �62�
with a Gaussian G	�x� with mean x̄=0 and variance
	2=N /4. Since the sum in Eq. �65� runs over a large interval
with respect to 	, we can also approximate it with an integral
over �0, +�� . All these approximations hold up to order
higher than 1/N. Thus the evaluation of the optimal fidelity
is reduced to the evaluation of the integral

I = �
0

�

dx g�x�g�x + 1�G	�x� , �66�

whose leading order can be obtained from Taylor expansion.
In this way, we derive the asymptotic cost


c�opt =
3

4N
, �67�

corresponding to the optimal fidelity


f�opt = 1 −
3

4N
. �68�

Remarkably, the Bayes cost with uniform a priori distribu-
tion has the same asymptotic behavior as the cost of the
optimal locally unbiased estimator obtained in �14�, for any
possible value g of the true parameter. This means that in the
present unbiased case the covariant measurement of Theo-
rem 2 is optimal not only on average but also pointwise.
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V. CONCLUSIONS

In this paper we solved the general problem of optimal
estimation of group transformations in the Bayesian frame-
work with uniform prior. For this purpose, we introduced a
class of cost functions generalizing the Holevo class for
phase estimation, containing the maximum likelihood strat-
egy as a special case. For this family of cost functions, we
derived the general form of the optimal input states, which
involves maximal entanglement between representation and
multiplicity spaces of the group action. More precisely, the
form of an optimal input state is a direct sum of maximally
entangled states, and for a given cost function one only needs
to optimize the coefficients in the sum. Moreover, for any
state of the optimal form all invariant cost functions lead to
the same optimal POVM. In this way, it is possible to derive
an explicit expression for the average cost and to reduce the
optimization of the state to a simple eigenvalue problem. As
applications of the general result we have given a complete
derivation of the ultimate precision limit imposed by quan-
tum mechanics in the absolute alignment of two Cartesian
reference frames, and we have derived the optimal estima-
tion of a completely unknown two-qubit maximally en-
tangled state with N copies of the state. In the present paper
we focused attention on compact groups and finite-
dimensional Hilbert spaces; nevertheless an extension of our
results to infinite-dimensional Hilbert spaces and noncom-
pact groups is possible, in the same way as in �19�. However,
since in infinite dimension the optimal states may be non-
normalizable, one has to approximate them with physical
states by fixing additional constraints such as, typically, the
energy constraint.
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APPENDIX

1. Invariant cost functions

In this section we prove the form �18� of any invariant
cost function.

Proposition 1. The following integral formula holds:

� dg Ug
�

� Ug
�* = ���

�1���

1��
d�

. �A1�

Proof. Using Eq. �6�, we recognize in the left-hand side
�LHS� the projection onto the subspace of H� � H� that car-
ries the trivial representation in the Clebsch-Gordan decom-
position of Ug

�
� Ug

�*. Using the orthogonality of characters,
one can prove that such a tensor product contains the trivial
representation if and only if �=�. Moreover, if �=�, then
the multiplicity of the trivial representation is 1. Using the
property �3�, we see that the vector �1��� is invariant under
Ug

�
� Ug

�*. Therefore the RHS is the projection onto the one-

dimensional invariant subspace that carries the trivial repre-
sentation, whence it coincides with the LHS �

Proposition 2. Any invariant function c�ĝ ,g� has the form

c�ĝ,g� = 	
�

a����g−1ĝ� , �A2�

where ���g��Tr�Ug
��.

Proof. For each irreducible representation �, consider the
matrix elements uij

��g��
�i
��Ug

��� j
�� with respect to a fixed

basis B�= ���i
�� � i=1,… ,d�� for the representation space

H�. Since the collection of all these matrix elements is an
orthogonal basis for L2�G� �17�, we can expand the function
c�ĝ ,g� as

c�ĝ,g� = 	
�,�

	
i,j=1

d�

	
k,l=1

d�

aijkl
�� uij

��ĝ�ukl
�*�g� , �A3�

where the complex conjugate in ukl
�*�g� is for later conve-

nience. Now, the function c is both left and right invariant,
whence it coincides with its average c̄�ĝ ,g�
�dkdh c�kĝh ,kgh�. Using Proposition 1 and Eqs. �2� and
�3�, we obtain

c�ĝ,g� =� dk� dh c�kĝh,kgh�

= 	
�,�

	
i,j,k,l

aijkl
�� ���
�i

��
�k
��

�1���

1��
d�

��Uĝ
�

� Ug
�*�

�1���

1��
d�

�� j
����l

��

=
1

d�
2 	

�
	

i,j,l,k
aijkl

���ik� jlTr�Uĝg−1
� � = 	

�

a����g−1ĝ� ,

where a�� 1
d�

2 	i,jaijij
��. �

2. Decomposition of a product of maximally entangled
states

Here we give the proof for Lemma 4.
Proof. Consider the representation R�G�= ��Ug

� 1��N �Ug�SU�d��. It is convenient to order the 2N Hilbert
spaces in the tensor product H�2N in such a way that
the unitary operators act on the first N spaces, while the
identity operators act on the second N spaces. With this or-
dering, by defining HA�HB� the tensor product of the first
�second� N spaces, we have R�G�=RA�G� � 1B, where
RA�G���Ug

�N �Ug�SU�d�� is the N-fold tensor representa-
tion of SU�d�.

Let us decompose now the Hilbert space HA with respect
to the action of the representation RA�G�:

HA = �
�

H� � Cm�. �A4�

The tensor product HA � HB can be decomposed with respect
to R�G�=RA�G� � 1B as
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HA � HB = �
�

H� � CM�, �A5�

where the multiplicity has been increased to M�=m��dN,
since HB has been absorbed in the multiplicity spaces.

With respect to the factorization H�2N=HA � HB, the in-
put state ���= �1���N can be written as

��� =
1

�dN
�1�N�� , �A6�

where 1�N is the identity in HA�H�N�HB. Here we are
using notation �1�, with respect to the product basis B�N

for HA and HB ,B being a fixed basis for H. Now we want
to change the basis in HA, by switching from B�N to
B����BR

�
� BM

� , where BR
�����n

�� �n=1,… ,d���BM
�

����n
�� �n=1,… ,m��� is a basis for the representation �mul-

tiplicity� space in Eq. �A4�. One has

��� =
1

�dN
�

�
	
m=1

d�

	
n=1

m�

��m
��A��n

��A��m
�*�B��n

�*�B

=
1

�dN
�

�
	
m=1

d�

�m���m
����m

�� ,

where we defined the normalized vector

��m
�� �

1
�m�

	
n=1

m�

��n
����n

�*���n
�*� . �A7�

Therefore, exploiting notation �1� with respect to the bases
���m

��� and ���m
���, we can write

��� = �
�

�m�

dN �1��� . �A8�
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