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We prove that the entangling capacity of a two-qubit unitary operator without local ancillas, both with and
without the restriction to initial product states, as quantified by the maximum attainable concurrence, is directly
related to the distinguishability of a closely related pair of two-qubit unitary operators. These operators are the
original operator transformed into its canonical form and the adjoint of this canonical form. The distinguish-
ability of these operators is quantified by the minimum overlap of the output states over all possible input probe
states. The entangling capacity of the original unitary operator is therefore directly related to the degree of
non-Hermiticity of its canonical form, as quantified in an operationally satisfactory manner in terms of the
extent to which it can be distinguished, by measurement, from its adjoint. Furthermore, the maximum entropy
of entanglement, again without local ancillas, that a given two-qubit unitary operator can generate is found to
be closely related to the classical capacities of certain quantum channels.
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I. INTRODUCTION

An interesting development that has recently taken place
in quantum information science has been the widespread re-
alization that the information-theoretic properties of quantum
operations are of comparable importance to those of quan-
tum states. We may view this to be a consequence of the fact
that all properties of quantum states, including those most
relevant to quantum communications and computation, such
as entanglement and nonorthogonality, must somehow be
created. It is quantum operations that are responsible for the
creation of states with these properties. As such, there has
been a considerable amount of activity devoted to establish-
ing relationships between properties of quantum states, espe-
cially those that are useful in applications, and the properties
of quantum operations that give rise to them.

Perhaps the most important resource in quantum commu-
nications and computation is entanglement. Entanglement is
a resource that must be created by operations. Consequently,
a considerable effort has been directed at characterizing the
ability of quantum operations to generate entanglement
�1–9�. Of particular importance is the maximum amount of
entanglement that a quantum operation can generate for
some set of possible initial states. Such a quantity is known
as an entangling capacity.

The general nonorthogonality of quantum states is also
one of their most pertinent and useful features. Nonorthogo-
nal states cannot be perfectly distinguished. This fact forms
the basis for many quantum cryptographic protocols. The
distinguishability of operations is closely related to the dis-
tinguishability of the states they produce, since it is by dis-
criminating among the output states of quantum operations
that we distinguish among the operations themselves
�10–13�.

The aim of this paper is to prove and explore the conse-
quences of a curiously simple relationship between the en-

tangling capacity of and the distinguishability of bipartite
unitary operations acting on two qubits. Specifically, we
make use of the fact that any unitary operator UAB on two
qubits A and B can, using local operations on A and B, be put
into a certain canonical form Ud. We find that the entangling
capacity of UAB, as quantified by the maximum concurrence
of the output states it generates, with or without the restric-
tion to an initial product state, but without ancillas is directly
related to the distinguishability of Ud and Ud

†. Here, distin-
guishability is quantified by the minimum, over all initial
states, of the overlap of the output states they create. This
result extends one previously obtained by Zhang et al. �5�
which relates to perfect entanglers.

In Sec. II, we review the relevant background material on
the entangling capacity and distinguishability of unitary op-
erators. Section III is devoted to proving our main result
relating to maximum concurrence and distinguishability and
to exploring some of its consequences.

For bipartite pure states, the entropy of entanglement is
often used as an entanglement measure. It is interesting to
enquire as to whether or not the entangling capacity, in terms
of the maximum entropy of entanglement, also has a direct
operational connection with the distinguishability of states.

The entropy of entanglement draws its significance from
its asymptotic properties, when there are many copies of a
given entangled state available. It is natural to suspect that
the entropic entangling capacity of a given quantum opera-
tion may relate to the distinguishability of quantum opera-
tions when the operation is performed many times. This
leads us to consider classical information theory, which is of
an intrinsically asymptotic nature.

In Sec. IV, we confirm this suspicion by showing that the
entropic entangling capacity of UAB is related to classical
information transmission in two distinct ways. The first rela-
tionship concerns the so-called first-order classical capacity,
where collective decoding of the individual signal carriers is
forbidden. The second relates to the Hausladen-Jozsa-
Schumacher-Westmoreland-Wootters �HJSWW� capacity
�14�, where arbitrary collective decoding of the pure state
signals is permitted. The relationship we describe relates to*Electronic address: achefles@thphys.nuim.ie
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the transmission of pure states. The generalization of the
HJSWW capacity to mixed state signals is the well-known
Holevo-Schumacher-Westmoreland capacity �15,16�. We
therefore find that the relationship between the entangling
capacity and distinguishability is not simply of a “one-shot”
nature, but also has some interesting implications for the
asymptotic limit. We conclude in Sec. V with a general dis-
cussion of our results.

II. ENTANGLING CAPACITIES AND
DISTINGUISHABILITY OF UNITARY OPERATORS

A. Entangling capacities

Consider two quantum systems A and B. Associated with
each system is a copy of the Hilbert space H. The composite
system has Hilbert space HAB=H�2. We shall take A and B
to be qubits and so H is two-dimensional.

Let us consider a unitary operator UAB on HAB. We would
like to know how much entanglement such an operator can
create between these two systems. To address this issue, we
must choose a measure of entanglement. For a bipartite pure
state of two qubits, two particular entanglement measures are
in common use. These are the concurrence and the entropy
of entanglement.

Let ����HAB be an arbitrary pure state of AB. Let �A
�

��B
�� be the corresponding reduced density operator of A �B�

for this state. Both of these operators have the same eigen-
values, which we shall denote by qj, where j=1,2. The con-
currence of ��� may be written as

C����� = 2�q1q2 = 2�det�� j
�� . �2.1�

The entropy of entanglement of ��� is

E����� = − �
j=1

2

qj log qj , �2.2�

where here, as throughout this paper, the logarithm has base
2. Hill and Wootters �17� noted that the entropy of entangle-
ment may be written in terms of the concurrence as

E����� = h	1 + �1 − �C������2

2

 , �2.3�

where h�x� is the binary entropy function:

h�x� = − x log x − �1 − x�log�1 − x� . �2.4�

Both of these entanglement measures attain their maximum
value, which in both cases is 1, iff ��� is maximally en-
tangled. They also take their minimum value, of 0, iff ��� is
a product state. These entanglement measures are also invari-
ant under local unitary operations. Finally, they are mono-
tonically increasing functions of each other, so the maximi-
zation of one is equivalent to the maximization of the other.
As a consequence of this equivalence we shall, for the time
being, concentrate on the concurrence as an entanglement
measure.

The entangling capacity of a unitary operator is the maxi-
mum amount of entanglement that the operator can generate.
In the most general situation we can contemplate, A and B

can be entangled with local ancillary systems. At the time of
writing, the most general solution to this problem is not
known. We may consider instead the situation where the ini-
tial state is a pure state ����HAB. Leifer et al. �4� solved
this problem and obtained the general value of

Cmax�UAB� = max
����HAB

�C�UAB���� − C������ . �2.5�

In a prior work, Kraus and Cirac �1� addressed the more
restricted problem where the set of possible initial states was
taken to be the set of two-qubit product states in HAB. In this
case, writing a typical product state ����HAB as ���
= ��A� � ��B�, the resulting product entangling capacity may
be written as

Cmax
prod�UAB� = max

��A�,��B��H
C�UAB��A� � ��B�� . �2.6�

Kraus and Cirac obtained an explicit expression for
Cmax

prod�UAB� for an arbitrary two-qubit unitary operator. The
results of the above authors can be summarized as follows.
Firstly, it is known �1,2� that any unitary operator UAB acting
on two qubits A and B can be written in the form

UAB = �XA � XB�Ud�YA � YB� , �2.7�

where XA, XB, YA and YB are single-qubit unitary operators
and the bipartite unitary operator Ud has the form

Ud = exp�− i��x�x � �x + �y�y � �y + �z�z � �z�� .

�2.8�

Here, �x, �y and �z are the usual Pauli spin operators and the
vector d= ��x ,�y ,�z� has real components satisfying

0 � ��z� � �y � �x � �/4. �2.9�

For the purposes of this paper, it is sufficient to confine our
attention here to the case of �z�0. We discuss this matter in
more detail in Sec. III and in the Appendix. We then have

0 � �z � �y � �x � �/4. �2.10�

We can write the eigenvalues of Ud in the form e−i	j, where
j=1, . . . ,4. The 	 j are given by

	4 = �x + �y − �z, �2.11�

	3 = �x − �y + �z, �2.12�

	2 = − �x + �y + �z, �2.13�

	1 = − �x − �y − �z. �2.14�

It follows readily from these equations and inequality �2.10�
that the 	 j are ordered according to

	4 � 	3 � 	2 � 	1. �2.15�

In terms of the above definitions, Kraus and Cirac and Leifer
et al. obtained the general forms of Cmax

prod�UAB� and
Cmax�UAB� for two-qubit unitary operators. They found that
when the following two inequalities are satisfied,

�x + �y � �/4, �2.16�
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�y + �z � �/4, �2.17�

then these entangling capacities are

Cmax
prod�UAB� = Cmax�UAB� = 1. �2.18�

This implies that UAB can transform some product state into
a maximally entangled state, in which case UAB is said to be
a perfect entangler. When either of these inequalities is vio-
lated, UAB is not a perfect entangler and

Cmax
prod�UAB� = �Cmax�UAB��2 = max

j,j�
�sin�	 j − 	 j��� .

�2.19�

Notice that these two inequalities cannot be violated simul-
taneously, as this would contradict the ordering of the � j in
Eq. �2.10�.

It is clear from Eqs. �2.18� and �2.19� that the entangling
capacity without the restriction to product states is always
equal to the square root of the entangling capacity with this
restriction. So, these capacities are very easily deduced from
each other. For this reason and also because of the fact that,
for the purposes of deriving the principal result of this paper,
the product entangling capacity will be slightly easier to
work with, we shall focus mainly on this quantity in subse-
quent sections.

We will show that there is an intriguing relationship be-
tween the product entangling capacity �2.19� and distinguish-
ability of unitary operators. Prior to describing this relation-
ship, we shall review some facts about the latter topic.

B. Distinguishability

Consider two unitary operators S and T referring to a
possibly composite system with total Hilbert space Htot. This
space is taken to have finite dimensionality D. We aim to
distinguish as well as possible between these two operators
using a probe state. The problem of optimally discriminating
between two unitary operators was first addressed and solved
by Childs et al. �10�. Useful further insights into this prob-
lem were obtained in the subsequent investigations of Acín
�11� and D’Ariano et al. �12�. In particular, the latter authors
established that for optimal discrimination, the initial probe
state may be taken to be a pure state which is not entangled
with any ancillary systems.

In the light of this, let the probe state be some pure state
�
��Htot. To optimally distinguish between S and T, we
require that the overlap between the states S�
� and T�
� be
as small as possible. It is convenient to define the unitary
operator V=S†T and to consider the inner product between
the final states:

�
�S†T�
� = �
�V�
� . �2.20�

Since V is unitary, it can be spectrally decomposed as

V = �
j=1

D

ei�j�v j��v j� , �2.21�

where the angles � j are real and the �v j� form an orthonormal
basis for Htot. The state �
� can be expanded in terms of this
basis as

�
� = �
j=1

D

cj�v j� . �2.22�

For the sake of notational convenience, let us define

pj = �cj�2. �2.23�

It is clear that the pj may take any non-negative values sub-
ject to the normalization of �
�, which is equivalent to

�
j=1

D

pj = 1. �2.24�

Combining the above expressions, we obtain

�
�V�
� = �
j=1

D

pje
i�j . �2.25�

In discriminating between two pure states, it is their overlap,
rather than their inner product, that is significant. If we wish
to obtain the minimum value of the overlap of S�
� and
T�
�, we must evaluate

min
�
�:��
��=1

��
�V�
�� = min
pj:�j=1

D pj=1
�

j=1

D

pje
i�j . �2.26�

The above expression has a simple geometrical interpretation
that is depicted in Fig. 1. For each particular set of pj, the
number � j=1

D pje
i�j represents a point in the complex plane.

The set of all such points is easily recognizable as the convex
hull of the eigenvalues ei�j �18�. This is the smallest convex
set which contains all of these eigenvalues. Here, the number
of eigenvalues is finite, so their convex hull is simply a con-
vex polygon with these eigenvalues at its vertices. For the
sake of notational convenience, we shall write the convex
hull of the spectrum of an operator V as conv�spec�V��.

The minimum overlap in Eq. �2.26� is then simply the
minimum modulus of the complex numbers in
conv�spec�V��. In other words, it is the minimum distance

FIG. 1. Geometric depiction of �a� perfect and �b� imperfect
distinguishability of two unitary operators S and T. The ei� j are the
eigenvalues of V=S†T. The set of possible values of the inner prod-
uct between the final states S�
� and T�
� is, in each case,
conv�spec�V��. The minimum overlap between these final states is
Dmin�V�, the minimum distance from 0 to conv�spec�V��. If, as is
the case in �a�, 0�conv�spec�V��, then Dmin�V�=0 and perfect dis-
crimination between S and T is possible. If, on the other hand,
0�conv�spec�V��, which is the case in �b�, then S and T cannot be
perfectly discriminated although their distinguishability continues
to be governed by Dmin�V�.
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from 0 to conv�spec�V��. Let us denote this minimum dis-
tance by Dmin�V�. Then we may write

min
�
�:��
��=1

��
�S†T�
�� = Dmin�V� . �2.27�

For the operators S and T to be perfectly distinguishable
for some initial probe state �
�, we require that the final
states be orthogonal. From the above considerations, we see
that this will be the case iff Dmin�V�=0, which is to say that
0�conv�spec�V��.

III. MAXIMUM CONCURRENCE AND MINIMUM
OVERLAP

We shall now show that for any two-qubit unitary opera-
tor UAB, the product entangling capacity in Eqs. �2.18� and
�2.19� and the distinguishability of Ud and its adjoint Ud

†, as
quantified by the minimum overlap, satisfy a curiously
simple relationship. The distinguishability of Ud and its ad-
joint Ud

† is characterized using Eq. �2.27�, where we make
the identifications S=Ud

†, T=Ud, V=Ud
2 and Htot=HAB. We

are now in a position to prove our main result.

Theorem. For any two-qubit unitary operator UAB with
canonical form Ud defined by Eqs. �2.8� and �2.9�,

�Cmax
prod�UAB��2 + �Dmin�Ud

2��2 = 1. �3.1�

To prove this result, we shall treat separately the cases of
UAB being a perfect entangler and not being a perfect entan-
gler.

Prior to proving Eq. �3.1� for perfect entanglers, we note
that for such operators, this theorem has been effectively
established in theorem 1 of �5�, although without reference to
the distinguishability of unitary operators. Our discovery of
the general validity of Eq. �3.1� came about through the re-
alization that the results of these authors relate to the distin-
guishability of unitary operators. This led us to enquire as to
whether or not there is a general relationship between the
distinguishability of Ud and Ud

† and the entangling capacity
of UAB. This enquiry led to our discovery of the general
validity of Eq. �3.1�. Also, for the case of perfect entanglers,
our proof is possibly slightly simpler.

Another point is that, here, we explicitly prove Eq. �3.1�
only for cases where �z�0. We do this because the validity
of Eq. �3.1� for negative �z follows readily from its validity
for �z�0. We prove this in the Appendix.

Proof. Case �a�: UAB is a perfect entangler.

In this case, Cmax
prod�UAB�=1. Proving Eq. �3.1� in this case

then amounts to showing that Dmin�Ud
2�=0, implying that Ud

and Ud
† are perfectly distinguishable.

To begin, we know from the preceding section that
Cmax

prod�UAB�=1 is equivalent to inequalities �2.16� and �2.17�
being satisfied. Also, to have Dmin�Ud

2�=0, we require that
0�conv�spec�Ud

2��. This latter condition can be understood
in simple geometrical terms. Consider the angular separa-
tions of neighboring eigenvalues of Ud

2. To calculate these

spacings, it is convenient to define 	̃ j =	 j −	1, which all lie
in the interval �0,��. The spacings between neighboring

angles 	̃ j are identical to those of the original 	̃ j. In particu-
lar, we have

� � 	̃4 � 	̃3 � 	̃2 � 	̃1 = 0. �3.2�

Using these transformed angles, it is easy to see that the four

spacings are given by 2�	̃ j+1− 	̃ j� for j=1, . . . ,3 and 2��
− 	̃4� for j=4. Using Eqs. �2.11�–�2.14�, we can write these
spacings as

2�	̃2 − 	̃1� = 4��y + �z� � � , �3.3�

2�	̃3 − 	̃2� = 4��x − �y� � � , �3.4�

2�	̃4 − 	̃3� = 4��y − �z� � � , �3.5�

2„� − 	̃4� = 2�� − 2��x + �y�… � � . �3.6�

The inequalities in �3.3� and �3.6� are consequences of
�2.17� and �2.16�, respectively, while those in �3.4� and �3.5�
follow from �2.10�. Now, zero is an element of
conv�spec�Ud

2�� iff the eigenvalues of Ud
2 do not all lie in

some arc of the unit circle which subtends an angle of less
than � radians. This is equivalent to the four angular sepa-
rations being no greater than � radians, which is what we
have just demonstrated. So we have shown that whenever
UAB is a perfect entangler, Ud and Ud

† are perfectly distin-
guishable, and so Eq. �3.1� holds in this case.

Case �b�: UAB is not a perfect entangler.

Let us now show that Eq. �3.1� also holds when UAB is not
a perfect entangler. We will be concerned here with the mini-
mum distance from the origin to the convex hull of the com-
plex numbers e−2i	j. This distance is clearly identical to that

between the origin and the convex hull of the e−2i	̃j and again
it will be more convenient to work with the latter quantities.

In terms of these angles, we may write Eq. �2.19� as

Cmax
prod�UAB� = max

j,j�
�sin�	̃ j − 	̃ j��� . �3.7�

We know that UAB is not a perfect entangler when one of the
two inequalities �2.16� and �2.17� is not satisfied. We shall
treat the violation of each of these inequalities separately.

To prove Eq. �3.1� when �2.16� is violated, let us first
show that

Cmax
prod�UAB� = sin�	̃4� . �3.8�

To prove this, we see that when inequality �2.16� is not sat-
isfied, we have

	̃4 = 2��x + �y� �
�

2
. �3.9�

We see from this inequality and the angular ordering in �3.2�
that the angles 	̃ j all lie in the half-open interval �0,� /2�. All
differences between neighboring angles must clearly lie in
this interval also. The arrangement of these angles is de-
picted in Fig. 2�i�.
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The sin function is monotonically increasing in the inter-
val �0,� /2�. It follows that the two angles with the greatest
separation attain the maximum in Eq. �3.7�. Due to the an-

gular ordering in �3.2�, these are 	̃4 and 	̃1. However, 	̃1
=0, so we obtain Eq. �3.8�.

Let us now calculate Dmin�Ud
2�. Since all four angles 2	̃ j

lie in first and second quadrants, the complex numbers e−2i	̃j

all lie in the lower half-plane. This can be seen in Fig. 2�ii�.
These complex numbers are the rotated eigenvalues of Ud

2,
and so Dmin�Ud

2� is the distance from the origin to the convex

hull of the e−2i	̃j.
From the fact that these complex numbers all lie in the

lower half-plane and from the angle ordering in �2.15�, it
follows that this minimum distance is equal to the distance

from the origin to the midpoint of the chord joining e−2i	̃4

and e−2i	̃1. By elementary trigonometry, we find that

Dmin�Ud
2� = cos�	̃4� . �3.10�

Making use of both this and Eq. �3.8�, we see that Eq. �3.1�
is satisfied. This completes the proof of �3.1� when inequality
�2.16� is not satisfied.

Let us now turn our attention to the situation where in-
equality �2.17� is violated. We will begin by showing that
when this is the case, we have

Cmax
prod�UAB� = sin�	̃2� . �3.11�

To see this, we note that when �2.17� is not satisfied, we have

	̃2 = 2��y + �z� 
�

2
. �3.12�

Since 	̃ j � �0,��, we see that 	̃1=0 and the remaining angles
lie in the second quadrant. This is shown in Fig. 3�i�. Let us
now consider differences between these angle differences

	̃ j − 	̃ j�. Because, from Eq. �3.7�, we wish to find the maxi-
mum absolute value of the sin, we may, without loss of gen-

erality, take j j�. In the case where j�=1, Eq. �3.11� follows
readily by combining the fact that the sin function is decreas-
ing in the interval �� /2 ,�� with the angular ordering in

�3.2�. For j�=2 or 3, let us write 	̃ j − 	̃ j�=�. We shall now
use the elementary sin difference rule in the following way:

sin�	̃2� − sin��� = 2 cos	 	̃2 + �

2

sin	 	̃2 − �

2

 � 0.

�3.13�

The reason why we have the inequality here is as follows.
Firstly, the cos factor must be non-negative. This is because

	̃2+� is equal to either 	̃3 or 	̃4 which we know, from Eq.
�3.2�, lies in the interval �0,��. Therefore, the argument of
the cos factor lies in the first quadrant and the cos factor is
therefore non-negative. As for the sin factor, we note that the

angle �	̃2−�� /2 also lies in the first quadrant, as a conse-
quence of Eqs. �2.17� and �3.2�, where the sin function is
also non-negative. Finally, because both terms on the left-

hand side of Eq. �3.13� are non-negative, and because 	̃2

= 	̃2− 	̃1 �by virtue of the fact that 	̃1=0�, we obtain Eq.
�3.11�.

Let us now calculate Dmin�Ud
2�. From the above consider-

ations it follows that the e−2i	̃j, the rotated eigenvalues of Ud
2,

all lie in the upper half-plane, as shown in Fig. 3�ii�. The

minimum distance from 0 to the convex hull of the e−2i	̃j is
clearly equal to the distance from the origin to the midpoint

of the chord joining e−2i	̃2 and e−2i	̃1. By elementary trigo-
nometry we find that

Dmin�Ud
2� = − cos�	̃2� . �3.14�

Combining this with Eq. �3.11� shows that Eq. �3.1� is satis-
fied. This, together with the result in the Appendix, com-
pletes the proof of Eq. �3.1� for all two-qubit unitary opera-
tors. �

FIG. 2. Depiction of �i� the angles 	̃ j and �ii� the rotated eigen-
values of Ud

2 when UAB is not a perfect entangler and inequality
�2.16� is violated. In �i�, all four angles lie in the first quadrant,
which implies that the product entangling capacity is given by Eq.

�3.8�. In �ii�, the four eigenvalues e−2i	̃ j lie in the lower half-plane,

with the greatest separation being between e−2i	̃4 and e−2i	̃1. The
minimum overlap is the distance from the origin to the midpoint of

the chord joining e−2i	̃1 and e−2i	̃4, which gives Eq. �3.10� and thus
Eq. �3.1�.

FIG. 3. Depiction of �i� the angles 	̃ j and �ii� the rotated eigen-
values of Ud

2 when UAB is not a perfect entangler and inequality

�2.17� is violated. In �i�, ei	̃1 =1 and the other ei	̃ j lie in the second
quadrant. From this, we find that the product entangling capacity is

given by Eq. �3.11�. In �ii�, the four eigenvalues e−2i	̃ j lie in the

upper half-plane, with the greatest separation being between e−2i	̃1

and e−2i	̃2. The minimum overlap is the distance from the origin to

the midpoint of the chord joining e−2i	̃1 and e−2i	̃2, which gives Eq.
�3.14� and thus Eq. �3.1�.
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Let us now make some observations about this theorem.
The first point to note is that in Kraus and Cirac’s original
presentation, the product entangling capacities of perfect and
imperfect entanglers were treated separately. The theorem we
have proven above unifies these two scenarios, expressing as
it does the product entangling capacity of UAB with the single
equation �3.1� rather than the two equations �2.18� and
�2.19�. The two scenarios described by Kraus and Cirac, in
which UAB is a perfect or imperfect entangler, correspond
directly to Ud and Ud

† being perfectly or imperfectly distin-
guishable.

The relationship in Eq. �3.1� between the product entan-
gling capacity Cmax

prod�UAB� and the distinguishability of Ud

and Ud
† suggests that Cmax

prod�UAB� may serve to quantify the
non-Hermiticity of Ud. This idea is reinforced by the follow-
ing observation: Dmin�Ud

2� reaches its maximum of 1, which
corresponds to complete indistinguishability, iff Ud is Her-
mitian. This is easy to see. The distance from the origin to
the midpoint of the chord joining two points on the unit
circle attains the value 1 iff these two points are identical.
Combining this with Eq. �3.1� and the fact that, for imperfect
entanglers, the points in question are the �rotated� eigenval-
ues of Ud

2 that are furthest apart, we see that this scenario

arises only when all the 	̃ j are all equal, indeed equal to 0

since 	̃1=0. This is equivalent to Ud
2=1 which implies that

Ud=Ud
† as a consequence of unitarity. So, when the product

entangling capacity of UAB is zero, Ud is Hermitian. Also, the
converse of this statement follows trivially from Eq. �3.1�.
So we are led to see that the product entangling capacity of
UAB is directly related to and increases with the non-
Hermiticity of Ud, as quantified operationally by our practi-
cal ability to distinguish this operator from its adjoint with a
probe state.

Finally, we note that combining Eq. �3.1� with Eqs. �2.18�
and �2.19� gives the following relationship between
Cmax�UAB�, the entangling capacity without the restriction to
initial product states, and the distinguishability of Ud and Ud

†:

�Cmax�UAB��4 + �Dmin�Ud
2��2 = 1. �3.15�

We are somewhat undecided about which of the two relation-
ships in Eqs. �3.1� and �3.15� should be regarded as being
more significant. What we will find, however, in the subse-
quent section, is that certain expressions involving entan-
gling capacities, as quantified by the entropy of entangle-
ment, are more naturally formulated in terms of the product
state capacity rather that the corresponding capacity without
this restriction.

IV. INFORMATION-THEORETIC INTERPRETATIONS
OF THE PRODUCT ENTROPIC ENTANGLING

CAPACITY

A. The first-order classical capacity

In the preceding section, we showed that the maximum
concurrence that can be obtained by acting on an initial prod-
uct state of two qubits ��A� � ��B� with a bipartite unitary
operator UAB is related, through Eq. �3.1�, to the distinguish-
ability of the operators Ud and Ud

†.

The act of discriminating between these two operators is a
“one-shot” procedure. However, in the theory of classical
information transmission, one is typically concerned with
asymptotic quantities that relate to very large strings of clas-
sical information. It is therefore interesting to enquire as to
whether or not there is a link between such quantities and the
maximum entropy of entanglement, which we may obtain
from the maximum concurrence using Eq. �2.3�, whose sig-
nificance derives from its usefulness in asymptotic entangle-
ment processing.

In this section, we shall see that relationships of this na-
ture do indeed exist. We shall describe two of them. The first
does not make use of Eq. �3.1� and relates to the so-called
first-order classical capacity. This capacity is derived from
the assumption that collective decoding of the signal states is
impossible. Interestingly, in contrast with Eq. �3.1�, this re-
lationship expresses a certain connection between the prod-
uct entropic entangling capacity of UAB and the indistin-
guishability of states, in terms of a trade-off with the ability
of certain quantum channels to faithfully transmit classical
information, as quantified by the first-order classical capac-
ity. This relationship depends upon the ability to conjugate
states. Since complex conjugation cannot be carried out on
an unknown state, the sender is required to know the state in
advance of transmission if this relationship is to correspond
to a physically realizable scenario. However, to our knowl-
edge, it has not appeared in the literature so far so we include
it for the sake of completeness, as its simplicity suggests that
it may be of some formal interest.

The second relationship we shall describe, however, does
not suffer from this weakness. Moreover, this second rela-
tionship, unlike the previous one, does make explicit use of
Eq. �3.1� and the connection between entangling capacity
and distinguishability it expresses. It relates to the HJSWW
classical capacity �14�. Unlike the first-order capacity, the
HJSWW capacity refers to situations where arbitrary collec-
tive decoding of the signal states is permitted. Our second
relationship establishes that the product entropic entangling
capacity of UAB is precisely equal to the maximum of the
HJSWW capacities of a certain set of quantum channels con-
structed using Ud and Ud

†.
To describe the first of these relationships, let us recall Eq.

�2.3�, which expresses the entropy of entanglement in terms
of the concurrence. Since these functions are monotonically
increasing with one another, we easily conclude that the
maximum entropy of entanglement that UAB can generate
from an initial product state is

Emax
prod�UAB� = h	1 + �1 − �Cmax

prod�UAB��2

2

 . �4.1�

Consider one party Alice who wishes to send classical infor-
mation to her distant colleague Bob using nonorthogonal
quantum states. Alice sends him a stream of qubits over a
noiseless quantum channel. Each of these systems acts as a
signal carrier and they are all prepared in one of the N quan-
tum states � j, where j=1, . . . ,N. For a given signal carrier,
the probability of her preparing the state � j is pj. On receiv-
ing the state � j, Bob’s task is to determine, using a measure-
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ment, which of these states Alice sent. The possible states
may be nonorthogonal so, in general, Bob will not be able to
distinguish among them reliably.

We assume here that Bob measures each of the signal
carriers individually. That is to say, collective measurements
on strings of signal carriers are not permitted. Subject to this
restriction, the most general measurement he can perform
will have K possible outcomes, for some positive integer K.
Corresponding to outcome k� �1, . . . ,K� is a positive opera-
tor �k acting on the Hilbert space of a single signal carrier.
These operators, known as positive, operator-valued measure
�POVM� elements, must sum to the identity operator on the
single signal carrier Hilbert space.

These operators serve to describe the statistical properties
of Bob’s measurement. The communication channel is char-
acterized by the channel matrix. The elements of this matrix
are the probabilities of obtaining each of the K possible mea-
surement results for each of the N possible initial states.
These probabilities are

P�k�� j� = Tr��k� j� . �4.2�

For nonorthogonal signal states, the channel matrix cannot
be the identity matrix. It will have nonzero off-diagonal ele-
ments and so the channel behaves in many respects like a
noisy classical channel, where the noise is an unavoidable
consequence of the indistinguishability of nonorthogonal
quantum states. The similarity is sufficiently strong to enable
us to employ Shannon’s noisy coding theorem. By redundant
coding of the classical messages at Alice’s end and classical
error correction of the measurement results at Bob’s, Alice
can send Bob asymptotically error-free classical information
at a nonzero rate. The maximum rate at which she can do this
is characterized by the so-called first-order classical capacity.
This quantity is defined in terms of the mutual information

I = �
k=1

K

�
j=1

N

pjP�k�� j�log	 P�k�� j�

� j�=1

N
pj�P�k�� j��


 . �4.3�

The mutual information clearly depends not only on the
states � j and their probabilities pj, but also, through the
POVM elements in Eq. �4.2�, on Bob’s measurement.

The significance of this quantity is as follows: the maxi-
mum rate at which Alice can send Bob asymptotically error-
free classical information using the quantum states � j, over
all possible probability distributions pj and all noncollective
measurements that Bob may perform, is given by C1��� j��
bits per signal carrier. This quantity is the first-order classical
capacity, and it is given by

C1��� j�� = max
�pj�

max
��k�

I; �4.4�

that is, it is the maximum of the mutual information with
respect to the probabilities pj and the measurement Bob per-
forms. We should mention that implicit in the maximization
over the set of possible measurements is a maximization over
K, the number of measurement outcomes.

This quantity is difficult to calculate for most sets of
quantum states. However, for a pair of pure states ��1� and
��2�, it can be calculated exactly. Sasaki et al. �19,20� have
shown that the explicit expression is

C1���� j��� = 1 − h	1 + �1 − ���1��2��2

2

 . �4.5�

Notice the similarity between the second term in this expres-
sion and that we gave for the product entropic entangling
capacity in Eq. �4.1�. Clearly, this similarity would be even
greater if we could interpret the concurrence as an overlap
between two pure states. Fortunately, we are able to do this.
Using the results of Wootters �21�, it was observed by Leifer
et al. �4� that the concurrence of a bipartite pure state ��� of
two qubits can be written as

C����� = �����y � �y��*�� . �4.6�

denotes complex conjugation in the computational basis—
i.e., the basis of product eigenstates of �z � �z. We note that,
in this basis, Ud

*=Ud
†.

So let us make the identifications

��1� = ��� = Ud��A� � ��B� , �4.7�

��2� = ��y � �y�Ud
†��A

*� � ��B
*� , �4.8�

for some product state ��A� � ��B��H�2. Using these ex-
pressions, we now describe an information transmission pro-
cedure that links the product entropic entangling capacity of
UAB with the first-order classical capacity of certain quantum
channels. The situation we shall consider is depicted in Fig.
4.

Each of Alice’s transmissions begins with a classical de-
scription of some product state ��A� � ��B�. To prepare the
state ��1�, she creates ��A� � ��B� and then applies the unitary
operator Ud. To prepare the state ��2�, she creates the state
��A

*� � ��B
*� and then applies the unitary operator ��y

� �y�Ud
†. Notice the necessity of her having a classical de-

FIG. 4. Illustration of a scenario that leads to an interpretation of
the product entropic entangling capacity of UAB in terms of the
first-order classical capacity. A classical description of the product
state ��A� � ��B� is used to manufacture, at will, either this state or
��A

*� � ��B
*�, its complex conjugate in the computational basis. These

states are then acted on by Ud and ��y � �y�Ud
†, respectively. The

resulting signals are then received by Bob who measures them in-
dividually. The maximum rate at which Alice can send classical
information to Bob this way, over all product states ��A� � ��B�, is
related to the product entropic entangling capacity of UAB through
Eq. �4.9�.
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scription of the state ��A� � ��B� here. To produce the state
��2�, she cannot begin with an unknown product state ��A�
� ��B� and then apply a quantum operation to it, as no quan-
tum operation can conjugate an unknown state.

Following Alice’s preparation of her desired state ��1� or
��2�, she sends it to Bob, who proceeds to extract classical
information. We find, upon combining Eqs. �4.1� and �4.5�
with the fact that product entropic entangling capacities of
UAB and Ud are equal, that the product entropic entangling
capacity of UAB and the first-order classical capacity of the
channel are related by

Emax
prod�UAB� + max

��A�� ��B��H�2
C1���� j��� = 1, �4.9�

where the �� j� are defined by Eqs. �4.7� and �4.8�. This rela-
tionship clearly expresses a trade-off between the product
entropic entangling capacity of UAB and the maximum first-
order classical capacity over the channels we have described.

B. The HJSWW classical capacity

The relationship we have just described depends upon the
conjugation of states. As such, a classical description of the
product state ��A� � ��B� is required. Despite this, the simple
nature of this relationship is something that we believe is of
some formal interest.

Here we shall describe a relationship between the product
entropic entangling capacity and classical capacities of quan-
tum channels that does not suffer from this weakness. Also,
this relationship does make use of Eq. �3.1�, unlike the pre-
vious one. Finally, this relationship involves the HJSWW
classical capacity of quantum channels. This capacity, which
allows for collective measurements, is at least as high as the
first-order classical capacity.

Let us once again consider Eq. �3.1�. We see from this
equation and Eq. �4.1� that the product entropic entangling
capacity can be expressed as

Emax
prod�UAB� = h	1 + Dmin�Ud

2�
2


 . �4.10�

The relationship we shall describe makes use of the fact
that if Alice wishes to send classical information to Bob, but
unlike in the previous scenario, he is able to perform collec-
tive measurements on the signal carriers he receives, then an
enhanced rate of classical information transmission can be
achieved. This effect, known as the superadditive quantum
coding gain, has recently been demonstrated for the first time
in the laboratory by Sasaki and collaborators �22,23�.

Suppose Alice wishes to send classical information to Bob
by sending, over a noiseless quantum channel, states drawn
from a source of N pure states �� j� with respective probabili-
ties pj. In the limit when Bob can perform measurements on
arbitrarily long strings of signal carriers, the classical capac-
ity is given by �14�

C����� j��� = max
�pj�

S��� , �4.11�

where S is the von Neumann entropy and �=� j=1
N pj�� j��� j�.

For two pure states ��1� and ��2�, the explicit form of the

capacity C����� j��� is easily determined. We find

S��� = h	1 + ��p1 − p2�2 + 4p1p2���1��2��2

2

 . �4.12�

Maximizing this expression with respect to the probabilities
pj and taking into account the normalization constraint p1
+ p2=1 leads to the conclusion that the maximum is obtained
when both probabilities are equal to 1/2. This gives

C����� j��� = h	1 + ���1��2��
2


 . �4.13�

This expression is highly reminiscent of Eq. �4.10�, espe-
cially in view of the fact that Dmin�Ud

2� is an overlap.
To see how the similarity of these two expressions can

lead to a concrete physical relationship between the product
entropic entangling and HJSWW classical capacities, con-
sider the scenario depicted in Fig. 5. In Alice’s laboratory
there is a machine that produces many copies of some two-
qubit pure state �
�. This machine can be set to produce any
such state. However, it cannot be reset; once one particular
state has been set to be mass produced, it is impossible to
reprogram the machine to produce a different state.

On each copy of the state �
�, Alice acts with one of the
operators Ud and Ud

†. For each copy, she is completely free in
her choice of which operator to use. She then transmits the
modified state to Bob, who is able to perform arbitrary col-
lective measurements on arbitrarily long strings of signal
states.

The HJSWW capacity of this channel is given by Eq.
�4.13�, where

��1� = Ud
†�
� , �4.14�

��2� = Ud�
� . �4.15�

Clearly, the only variable is the initial state �
� and it is
interesting to maximize the HJSWW capacity with respect to

FIG. 5. Illustration of a scenario that leads to an interpretation of
the product entropic entangling capacity of UAB in terms of the
HJSWW classical capacity. Alice produces a number of copies of a
bipartite pure state �
�. Upon each one, she acts with either Ud or
Ud

†. The resulting modified states are sent to Bob, who is able to
perform collective measurements on several of them together. The
maximum rate at which Alice can send classical information to Bob
this way, over all possible initial states �
�, is equal to the product
entropic entangling capacity of UAB, as expressed by Eq. �4.16�.
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this state. It is easy to see that the maximum is, essentially by
definition, given by Eq. �4.10�. We therefore obtain

Emax
prod�UAB� = max

�
��H�2
C����� j��� , �4.16�

where the �� j� are defined by Eqs. �4.14� and �4.15�.
We regard this relationship as being the asymptotic analog

of Eq. �3.1�. In Eq. �3.1�, we saw that the more distinguish-
able Ud and Ud

† are, the higher is the product entangling
capacity of UAB in terms of the concurrence. It is natural then
that, in the asymptotic limit, the entangling capacity, which is
quantified by the maximum entropy of entanglement, is re-
lated to the extent to which we can send classical informa-
tion by modulating an initial state with Ud and Ud

†, which is
precisely what is expressed by Eq. �4.16�.

V. DISCUSSION

The principal aim of the present paper has been to de-
scribe an interesting relationship between the entangling ca-
pacity of a two-qubit unitary operator UAB and the distin-
guishability of its canonical form Ud and its adjoint Ud

†. We
saw, in Eq. �3.1�, that the product entangling capacity of UAB
quantifies the distinguishability of Ud and Ud

†. This implies
that it may also be viewed as a measure of the non-
Hermiticity of Ud. As a measure of non-Hermiticity, it is
highly significant from a practical point of view, since it
quantifies the extent to which we can operationally distin-
guish Ud from Ud

† with a probe state.
In the asymptotic limit, the entanglement properties of

pure bipartite states are naturally quantified using the entropy
of entanglement. It is interesting to enquire as to whether or
not our relationship between the maximum concurrence and
minimum overlap has any implications for this limit. Indeed
it does. We found two relationships between the product en-
tropic entangling capacity and the classical capacities of
quantum channels. The first does not actually involve Eq.
�3.1� but we included it for the sake of completeness as, to
our knowledge, this relationship was not previously known.
It also suffers from a weakness; it corresponds to a classical
information transmission scenario where the sender, Alice,
must know the state in advance.

Our second relationship, however, is more satisfactory in
a number of respects. Firstly, it makes explicit use of Eq.
�3.1�. Secondly, it applies to an unknown initial state. Finally,
it corresponds to a more general scenario where collective
decoding of the signal carriers is permitted, thus making
greater use of the ability of quantum states to carry classical
information.

The results in this paper relate to bipartite unitary opera-
tors where the subsystems are qubits. It is natural to enquire
as to whether or not they can be extended to higher dimen-
sional subsystems. What is interesting is the fact that the
theory of distinguishing between a pair of unitary operators
outlined in Sec. II applies very generally, certainly to all
unitary operators on finite dimensional Hilbert spaces. How-
ever, the theory of the entangling capacity of bipartite unitary
operators is not similarly well-developed. Exact results are
only known for qubit subsystems. It should be said in this

context that the entangling power, which is the average
amount of entanglement that an arbitrary bipartite unitary
operator can generate, has been established by Zanardi and
co-workers �7–9� for higher-dimensional subsystems. How-
ever, here we are interested in the entangling capacity, which
is the maximum amount of entanglement that can be created.

One of the reasons why the entangling capacity of a gen-
eral D1�D2 unitary operator, for D1 ,D22, has not yet
been established is the fact that a suitable canonical form Ud
is not known for such operators. Also, for higher-
dimensional subsystems, there are difficulties in defining a
single quantity which generalizes the concurrence �24,25�.
This is related to fact that for higher-dimensional bipartite
pure entangled states, there is no single quantity which com-
pletely characterizes the entanglement. In general, we have a
set of entanglement monotones which can vary with a certain
degree of independence from one state to another �26�. For
one state to be unambiguously more entangled than another,
the values of all entanglement monotones must be at least as
high for one of the states as they are for the other. Otherwise,
the states are incomparable.

These considerations lead us to conclude this paper with a
question. Might it be the case that for D1�D2 unitary opera-
tors with D1 ,D22, there is, in general, no unique entan-
gling capacity at the one-shot level, even if we restrict our-
selves to initial product states? This would be the case if, for
all D1 ,D22, we can find a unitary operator UAB which has
the following property: there is no initial product state ��A�
� ��B� such that UAB��A� � ��B� simultaneously maximizes
all entanglement monotones. Due to the fact that these
monotones exhibit a certain degree of mutual independence,
this seems possible.
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APPENDIX: PROOF OF EQ. (3.1) FOR NEGATIVE �z

We prove here that Eq. �3.1� holds when �z is negative.
This can be done rather easily if it also holds for non-
negative �z, and we established that it does in Sec. III. To
proceed, we note that the validity of Eq. �3.1� for non-
negative �z implies that

�Cmax
prod�Ud���

2 + �Dmin�Ud�
2 ��2 = 1 �A1�

for all d�= ��x� ,�y� ,�z�� which satisfy

0 � �z� � �y� � �x� � �/4. �A2�

Now consider UAB and Ud related by Eq. �2.7� where d
= ��x ,�y ,�z�, �z�0 and inequality �2.9� holds. We make the
following observation: if �x�=�x, �y�=�y and �z�=−�z, then

��z � 1�Ud��z � 1� = Ud�
† . �A3�

This implies that UAB is locally equivalent to and there-
fore has the same product entangling capacity as Ud�

† . Indeed,
it also has the same product entangling capacity as Ud�, be-
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cause Ud�
† is simply the complex conjugate of Ud� in the

computational basis. It has been established �1� that complex
conjugation in this basis does not change the entangling ca-
pacity. We may therefore write

Cmax
prod�UAB� = Cmax

prod�Ud�� . �A4�

Also, the fact that Ud and Ud�
† are unitarily related through

Eq. �A3� implies that Dmin�Ud
2�=Dmin�Ud�

†2�, which is easily

seen to be also equal to Dmin�Ud�
2 �. We may then write

Dmin�Ud
2� = Dmin�Ud�

2 � . �A5�

Finally, substitution of Eqs. �A4� and �A5� into Eq. �A1�
gives Eq. �3.1� as desired.
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