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Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective
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In this paper, we demonstrate how optimal control methods can be used to speed up the implementation of
modules of quantum algorithms or quantum simulations in networks of coupled qubits. The gain is most
prominent in realistic cases, where the qubits are not all mutually coupled. Thus the shortest times obtained
depend on the coupling topology as well as on the characteristic ratio of the time scales for local controls vs
nonlocal (i.e., coupling) evolutions in the specific experimental setting. Relating these minimal times to the
number of qubits gives the tightest known upper bounds to the actual time complexity of the quantum modules.
As will be shown, time complexity is a more realistic measure of the experimental cost than the usual gate
complexity. In the limit of fast local controls (as, e.g., in NMR), time-optimized realizations are shown for the
quantum Fourier transform (QFT) and the multiply controlled NOT gate (C""!NOT) in various coupling
topologies of n qubits. The speed-ups are substantial: in a chain of six qubits the quantum Fourier transform so
far obtained by optimal control is more than eight times faster than the standard decomposition into controlled
phase, Hadamard and SWAP gates, while the C""!NOT gate for a completely coupled network of six qubits is

nearly seven times faster.
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I. INTRODUCTION

A key motivation for using experimentally controllable
quantum systems to perform computational tasks or to simu-
late the behavior of other quantum systems [1,2] roots in
reducing the complexity of the problem when going from a
classical setting to a quantum setting. The most prominent
pioneering example being Shor’s quantum algorithm of
prime factorization [3,4]. While known classical prime fac-
torization algorithms are of nonpolynomial complexity [5],
Shor’s quantum algorithm brings it down into a class of
polynomial complexity. Another celebrated example is Grov-
er’s quantum search algorithm [6,7], which allows for
searching in an unstructured data base of n qubits with
N=2"items in O(YN) quantum steps instead of O(N) classi-
cal ones.

As a matter of fact, many quantum algorithms [8,9] can
be subsumized as solving hidden subgroup problems in an
efficient way [10]. In the Abelian case, the speed-up hinges
on the quantum Fourier transform (QFT): while the network
complexity of the fast Fourier transform (FFT) for n classical
bits is of the order O(n2") [11,12], the QFT for n qubits
shows a complexity of order O(n?). For implementing a
quantum algorithm or a quantum simulation in an experi-
mental setup, it is customary to break it into universal el-
ementary quantum gates [13]. Common sets comprise, e.g.,
(i) local operations such as the Hadamard gate, the phase
gate, and (ii) the entangling operations CNOT, controlled-
phase gates, V\SWAP,i SWAP, as well as (iii) the SWAP
operation. The number of elementary gates required for
implementing a quantum module then gives the network or
gate complexity.
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However, gate complexity often translates into too coarse
an estimate for the actual time required to implement a quan-
tum module (see, e.g., [14—16]), in particular, if the time
scales of a specific experimental setting have to be matched.
Instead, effort has been taken to give upper bounds on the
actual time complexity [17], which is a demanding goal both
from the Lie-algebraic [18-21] and geometric [22] points of
view. With the time required for implementing a module in a
specific experimental setting as the most realistic measure of
cost, here we use methods of optimal control theory to find
the minimum time by trying to solve the time-optimal con-
trol problem. The solution is hard to come by in general, so
here we resort to numerical algorithms. The shortest times
obtained depend on the coupling topology as well as on the
characteristic ratio of the time scales for local controls vs
nonlocal (i.e., coupling) evolutions and thus embrace the
specific experimental setting. Relating these minimal times
to the number of qubits gives the tightest known upper
bounds to estimating the actual time complexity of the quan-
tum modules, here for small numbers of qubits in a realistic
experimental setup.

Moreover, as will be discussed, in the generic case there is
no simple one-to-one relation between time complexity and
network complexity, because of different time scales be-
tween local and nonlocal controls, different coupling topolo-
gies allowing for different degrees of parallelization, and dif-
ferent types of coupling interactions matching different sets
of elementary gates.

Thus here we leave the usual approach of decomposing
gates into sets of discrete universal building blocks. Instead,
the scope is to exploit the differential geometry of the unitary
group for optimization [23,24] when using the power of
quantum control in order to obtain constructive bounds to
minimal time both as close to the experimental setting and as
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tight as possible. In the limit of zero cost for the fast local
controls (as in NMR) compared to the slow coupling inter-
actions, we give decompositions for the QFT and the
multiply-controlled NOT-gate C"~'NOT that are dramatically
faster than the fastest decompositions into standard gates
known so far.

The paper is organized as follows. The first focus is on the
somewhat surprising fact that for time-optimal decomposi-
tions of a desired unitary gate into a sequence of evolutions
of experimentally available controls the global phase does
play a role. This is the case when, e.g., there are different
time scales for local versus nonlocal controls. However, glo-
bal phases can readily be absorbed by shifting gradient flows
from unitary to projective unitary groups. Then numerical
time-optimal control provides the currently best upper
bounds to the minimal time required for quantum modules
such as the QFT or the C""'NOT gate in various coupling
topologies of n qubit systems. Here we present examples
with n up to seven. For n=3, the resulting times are
bounded from above by KAK-type decompositions taken to
sub-Riemannian regimes [18-21].

Although our applications refer to time-optimized quan-
tum computing in the NMR-type limit of fast local controls,
the methods introduced are very general and apply to all
systems whose dynamics can be cast into the closed form of
finite-dimensional Lie algebras (to sufficient approximation).
So finally we give an outlook from spin to pseudospin sys-
tems with comparable time scales of local and nonlocal op-
erations. Time-optimal control thus contributes to the grow-
ing toolbox of control methods for steering quantum systems
(see e.g., Refs. [25-34]).

II. CONTROLLABLE SYSTEMS
A. Spin and pseudospin systems

Here we address fully controllable [35-40] quantum sys-
tems represented as spin or pseudospin systems, i.e., those in
which—neglecting decoherence—for any initial state repre-
sented by its density operator A, the entire unitary orbit
U(A):={UAU'|U unitary} can be reached [41]. In systems
of n qubits (e.g., spins—%), this is the case under the following
mild conditions [23,40,42]: (1) the qubits have to be in-
equivalent i.e., distinguishable and selectively addressable
and (2) they have to be pairwise coupled (e.g., by Ising in-
teractions), where the coupling topology may take the form
of any connected graph.

B. Time scales for local and nonlocal controls

Let the quantum system evolve in a time interval 7, under
combinations of piecewise constant control Hamiltonians
{H;} each of which may be “switched on” with its control
aniplitude u;eR and the drift H,, i.e., the free-evolution

j
Hamiltonian, according to

HO=H,+ 2 uPHY. (1)
j

In NMR spin dynamics [43], for instance, the local controls
on qubit € are represented by a linear combination of the
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Pauli matrices {o7,,0¢,}. And the drift term is governed by
the weak scalar couplings (reminiscent of Ising interactions)

1
Hd= 772 J(m_a-€7 ® Onzs (2)
{<m 2

provided the couplings between spins are much smaller than
the difference between the eigenfrequencies (shifts ) of the
respective spins |J,,| <|Q¢—£,|. This is the case in hetero-
nuclear spin systems. In quantum control even the homo-
nuclear ones can be designed such as to meet this greatly
simplifying approximation [44].

For the system to be fully controllable in the sense out-
lined above, {H,t U{H} has to form a generating set of the
Lie algebra su(N) by way of the Lie bracket. Often the time
scale for local controls is considerably faster than for the
costly slow coupling evolutions.

III. TIME-OPTIMAL QUANTUM CONTROL

In order to control a quantum system of n qubits (spins—%)
such as to realize a quantum gate or module of some quan-
tum algorithm given by the unitary propagator Ug € U(2") in
minimal time, one has to decompose

UG — U(T) — e—i(tM—zM_l)H(M) .. e—i(zk—tk_l)H(k) o e—i(tl—tO)H(l)

3)
—up to a global phase factor—into a time-optimal sequence

| . Sy . .
[T:=3(ty—t,_)=min, vide infra] of evolutions under piece-
wise constant Hamiltonians H*®.

A. Relevance of global phases

However, as propagators generated by the traceless spin
Hamiltonians are elements of the respective special unitary
groups, the quantum gates Ug are realized by U(T) just up to
global phases ¢,

Ug=e"%U(T); (4)

so Uge U(N), while U(T) e SU(N). For n spins—% read
N:=2" henceforth. Note that with the center of SU(N) being

Zy={®™N1y | p=0,1,..,.N—-1}, (5)
one has a choice of N such phases
¢, € {o+2mp/N|p=0,1,....N-1}, (6)

where ¢, shall be the smallest angle ¢,e€[0,7] so that
det{e’®Ug}=+1. Although global phases are clearly imma-
terial to quantum evolutions py—> Up,U~', it is important to
note they do in fact contribute to the over-all time needed to
implement Ug: consider, e.g.,

e_i(ﬂ'/z)‘ffz@o'mz — ei(w/Z)e—i(w/Z)(a'ng@ 1+1®0,,,) , (7)
where the nonscalar part of the right-hand side can be real-
ized solely by (fast) local controls, while the left-hand side
hinges on nothing but (slow) coupling evolution. In Fig. 1
this is further illustrated for the three-qubit QFT imple-
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FIG. 1. (Color online) Global phase dependence of the times
needed to implement the three-qubit QFT on a linear chain (L3) of
nearest-neighbor interactions with uniform weak scalar J couplings.
The right curves (@) show the special unitary implementation of
a QFT with the smallest global phase ¢y=17/16, where it takes
2.53J7" to reach a fidelity Fy:=(1/N)Re te{e"%»ULU(T)}
=0.99999. The left curves (O) display the fastest QFT implemen-
tations obtained. They are attained with the global phase ¢,
=57/16. Fidelities =0.99999 are reached after 2.05 J~!. Times for
local controls are assumed to be negligible in this limit matching
the typical NMR scenario, where the time cost is determined by
coupling evolutions. (a) Gives the trace fidelities against time, while
(b) shows the devitiations from full fidelity in a semilogarithmic
way.

mented on a chain of three spins connected by nearest-
neighbor interactions of weak scalar coupling in the NMR
limit of zero time cost for the fast local controls.

B. Optimal control on projective groups

For a given unitary quantum gate Ug and propagators
U=U(r) describing the evolution of the quantum system,
there are the two geometric tasks, one that explicitly carries
the phase, while the other one automatically absorbs it as
desired: (1) minimize the distance ||[U—e!®»Ug]|, by maximiz-
ing @, :=Re tr{e"%»ULU} for fixed ¢, and (2) minimize the
angle / (U,Ug)mod(m) by maximizing ®,:= |tr{UL U}

(1) Clearly, the first task is related to the trace fidelity
F,:=(1/N)Re tr{e""i’PUZ;U (7)}. In terms of control theory, it
means maximizing the quality functional & ,[U(7)]
=Re tr{e " ULU(T)} with 0<t<T subject to the equation
of motion U(r)=—iHU(r) (with H=H,+3u;H,) and the ini-
tial condition U(0)=1, whereas the final condition U(T) is
free at an appropriately fixed final time T (vide infra). As
usual, the problem is readily solved by introducing the
operator-valued Lagrange multiplier \(s) satisfying \(r)=
—iH\(1) and a scalar-valued Hamiltonian function

WU(1)] = Re tr{v(tk)[— i(Hd +3 ujHj)] U(tk)}. )
J

Then, Pontryagin’s maximum principle [45] may be ex-
ploited in a quantum setting [46,47] by requiring for the
control amplitudes u; to be optimal that
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W = —Im e\ (1) H;U(1p)} = 0 ©)

7

as well as for the final condition of the adjoint system

&CDI(T) i
NT) = U - e'Ug (10)
thus allowing one to implement a gradient-flow based recur-
sion [47]. For the amplitude of the jth control in iteration
r+1 at time interval #, one finds with « as a suitably
chosen step size (e.g., as input to conjugate gradients)
u* V(1) =ul (1) + aw. (11)
J
The procedure is then repeated for a set of decreasing final
times 7 up to a minimal time 7 still allowing to get sufficient
fidelity (compare Fig. 1).

(2) The second task amounts to maximizing P,[U()]
=|tr{ UZ}U (7)}|?, which relates to the square of the trace fidel-
ity and is easy to handle by gradient-flow methods. This
problem, however, can readily be reduced to task (1): ob-
serve that to U e SU(N),

U=U®U (12)
is a representation of the corresponding element of the pro-
jective special unitary group (definition, e.g., in Ref. [48])

iso SU(N) iso U(N)
PSUN) = =7 = = ) (13)

embedded in SU(N?). Hence this representation is highly
reducible yet very convenient, because

®,[U(1)] = Re t{USU(T)} = [r{ULU(D)}? = D,LU(O)].
(14)

Hence one may adopt the previous results to obtain the gra-
dient flow on PSU(N) just by using

c?u_,

A 2 (i U0} 0l VD)

(15)

in Eq. (11) (cp. also Ref. [47]). Thus an explicit tensor prod-
uct never enters the algorithm. And the final condition of the
adjoint system does not require any prior knowledge or
screening of the global phase ultimately giving the fastest
implementation as has been the case in previous settings,
e.g., Ref. [49], because embedding PSU(N) in SU(N?) en-

forces a global phase of zero for U. Absorbing the phases
cuts the number of computations for n-qubit systems by a
factor N=2".

Having reduced task (2) to task (1) also saves all the
convergence and step-size considerations [24] from SU(N?)
to apply to PSU(N). With these stipulations, the Hamilto-
nians H, according to Eq. (1), and the numbering as in Eq.
(3), the iterations r of Eq. (11) can be used in the following
algorithmic scheme [47].
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(1) Set initial controls u(.o)(t) for all times 7, with
ik k

k=1,2,...,M at random or by guess.
(2) Starting from Uy=1, calculate for all 7,,1,,...,# the
forward propagation
U(l)(tk) — e—i(tk_tk_1)HI((")e_i([k_l—tk_z)Hir_)l . —l(ll t())H] U
(16)

(3) Likewise, starting with T=t,, and A(T) from Eq. (10),
compute for all #;,,7,,_;,...,; the back propagation

)\(’)(tk) = ei(lk_fk—l)Hl(\' )e (=t HL, . el t=ty-1) M)\(T)

(17)

(4) Calculate dh[U(t;)]/du; according to Eq. (9).
(5) With u(m)(tk) from Eq (11) update all the piecewise
Hamﬂtomans to H(r *1) and return to step 2.

IV. APPLICATIONS

For simplicity, the coupling strengths in all the subsequent
examples are assumed uniform, thus enabling to give the
times in units of J~!. However, all our algorithms can equally
well cope with nonuniform coupling constants directly
matching the experimental settings.

Computational settings. The algorithmic scheme outlined
above was implemented as a C++ program following previ-
ous work [47]. Typically, 10 random initial control sequences
of a fixed final time T (step 1) are followed through 10 000
iterations of steps 1 to 5. This turned out to be sufficient and
superior to using more random initial conditions at fewer
number of iterations. Out of the 10 runs up to 10 000 cycles,
the successful candidates typically show already a trace fi-
delity between 95 and 99 % (if the final time T is large
enough). Out of them the best one is selected for further
iterations up to fidelities F;;>0.999 99. This procedure is
typically repeated some five times for each fixed final time 7.
In order to give the shortest final time still allowing to obtain
F;>0.999 99 with a resolution of +0.01 J~!, some 20 to 50
candidates of T have to be calculated.

A. Towards a time-optimal quantum Fourier transform

The quantum Fourier transform (QFT) is central to all
quantum algorithms of Abelian hidden subgroup type
[50,51]. The time required to implement this module in
n-qubit systems obviously depends on the topology of the
coupling interactions. Figure 2 shows some of the topologies
for the couplings of four qubits and the respective times (best
numerical results from optimal control) for implementing the
four-qubit QFT. Clearly, the complete coupling topology cor-
responds to the maximal graph K, and thus allows for fast
implementations, while the chain of nearest-neighbor inter-
actions L, is the minimal connected graph entailing slow
implementations. Note, however, that the minimal times also
depend on the ordering in the graph, because permutations
(carried out by transpositions) may call for timewise costly
SWAPs.

In complete coupling topologies K,,, the time for the de-
composition into standard gates (controlled phase gate, Had-
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FIG. 2. Four ordered connected graphs with four vertices repre-
senting the topology of pairwise couplings (edges) between four
qubits (vertices). Times rounded to 0.01J~" are given for the short-
est QFT-realizations obtained thus far by numerical time-optimal
control with trace fidelities (1/N)|tr{USU(T)}=0.99999.

amard, and SWAP) can easily be expressed in units of J~! as
a function of the number qubits (compare Refs. [52,53])

T(n):i(n+3), (18)

where the final SWAP introduces a constant time offset.
For complete topologies there is not much time to gain by
using numerical time-optimal control. However, as is shown
in Fig. 3 and Table I, for linear spin chains (L,) with nearest-
neighbor Ising interactions, time-optimal control provides
decompositions of the QFT that are significantly faster than
the corresponding decompositions into standard gates would
impose: in six qubits, for instance, the speed-up is more than
eightfold and in seven qubits approximately ninefold.
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FIG. 3. (Color online) (a) Gate complexity of the QFT in linear
coupling topologies L,. Standard-gate decomposition (@) [58] and
optimized scalable gate decomposition (A) [54]. (b) Time complex-
ity of the QFT in linear coupling topologies. Upper traces give
analytical times associated with the decompositions of part (a):
standard-gate decompositions (@) [58] and optimized scalable gate
decompositions (A) [54]; (A) gives a special (i.e., nonscalable)
five-qubit decomposition into standard gates obtained by simulated
annealing [54]. Lowest trace: speed-up by time-optimal control
with shortest numerical realizations obtained (O) rounded to
0.01J7'. Further details in Table I.

042331-4



OPTIMAL CONTROL-BASED EFFICIENT SYNTHESIS ...

PHYSICAL REVIEW A 72, 042331 (2005)

TABLE 1. Speed-up of the quantum Fourier transform on linear spin chains L,,.

Stand. QFT* Blais” Best results® Speed-ups
qubits 71 717 (1 Stand. Blais
2 1.75 1.75 1.25 1.40 1.40
3 8.13 5.13 2.05 3.94 2.50
4 17.56 8.50 3.15 5.58 2.70
5 30.03 11.88(8.81) 4.30 6.98 2.76(2.05)
6 45.52 15.25 543 8.38 2.81
7 64.01 18.63 7.47 8.57 2.49

*Analytical times for decomposition into standard gates [58].
PReference [54] in brackets: the nonscalable special five-qubit QFT.
“Upper bounds to minimal time for achieving a trace fidelity of =0.99999 [>0.9975 for 7 qubits] by

numerical optimal control.
YTimes 7 are rounded to 0.01 J~!.

For a fair comparison, however, note that Blais [54] (in
contrast to Fowler et al. [55]) also suggests to permute the
output qubits which saves one SWAP of 1.5J°!. Clearly,
searching through n! qubit permutations or even (2")! levels
[56] can provide even faster realizations, as will be pursued
elsewhere.

B. Towards a time-optimal C"~'NOT

Likewise, one may strive to implement the C""'NOT gate
in a time-optimal way. In a complete coupling topology of n
qubits, the algorithmic complexity was described by Barenco
et al. [57] as increasing exponentially up to six qubits,
whereas the increase from seven qubits onwards is quadratic.
Again, time-optimal control provides a dramatic speed-up in
this case as well, see Fig. 4 and Table II as well as the
controls in Fig. 5.
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FIG. 4. (Color online) (a) Network complexity of the C""'NOT
gate on complete coupling topologies K, [57]. (b) Time complexity
of the C""'NOT gate on complete coupling topologies. Upper trace:
analytical times for decomposition into standard gates (@) [57].
Lower trace: speed-up by time-optimal control with shortest times
(O) currently needed for realizing C"~'NOT by numerical control
rounded to 0.01 J~!.

C. Beyond spins: Controlling coupled charge qubits in
Josephson devices

Obviously the optimal control methods presented thus far
can be generalized such as to hold for systems with finite
degrees of freedom allowing for a pseudospin formulation in
terms of closed Lie algebras. For instance, the standard
CNOT-gate can be realized in two coupled charge qubits of a
solid-state Josephson device some five times faster than in
the pioneering setting of Ref. [59]. Yet one easily obtains a
trace fidelity beyond 1—10~" as shown in Ref. [60]. Similarly
we found realizations of the TOFFOLI gate in three linearly
coupled charge qubits that are some 13 times faster than by
decomposition into nine CNOT gates of the NEC group [59]
and still 2.8 times faster than nine optimized CNOTs [60].

V. DISCUSSION

The goal is to extend the optimal control methods to
larger modules of quantum algorithms or simulations in or-
der to implement them both in a time-optimal and experi-
mentally robust way. Thus the growing set of numerical ex-
amples will hopefully provide inspiration to understand time-
optimal steerings of quantum systems algebraically, which,
however, seems very demanding in the cases presented here.
In other instances such as for the propagator

TABLE II. Speed-up for the C"~'NOT gate in complete coupling
topologies of n qubits K,,.

Stand. decomposition® Best results”

qubits T[1/J]° T[1/J]° speed-up
2 0.5 0.50 1.00
3 3.0 1.01 2.97
4 7.0 1.90 3.68
5 15.0 3.37 4.45
6 31.0 4.59 6.75

“Barenco et al. [57].

bUpper bounds to minimal time for trace fidelities =0.99999
[>0.999 for 6 qubits] by numerical optimal control.

“Times 7 are rounded to 0.01 J~!.
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FIG. 5. (Color online) Time course of controls for the shortest
realizations obtained for the following quantum modules: (a) the
QFT on a linear coupled four-qubit system (L,); (b) the C’NOT
gate on a fully coupled four-qubit system (K,). Traces in blue:
amplitudes for o, controls (x pulses); red: amplitudes for o, con-
trols (y pulses) on the spins =1, 2, 3, 4.

U(l) — g_iw‘]t[(1/2)Ulz®0'2z®‘731]’ (19)

the theory is fully understood, and the predictions based on
sub-Riemannian geodesics [20] perfectly match (i) the nu-
merically obtained time complexity as well as (ii) the actual
time course for the controls [47] for all wJr € [0, w/2].

Along these lines, the above controls may finally trigger a
theoretical understanding. The ultimate challenge then is to
extract a principle for a scalable time-optimal control scheme
from the set of numerical examples.

VI. CONCLUSION

Here we have left the usual approach of decomposing
quantum modules into sets of discrete building blocks, such
as elementary universal quantum gates thus expressing the
cost as algorithmic network complexity. Instead we proposed
to refer to time complexity as the experimentally relevant
cost: it allows for exploiting the continuous differential ge-
ometry of the unitary Lie groups as well as the power of
quantum control for getting constructive upper bounds to
minimal times both perfectly matching the experimental set-
ting while being as tight as possible. In particular when local
and nonlocal operations are of different time scale, different
global phases entail different minimal times. In the limit of
zero cost for the fast local controls we gave decompositions
for the QFT and the multiply controlled NOT-gate C""'NOT
that are dramatically faster than the best decompositions into
standard gates known so far would impose. However, there is
no guarantee the ultimate time optimum is attained, also be-
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cause going systematically through all permutations of the
qubits may give further improvement.

Note that the time gain in decomposing unitary modules
holds, no matter, whether pure states or ensembles are used.
The approach also clearly shows that in the generic case
there is no simple one-to-one relation between time com-
plexity and network complexity. This is for very practical
reasons: typically (1) not all the elementary gates are of the
same time cost, but each experimental implementation
comes with its characteristic ratio of times required for local
vs nonlocal (coupling) operations. (2) Not all the elementary
gates have to be performed sequentially, but can be rear-
ranged so that some of the commuting operations (e.g., con-
trolled phase gates between several qubits) or operations in
disjoint subspaces can be parallelized. (3) The coupling to-
pology between the qubits does not have to form a complete
graph (K,) but may be just a connected subgraph, and each
graph comes with a specific potential of parallelizing time-
wise costly interactions; this is demonstrated for the QFT on
complete coupling topologies K,, versus the linear coupling
topology L,, where the parallel performance of controlled
phase gates [54] reduces quadratic time complexity to linear
complexity, which, however, can be further speeded up by
time-optimal control. (4) The experimental setting with its
specific type and individual strengths of coupling interaction
(e.g., Ising or Heisenberg-XY or XYZ type) related to the
choice of universal gates for the network decomposition may
introduce some arbitrariness. It is for these very reasons that
time complexity is the more realistic measure of the experi-
mentally relevant cost than network complexity is.

VII. OUTLOOK

Although extrapolation may be premature, it is fair to
anticipate that in systems of some 20 qubits network decom-
positions will often become impractical. Thus time-optimal
decompositions into controls actually available in the experi-
mental setting promise to widen the range of experimentally
accessible tasks significantly and will prove useful in many
experimental implementations. Moreover, analyzing the to-
pology dependence of minimal times while allowing for non-
uniform coupling strengths will contribute valuable guide-
lines for designing optimized architectures of quantum
computational hardware.
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