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Quantum error correction of systematic errors using a quantum search framework
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Composite pulses are a quantum control technique for canceling out systematic control errors. We present a
different composite pulse sequence inspired by quantum search. Our technique can correct a wider variety of
systematic errors—including, for example, nonlinear over-rotational errors—than previous techniques. Con-
catenation of the pulse sequence can reduce a systematic error to an arbitrarily small level.
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I. INTRODUCTION

Quantum error correction is perhaps the biggest hurdle in
building a quantum computer. Imperfect control operations
are one of several sources of error. While error-correction
schemes designed to correct for general errors [1] no doubt
also correct control errors, error-correction or error-
avoidance schemes tuned to the dominant physical error
model are more efficient and practical. Specialized error-
correction schemes can also tolerate higher noise rates.

This paper specializes to systematic control errors of the
following form. When we try to apply the single-qubit pulse
U=exp(ifi-a), a 26 rotation about axis 72, we in fact apply

U=UV. The error is systematic in the sense that it is invert-

ible; attempting to apply U' in fact applies U'. The form of
the error V is of course restricted. Previous authors [2,3]
have considered the case of linear over-rotational errors:
V=exp(iebii-a) where € is fixed and small, but unknown.
Here, we consider the case of general over-rotational errors,
V=explie(|6|,7)i- ]. The amount of over-rotation, €(|6|,7),
can now depend arbitrarily on the rotation angle 26 and also
the axis of rotation 7.

Our error-correction method is a different composite pulse
sequence, inspired by the generalization of quantum search
known as amplitude amplification [4]. In this algorithm, the
amplitude produced in a particular target subspace by apply-

ing some unitary U to a source state is amplified by succes-
sively repeating Ry(m)U'R,(m)U. Here Ry(w) and R,() are
selective reflections about the source and target, respectively.

In standard quantum search, the source is |O”>, U=H®" trans-
verse Hadamard, and the target is a bit string |x). In the

subspace spanned by U |0") and |x), the state vector steadily
rotates toward |x). Eventually, it rotates past the target.
What happens in quantum search if we do not merely
reflect about the source and target, but instead add a phase
other than 7? It is well known that any phase bounded away
from O works to give a square-root speedup (with different
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constants); for example, this fact is used in a stronger form in
Ambainis’s element distinctness algorithm [5]. One of us
(L.G.) noticed that concatenating the basic sequence

URy(w/3)U'R(w/3)U

results in the state converging to the target subspace and not
overshooting it, when viewed at times 3%, k e N [6]. Figure 1
gives some geometrical intuition.

For the present problem of systematic control errors, there
is no source or target—we desire a “fully compensating”
pulse sequence accurate on an arbitrary input—but a
similar calculation still applies. We need merely choose a
source arbitrarily, say the X+1 eigenstate |+), and set the
target accordingly (to U|+)). Assume 7=(0,0,1). Let

FIG. 1. Looking down along the vector [s), the top diagram
shows  why (|U|s)=(s|V|s) is close to 1,
(|UR(w/3)UTR(/3)Uls)=(s|VR,V'R,V]s) is even closer to 1.
The bottom diagram gives similar intuition for a longer pulse
sequence.

when
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Ro=exp(im/6X) a /3 rotation about the X axis, and
R,=UR,U'. When we apply the sequence of noisy pulses
R]UR\U'R,URY,

the different systematic errors in both U and the noisy /3
rotations largely cancel out, leaving behind a higher-order
error. (The extra pulses at either end adjust for the phase
difference between |+) and its orthogonal complement |—)
which would otherwise be introduced.) This correction se-
quence can be concatenated on itself in a certain way to
reduce errors arbitrarily. A directly related method also ap-
plies to over-rotational errors in two-qubit gates [7]. There-
fore this composite pulse sequence allows for an arbitrarily
accurate set of universal gates, giving a threshold result for
this error model.

We also consider another error model of systematic errors
in even the rotation axis A: V=exp(i€- o). Here the error €
may depend on the rotation angle 26 but, except for a spe-
cific coordinate change, not on the axis 71. For example, R,
and R, are related by the coordinate change R,=UR,U'. We
require that the errors be related by the same coordinate
change, or R,=UR,U".

Section II describes the basic idea behind the composite
pulse sequence, by explaining its behavior when the /3
rotations are perfect. In the two following sections, we ex-
tend the error model to the two cases described above.

Composite pulse sequences are an important, practical
quantum control tool for removing systematic errors in a
variety of quantum information processing implementations
[8,9]. We need to show that our correction sequence remains
practical. While the error models we address are more gen-
eral than the linear over-rotational errors which have previ-
ously been considered, the control requirement is also
stricter. We typically require the ability to rotate about an
arbitrary axis in the Bloch sphere, not just one in the xy
plane. If rotations are only allowed about axes in the xy
plane as in most NMR-type models, then our method only
applies to correct 7 pulses. In Sec. V, we compare our
method, with 7 pulses and linear over-rotational errors, to
previous fully compensating composite pulse sequences, par-
ticularly those recently discovered in Ref. [2].

II. PERFECT #/3 PULSES

It is instructive to start with just the core idea of our
composite pulse sequence, and build up the analysis from
there. Consider the sequence

U = R'UR,U'R,UR} = UR}VR,V'R,VR}, (1)
where again V=U'U. Here we maintain a distinction be-
tween ﬁo = U'R,U and R, because the errors in the two terms
might be different. For the rest of this section, however, as-
sume R, and R, are perfect, so Ry=R,=R,=exp[i(/6)X].

Write V=exp(i€- o), where o=(X,Y,Z). Generally, each
term of € may be nonzero. To measure the closeness of UX)
to U, we compute a power series expansion of
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(Te(X-UTUYX), Tr(Y - UTUW), Tr(Z- UTUX)). We obtain
. . [A N
(2ie, - lV3(€§ + 63) +0(€p),

2ie, +2ie € + O(|€P),

2i€, +2ie€, + O(|€)).

The first term is first order in €, because our correction Ry is
a rotation about the x axis, and commutes with errors in the
X direction. Errors in the Y and Z directions are symmetri-
cally canceled out, leaving only third-order terms.

We can express this result quite simply. Assume €, , is an
a,b,cth-order term. Then the X direction error order after the
X direction composite pulse correction is applied is
min{a,2b,2c}, the Y direction error order is min{3b,b+2c}
and symmetrically for the Z error. In shorthand, we write

(a;b;c)—(a,2b,2¢;3b,b+ 2c;3c,c +2b). (2)
X

The underset X here refers to X correction, and it is under-
stood that we take a minimum on each of the three terms on
the right. This notation lets us quickly understand what hap-
pens when we concatenate correction sequences. To concat-
enate when 77/3 pulses are perfect, just substitute the previ-
ous level’s composite pulse sequence for U. A level k
concatenation will require n;=3n;,_;+4 pulses, so the se-
quence length grows like 4%, For example, starting with only
first-order Z error, and applying an X correction, gives

(9039051) = (2;;3).
X

At this point, it is best to apply a Y correction, since that
cancels out errors in both X and Z directions. (Y correction is
symmetrical to X correction, except with /3 rotations about
the y axis and the same axis conjugated by U.) At the next
level of concatenation, Z correction will be optimal, and so
on:

(003051)—(2;0;3)—(6;4;7)— (14;12;7)— (14;26;21)
X Y V4 X
—(42;26;49)— (94,78;49). (3)
Y V4

After 3°=729 pulses of U or U, and 1456 perfect /3
pulses (about six axes), the error is only O(|€*).

Remark 1 (Generalization). The question of whether this
pulse sequence generalizes deserves further study. We have

been able to find a pulse sequence with five applications of U

or l_ﬁ, and perfect rotations by /5 or 37/5, which on input

|+)=(1/v2)(|0y%|1)) achieves a fidelity error of O(e'?):

(+|UTOR (3—7T>I7"'R< z)UR ( 7—T>I_J"'R(3—Tr>l_]|+> ’
- N's N5/ 5 N5 )T

=1-0(€"). (4)

(See Fig. 1 for geometrical intuition.) However, this se-
quence gives no improvement with imperfect correction ro-
tations.

Remark 2 (Error measurement). For us it is key to mea-
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sure the direction of the error, as well as its magnitude. How
does our method of measuring error compare to other rea-
sonable methods? On a particular input state, the difference
in the fidelity from one is quadratically smaller than our

measure. The so-called infidelity between U and U*, or
1—%|TrUTl_/*, is used in Refs. [3,7,8], and is also quadrati-
cally smaller than our measure. Brown et al. [2] use as their
measure of distance the trace distance Tr|U-U*|, which de-
pends on the global phase of the operators. Our correction
sequence does not give higher-order accuracy in the global
phase, but a simple modification of the trace distance opti-
mizes over global phases, and then this measure of error is of
the same order as ours.

II1. IMPERFECT /3 PULSES, ERROR ANGLE
DEPENDENT AND AXIS INDEPENDENT

Let us consider the more realistic case that the /3 pulses
are themselves erroneous. Assume that the error in a rotation
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depends only on the rotation angle, not on the rotation axis.
When we attempt to apply exp(ifi- ), we actually apply
exp{i[ 6+ €(6)]72- g}. Here €(6) can be an arbitrary function of
6, which is, however, always small [order O(|¢|)]. The error
amount does not depend on the rotation axis 7. Previous
work has only considered the less-general case of linear er-
rors, €(6)=¢€6.

In fact, let us generalize our calculations slightly further.
We will allow errors in the 7r/3 pulses besides just over-
rotation errors, except these errors must be the same under

change of coordinates by U. In particular, R,= UR,U". It is
not clear in what physical models this will be an appropriate
base error assumption—perhaps one in which the entire ap-
paratus for applying a 7/3 rotation is rotated about the qubit
in three dimensions as U acts in R, or equivalently, the qubit
is physically rotated. However, the added generality will be
necessary for considering concatenation of this correction se-
quence.

Write Ry=R, exp(i 5-G). We obtain

Tr(X - UTOY) = 2ie, + 2i(38, + 8,) e, — iN3(& + €) = 2i(5, ~ 35, e, + O(| &> + | 8]| e + | | ])

Tr(Y - UTUW) = (

Tr(Z- UTUY) can be determined by symmetry. In our shorthand notation, with &,

2i(\35, + 8) e, ~ 4i(\38,- 35,5, + Ve, — \3i(\35, + 5) & + 2i€l )
~2i(\38 26,8~ \3&)e. ~ \3i(\38, - 8) € +2ie,& + O(|& + |8P[e]) )

being d,e, fth order, respectively,

RV

a,e+b,f+b,2b,e +c,f+c,2c;
(a;b;c)—|e+a,f+a,d+be+f+b,2f+b,e+2b,f+2b,3b,2¢ +c,e+f+c,2f+c,e+2c,f+2¢c,b+2c; |. (5)
X e+a,f+a2e+b,e+f+b2f+b,e+2b,f+2b,d+c,2e+c,e+f+c,2b+c,e+2c,f+2c,3¢

For example, taking d=e=f=%, we recover Eq. (2) from the
perfect 7/3 pulse case. In the case of first-order over-
rotation, d=1, e=f=,

(00;0051) — (4;4;4). (6)
X, VY

To obtain arbitrarily accurate rotations, it is most effective to

correct both the applications of U and the /3 correction
pulses. So at this point correct the /3 pulses until d=e=f
=4. Note that applying such a correction maintains the in-
variant that the error in a pulse depend only on the angle and
not the axis. Now

(4;4:4) — (12;12;12). (7)

XY,z

Every three levels of concatenation (both on U and the 7/3
pulses) increases the error order by a factor of 3. Therefore

obtaining error tolerance to a desired amount €, requires
polylogarithmically many pulses in 1/€,.

IV. IMPERFECT 7/3 PULSES, ERROR BOTH ANGLE
AND AXIS DEPENDENT

What if the error in 7/3 pulses depends on which basis

they are carried out in, i.e., R,# UR,U'? Can we still obtain
arbitrarily accurate pulses? Perhaps surprisingly, the answer
is yes, if the error is of a restricted form: only over-rotation
errors. However, the orders will not grow exponentially
quickly in the number of concatenation levels, only linearly,
implying that error tolerance to an amount €, will require
polynomially many pulses in 1/¢€, instead of only polyloga-
rithmically many.

Write Ry=R, exp(i8X), R,=UR, exp(i3X)U'. Expanding
(Tr(X-UTUW), Tr(Y- UTUWY), Tr(Z- UTUX)), we obtain

042326-3



B. W. REICHARDT AND L. K. GROVER

PHYSICAL REVIEW A 72, 042326 (2005)

2ie,~iV3(€ + &) +0(|8€ + &),
~2i\3(6+ D€, 2i(6- e, + 2i€ +2ie, & + O(F|el + &), |.
—2i\3(8+ e, - 2i(5- e, +2i€ +2ie.d + O(5]d +|&P)

Ty

assuming |5/=0(]d)). In our shorthand notation, with & first order, the rule is

(a;b;c)—(a,2b,2¢;3b,b+2c,1 +b,1+c;3c,c+2b,1+b,1+c). (8)
X

For example,

(0300;1)—(2;252)—(2;3;3)—(3;3;3)—(3:4:4), (9)
X X Y X

and so on, with every two levels of concatenation increasing
the error order by 1. Note that we do not concatenate correc-
tions onto the /3 pulses, because then the error would no
longer be simply over-rotational. (Even with a more general
expansion, it turns out that the convergence is still only be
linear in the number of concatenation levels.)

V. = PULSES IN NMR

While our method corrects against more general types of
errors than previous composite pulse sequences, it also has a
stronger requirement. Namely, we must be able to apply a
/3 rotation about the x, y, and z axes, and also about those
same axes in the U-transformed basis. In most current pro-
posed quantum information implementations, primitive rota-
tions are only allowed about axes in the xy plane. For U, R,,
and R, all to be rotations about axes in the xy plane, it must
be that U is a rotation by an integer multiple of 7. This is a
considerable restriction on the applicability of our method.
Still, for 7 pulses our correction succeeds in a setting more
general than that for which previous methods could correct;
for example, we can correct for nonlinear over-rotations.

Assume now that the systematic error is in fact a linear
over-rotation; when we try to apply exp(iéi- ), we actually
apply explié(1+e)ii-o]. Assume U=exp[i(7/2)X]=X. Our
/3 correction method, correcting in the Y direction, leaves
behind second-order errors, with a sequence length of
3m+4r/3. (Practical composite pulse sequences need to be
as short as possible, in order to minimize any nonideal ef-
fects not accounted for in our error model.) We cannot con-

catenate a Z correction, but can concatenate alternately X and
Y corrections to reduce the error arbitrarily. Concatenating an
X correction onto the Y correction leaves behind a third-
order error, with a sequence length of (14%)77.

How does the 7/3 correction method compare with pre-
vious correction methods? The most practical correction
methods previously known were the B2 (also known as BB1)
correction sequence, and the recently discovered B4 se-
quence [2]. These sequences are implemented as follows:

B4((E¢2(7T)E3¢2(27T)E¢2(7T))4
X (R, (= 2mR_y (- 4mR,, (- 2)
X(E/)Z(W)E3¢2(2W)E¢2(77))4)U» (11)

where E¢( 0) =exp{i[ 6(1+¢€)/2](cos pX+sin PY)}, cos ¢,
=—0/4, and cos ¢p,=—0/247. They leave behind third—
and fifth-order errors, respectively. The total sequence length
for correcting a 7 rotation is 577 for B2 and 417 for B4.
Hence our method, in this linear over-rotation error model,
seems to offer little over the plain B2 sequence. Table I gives

values for the infidelities 1—3|Tr U'U")| for various correc-
tion sequences. (As previously remarked, the infidelity is
quadratically smaller than the trace distance, so the infidelity
error orders for the three possibilities 7/3Y, B2, and B4 are
4, 6, and 10, respectively.)

Does our method complement previous correction meth-
ods? To answer this question, we must determine the direc-
tion of the error left behind after a correction sequence. For

example, B2 and B4 are each implemented as BiU , Where Bi

TABLE I. Infidelities 1—1/2|TrUTU")| of naive and variously compensated exp[i(7/2)X] pulses.

€ Naive B2 (BB1) B4 w/3Y /3Y°B2 w/3Y°B4
0.3 1.1x107! 3.0x 1073 7.2%107° 4.9%1072 1.0x1073 241075
0.1 1.2x1072 4.6Xx107° 1.6X107° 6.5x107* 1.6X 1077 5.6x107!1
0.03 1.1x1073 3.4%107° 9.7%x 1071 5.2x107° 1.0x 10711 29x 107V
0.01 1.2x10™* 47x10712 1.7x 107" 6.4x1078 1.6Xx 1071 55X 10723
0.003 1.1Xx107° 3.4% 10715 9.8X 10725 5.1x10710 1.0x 1071 2.9% 1072
0.001 1.2% 1070 47%10718 1.7%107% 6.3%x10712 1.5%1073 5.5% 10735
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FIG. 2. Infidelity plotted against the base linear over-rotation
parameter €. Solid line: unprotected 7 pulse. Dashed line: B2 and
B4 pulse sequences. Dotted line: 7/3Y correction on the 7 pulse,
and concatenated onto a symmetrized B2 (BB1) pulse sequence.

is some particular pulse sequence not involving U. A
simple calculation shows that both B2 and B4 leave behind
an error which is has relatively large X and Y components.
Therefore, concatenating on X or Y correction will not in-
crease the error order. We can, however, find an axis in the
xy plane which is approximately orthogonal to the xy com-
ponent of the error, and correct along this axis. Alternatively,
we can symmetrize the B2 and B4 sequences into
expli(7/4)(1+€)X]Bi expli(7/4)(1+ €)X]. In this more sym-
metrical form, the error magnitude is unchanged, but the
direction is entirely into the xz plane. Therefore we can sim-
ply apply a Y correction to the symmetrized sequences. Table
I compares the infidelities of Y correction concatenated onto
the symmetrized B2 and B4 correction sequences. Note that
the former case gives fourth-order protection with a sequence
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length of only (16%)77; this gives a potentially practical com-
promise between the B2 and B4 correction sequences. Figure
2 plots the fidelities for €>0.

VI. CONCLUSION

We have presented two main results. The 7/3 correction
sequence protects against general errors which depend arbi-
trarily on the rotation angle but not the rotation axis. The
same sequence protects against over-rotational error which
depends arbitrarily on both the rotation axis and the angle of
rotation. Previously, composite pulse correction sequences
were only known for the cases when the error was indepen-
dent of the rotation axis, and depended linearly on the rota-
tion angle.

Moreover, our composite pulse correction sequence con-
catenates nicely to reduce errors arbitrarily. In the first case,
the overhead number of pulses is polylogarithmic in the de-
sired accuracy, and in the second case the overhead is poly-
nomial.

However, our correction sequence in general requires
primitive rotations about arbitrary axes in the Bloch sphere,
and only applies to correct 7 pulses in the typical situation in
which rotations are only allowed about axes in the xy plane.
For correcting 7 pulses, our method concatenated on top of a
B2 pulse correction provides a compromise between B2 and
B4.
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