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An algorithm is proposed which transfers the quantum information of a wave function �analog signal� into
a register of qubits �digital signal� such that n qubits describe the amplitudes and phases of 2n points of a
sufficiently smooth wave function. We assume that the continuous degree of freedom couples to one or more
qubits of a quantum register via a Jaynes-Cummings Hamiltonian and that we have universal quantum com-
putation capabilities on the register as well as the possibility to perform bang-bang control on the qubits. The
transfer of information is mainly based on the application of the quantum phase estimation algorithm in both
directions. Here, the running time increases exponentially with the number of qubits. We pose it as an open
question which interactions would allow polynomial running time. One example would be interactions which
enable squeezing operations.
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I. INTRODUCTION

Traditionally quantum computing and quantum cryptogra-
phy have been formulated in a digital setting, i.e., with qubits
�1�. However, also models with continuous variables have
been proposed �2�. Protocols for continuous variable cryp-
tography have been investigated in detail �e.g., Ref. �3��. In
Ref. �4� several operations on hypothetical continuous vari-
able quantum computers have been proposed which can gen-
erate arbitrary unitaries. The author argues that continuous
models possess various advantages compared to the standard
model quantum computer. Therefore an interface between
continuous and discrete registers is desirable, since with this
device one could combine the advantages of both ap-
proaches. There are also other reasons why the bridge be-
tween continuous and discrete degrees of freedom is an in-
teresting issue of research: The possibility to transfer the
wave function of a massive particle or the state of a light
mode to a quantum register would allow to use algorithmic
measurement schemes like those proposed in Ref. �5� for
POVM measurements on the continuous degree of freedom.
Similarly, the ability to transfer quantum information from
digital to analog would allow one to use state preparation
algorithms in quantum computers �6� for algorithmic state
generation in the analog system. Furthermore, the implemen-
tation of POVM measurements with an uncountable number
of outcomes on a finite dimensional system is only possible
if one couples it to a continuous degree of freedom �7�.

An interesting system where the state of a light field is
transfered to the state of many two-level systems and vice
versa is the micromaser �see Ref. �8�, and references therein�.
The two-level atoms cross a cavity one after another such
that at most one atom is present in the cavity at any time.
While it is passing the cavity, each atom is interacting with

the cavity field mode via a Jaynes-Cummings Hamiltonian.
One can prove �8� that every state of the field mode can
asymptotically be prepared as a limit if an infinite number of
atoms, initialized to an appropriate state, passes the cavity. It
has been shown that for many interesting examples small
numbers of atoms are sufficient to prepare the desired state
with high fidelity. Since the final state of the field in the
asymptotic scheme does not depend on its initial state, the
latter has been completely transferred to the outgoing atoms.
Therefore the system realizes asymptotically the transfer of
quantum information in both directions. However, the fact
that these statements refers to asymptotic behavior indicates
already that the state is typically not encoded on a minimal
number of atoms.

Another system where quantum state transfer between a
multiphoton state and the states of atoms and vice versa has
already been experimentally implemented is described in
Ref. �9�. In this “quantum memory for light” the eigenvalues
of the total spin operator Jz of the atoms define the basis
states of the atomic memory. However, this scheme encodes
n-photon states in a collective polarization of an atom en-
semble where the number of atoms is also of the order n, i.e.,
the number of qubits is in the order of the dimension of the
encoded space. In this paper we propose a quantum analog-
to-digital converter where the number of qubits needed
grows only logarithmically in the dimension of the encoded
space for the cost of an exponential running time of the al-
gorithm. We shall discuss later whether this shortcoming can
be removed. The question of the cost of accurate conversion
between analog and digital is directly connected with the
question of the computational power of analog computers,
which is already an interesting problem in classical computer
science �10�. Whether or not a continuous degree of freedom
could be used to store a “reasonable number” of qubits de-
pends on the ability to access a subspace of exponentially
large dimension on a “reasonable” time scale.

Here the continuous degree of freedom is represented
mathematically by the Hilbert space L2�R�, the set of square
integrable functions on the real line. It is isomorphic to
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l2�N0�, the space of square summable sequences over N0 by
choosing the eigenfunctions of a harmonic oscillator as a
complete orthogonal system. This shows that continuity or
discreteness is here not a property of the Hilbert spaces but
rather of the considered observables. Our analog-to-digital
and digital-to-analog converters refer explicitly to a discreti-
zation with respect to a variable with continuous spectrum,
e.g., the position variable of a Schrödinger particle, but also
applies to the formally equivalent quadrature variables of a
light mode. Using the above isomorphism l2�N0��L2�R�, it
would be straightforward to transfer the information such
that the state with j oscillation quanta is mapped onto the jth
binary word in the discrete register. However, here we would
like to represent the values of the wave functions at 2n points
directly by the coefficients of the binary words of the discrete
register. For doing so, we restrict ourselves to Schrödinger
wave functions that are contained in the interval �0,L� �ex-
cept e.g., exponential tails�. The n-qubit register is repre-
sented by �C2�n with basis states �j� with j=0,1 , . . .2n−1.
Then we demand that every sufficiently smooth wave func-
tion x���x� is converted to the quantum register state

2−n/2 �
j=0

2n−1

�	 jL

2n
�j� �1�

in an approximative sense. We will show below that “suffi-
ciently smooth” means that the L2 norm of the derivative of
the wave function is not too large. The conversion operations
that we will use are unitary transformations on

�C2��n
� L2�R� .

Now we describe the model in which conversion from
analog to digital is possible. This provides us with the avail-
able resources for the conversion algorithm.

We assume that the interaction is described by the Jaynes-
Cummings Hamiltonian �11�

H = c��
j=0

n−1

��−
�j�

� a† + �+
�j�

� a� , �2�

where c��0 is the interaction strength and we have used the
conventions

a ª

1
�2

�x̂ + ip̂�, a†
ª

1
�2

�x̂ − ip̂�, �±
�j�
ª

1

2
��x

�j� ± i�y
�j�� ,

�3�

where ��
�j� denotes the Pauli matrix �� acting on qubit j and

x̂ and p̂ are the position and momentum operators, respec-
tively, defined by

�x̂���x� ª x��x�, �p̂���x� ª − i
d

dx
��x� .

We can rewrite the Hamiltonian in Eq. �2� as

H = c�
j=0

n−1

��x
�j�

� x̂ − �y
�j�

� p̂� . �4�

Note that we choose the oscillator parameters such that m�
=1 and set �=1 throughout the paper. The Hamiltonian �2�
appears often in physical systems when the continuous de-
gree of freedom is an harmonic oscillator, e.g., an oscillation
mode of ions in a trap �11,12�.

To achieve analog-to-digital conversion it is not sufficient
to use just Hamiltonian evolution with Hamiltonian �4�, we
will also need various other unitary operators. For example,
below we want to use the terms �x

�j�
� x̂ and �y

�j�
� p̂ of Eq.

�4� separately. Fortunately, there exists already a well-
developed technique which allows to simulate various effec-
tive Hamiltonians �13,14�. Propagating the system only for
short time intervals with the Hamiltonian �4� and interrupting
this by one qubit unitaries, we can cancel or modify terms of
the Hamiltonian. We use the fast control limit �also called
bang-bang control�, i.e., Hamiltonian evolution is neglected
during one qubit operations are applied. In Sec. III we will
explicitly outline the one qubit operations and pulse se-
quences that entail the desired modifications of the Hamil-
tonian. Finally, as our last resource we assume that on the
quantum register, we have the ability of universal power of
quantum computation. Even though we use a specific inter-
action between the continuous and discrete register as a re-
source for the conversion algorithm there are several gener-
alizations which will be obvious after having discussed our
method. First, the particle wave needs not necessarily inter-
act with all qubits simultaneously and with the same
strength, one could also have different coefficients. We will
furthermore see that the only requirement is that one of the
two interactions �z � x̂ and �z � p̂ can be simulated, because
the other can be obtained by implementing a Fourier trans-
form to the continuous system.

We now describe the organization of this paper. In Sec. II
we explain the algorithm that achieves the conversion of
quantum information. Each step of the algorithm is given
with its corresponding operator that acts on the tensor space
of qubit register and wave function. In Sec. III we describe
the procedures for simulation of Hamiltonians which gener-
ate the required effective Hamiltonians from the given one.
In Sec. IV we describe briefly that the time reversed imple-
mentation can in principle be used for a digital to analog
converter. We summarize and discuss our results in Sec. V.
The appendix gives a proof of Eq. �31�.

II. THE ANALOG-TO-DIGITAL CONVERSION
ALGORITHM

We first sketch the general idea of the functioning of the
analog-to-digital converter. It uses a variant of the standard
phase estimation algorithm �1,15� in order to bring the wave
function amplitudes ��x� into the appropriate place of the
qubit register �cf. the scheme of Eq. �1��. The essential prin-
ciple is that the interaction �z � x̂ implements a controlled-
exp�−ix̂T� operation which allows to use the qubit register as
“measurement apparatus” for x̂. After this procedure the joint
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quantum state displays a high degree of entanglement be-
tween its qubit and its wave function part. Therefore, in a
final step we displace—depending on the value of the qubit
register—all parts of the wave function to the same location,
so that all quantum information is deleted in the continuous
Hilbert space and transferred to the qubit register �again, in
an approximate sense�. The controlled displacement is done
by a �z � p̂ interaction.

Before we start the conversion process the phonon wave

function �̃�x� is contained in the interval �−L /2 ,L /2�. Here
the length L should be estimated in such a way that the
substantial part of the wave function is contained in this
interval. We start with the following product state:

���0�� ª �1,1, . . . 1� � ��̃� . �5�

To make subsequent procedures simpler we displace the

wave function ��̃� an amount of L /2 to the right such that the
new wave function lies in the interval �0,L�. The displace-
ment operator that achieves this is

exp	− i
Lp̂

2

 . �6�

As will be recalled in Sec. III we can cancel unwanted terms
in Eq. �4� by standard decoupling techniques by interspersing
the natural evolution with one qubit control operations. The
application of the operator

DT ª exp	iTc�
j=0

n−1

�z
�j�

� p̂
 �7�

to the joint state ���0�� �cf. Eq. �5�� of qubits and wave func-
tion yields

���1�� ª DT��1,1, . . . 1� � ��̃�� = �1,1, . . . 1�

� exp�− inTcp̂���̃� . �8�

A comparison with formula �6� shows that by choosing the
time span T=L / �2nc� we can realize the desired displace-
ment of the wave function �22�. The displaced state is de-
noted by ���.

In the first part of the standard phase estimation algorithm
the n qubits are in a uniform superposition of computational
basis states and control the application of the operator
exp�2�ix̂ /L� to the wave function. This can be formulated as

U	 1

2n/2 �
k=0

2n−1

�k� � ���
 , �9�

where the operator U is given as

U ª exp	2�i�
j=0

n−1

2 jPj �
x̂

L

 . �10�

Here Pj is the projection operator that acts on the jth qubit of
the qubit register defined by

Pj = 1 � 1 ¯ � �1��1� � ¯ � 1 . �11�

Unfortunately, we cannot implement the operator U as it is
with our available resources. But since P in Eq. �11� can be
written as Pª �1−�z� /2, we can split U into two factors

U = exp	− �i�
j=0

n−1

2 j�z
�j�

�
x̂

L

exp�i�2n − 1�

x̂

L
�¬ ŨR .

�12�

The second factor R acts only on the wave function multi-
plying it with a position-dependent phase. Therefore Eq. �9�
is equal to

Ũ	 1

2n/2 �
k=0

2n−1

�k� � R���
 , �13�

We can realize this transformation in the following three
steps.

�i� We first multiply the wave function ��x� with the
phase

exp�i�2n − 1�
x

L
�, x � �0,L� , �14�

which is done as follows. In Sec. III we will demonstrate
how to realize the operator

D̃T = exp	− iTc�
j=0

n−1

�z
�j�

� x̂
 �15�

with our available resources. Acting with D̃T on the joint
quantum state ���1�� �cf. Eq. �8�� achieves the phase multi-
plication

D̃T��1,1, . . . 1� � ���� = �1,1, . . . 1� � exp�inTcx̂���� .

�16�

�ii� To bring the qubit register into the uniform superpo-
sition of all computational basis states �k� we apply to each
qubit the operator

E ª

1
�2

	 1 1

− 1 1

 ,

since

�
j=0

n−1

E�1,1, . . . 1� =
1

2n/2 �
k=0

2n−1

�k� . �17�

�iii� The structure of the operator Ũ as defined in Eq. �12�
is very similar to the one of the operator D̃T of Eq. �15�. The

only difference are the factors 2 j in the exponent of Ũ.
Clearly we cannot increase the strength of the interaction by
any selective decoupling scheme. In order to obtain a unitary
which would correspond to the exponentially growing inter-
action we need exponential interaction time �see Sec. III�.

After the application of these steps the quantum state of
the joint system is changed to

QUANTUM ANALOG-TO-DIGITAL AND DIGITAL-TO-… PHYSICAL REVIEW A 72, 042324 �2005�

042324-3



���2�� = U���1� = �
k=0

2n−1 �
0

L

dx��k� �
1

2n/2 exp	2�ikx

L

��x��x�� .

�18�

Note that we have preferred to use the notation �x� even
though position eigenstates do not exist �readers who appre-
ciate mathematical rigor may forgive us�. The whole expres-
sion is nevertheless a well-defined state in the joint Hilbert
space. The second part of the phase estimation algorithm
consists of the application of an inverse Fourier transform
F−1 to the qubit register. The Fourier transformation �and its
inverse� can be efficiently implemented on a quantum com-
puter �1,16�. After this transformation the quantum state be-
comes

���3�� = �F−1
� 1����2�� = �

l=0

2n−1 �
0

L

dx���x��l�

�
1

2n �
k=0

2n−1

exp2�ik	 x

L
−

l

2n
��x�� . �19�

���3�� displays a high degree of entanglement between its
qubit and its wave function part. The following procedure
removes a large part of this entanglement and thus completes
the transfer of quantum information. For this purpose we
apply the following operator to the quantum state:

V = exp	−
iL

2n+1 �
j=0

n−1

2 j�z
�j�

� p̂
 . �20�

As before we will discuss the implementation of this opera-
tor with our resources in Sec. III. Acting with operator V on
the quantum state ���3�� of Eq. �19�, the wave function part is
displaced where the amount depends on the entangled qubit
state �l�

���4�� ª V���3�
ª �

l=0

2n−1 �
0

L

dx���x��l� �
1

2n �
k=0

2n−1

	exp2�ik	 x

L
−

l

2n
��x + h − �lL�/2n�� ,

�21�

where we have used the quantity

h ª L
2n − 1

2n+1 . �22�

Making the substitution x�
ªx− �lL� /2n we can rewrite this

quantum state as

���4�� = �
l=0

2n−1 �
−Ll/2n

L�1−l/2n�
dx�� 1

2n/2�	 lL

2n + x�
�l�

� g	 x�

L

�h + x��� , �23�

where

g�y� ª �
k=0

2n−1
1

2n/2 exp�2�iky� =
1

2n/2

1 − exp�2�i2ny�
1 − exp�2�iy� .

�24�

The function g�y� is periodic with period 1. One can easily
show that

�
0

1

dy�g�y��2 = 1. �25�

Besides, the function �g�y��2 becomes highly peaked around
y=0 for a large number of qubits as shown in Fig. 1. In fact,
the width of �g�y��2 is proportional to 2−n. Outside the peak
the function g�y� takes on values that have only a small
modulus �
2−n/2�. Thus the wave function part in the quan-
tum state ���4�� of Eq. �23� displays a peak around x�=h
where h �cf. its definition in Eq. �22�� is approximately the
midpoint of the interval �0,L�.

The result in Eq. �23� is almost satisfactory, but a minor
technical point should be mentioned. We would like that in
Eq. �23� each qubit register state �l� has the same “wave
function” in its corresponding continuous part of the tensor
space. We have seen that the function g�x� /L� can be ne-
glected outside its peaks. Considering the l-dependent inte-
gration bounds in Eq. �23�, the relevant wave function is not
the full peak of g�x� /L� only for low and high values of l
� �0,1 , . . . ,2n−1�. Hence, we have to make the additional
assumption for the original wave function that ��x��0 holds
in the two subintervals of length O�2−n� that join the end
points 0 and 1 of the interval �0,L�.

Using this technical assumption and the fact that g�x� /L�
can be neglected far away from its peak, we can rewrite the
quantum state of Eq. �23� to a very good approximation as

���4�� � �
l=0

2n−1 �
−W

W

dx�� 1

2n/2�	 lL

2n + x�
�l� � g	 x�

L

�h + x��� ,

�26�

where W�0 is some multiple of the width of the function
g�x� /L� and hence W
2−n. Equation �26� shows that now

FIG. 1. The function �g�x��2 for n=6.
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the quantum information has been transferred to the qubit
register, since the continuous Hilbert space is left with the
“standard wave function” g�x� /L�. This is in accordance with
the no cloning theorem �17� that precludes the copying of
quantum information.

The result Eq. �26� still shows some degree of entangle-
ment as qubit and wave function part are connected via the
integration over x�. In order to assess the magnitude of this
entanglement, we calculate the reduced density operator of
the qubit register

�̂ ª �
−�

�

dx�x���4�����4��x� =
1

2n �
j,k=0

2n−1 �
−W

W

dx��g	 x

L

�2

	�	 jL

2n + x
�̄	 kL

2n + x
��j��k� . �27�

In the following we show that for a large number of qubits
this density operator can be replaced by the density operator

�̂0 =
d2

2n �
j,k=0

2n−1

�	 jL

2n
�̄	 kL

2n 
�j��k� , �28�

which is the density operator of a pure state �̃� with

�j�̃� ª
d

2n/2�	 jL

2n
, j = 0,1, . . . ,2n − 1. �29�

The constant d=1+O�2−n� ensures the correct normalization
in Eqs. �28� and �29�. To demonstrate the possibility of re-
placing �̂ by �̂0, it is appropriate to consider the trace norm
�23� of the difference operator ��̂ª �̂− �̂0. For—thanks to
Hölder’s inequality—we can bound expectation values for an

observable Â as

�Tr���̂ − �̂0�Â�� � ��̂ − �̂0�1�Â��, �30�

where � �� is the operator or spectral norm of Â. In the ap-
pendix to this paper we show the following bound for the
trace norm

��̂ − �̂0�1 � b
1

2n , n � 1, �31�

where

b 
 �
0

1

dx����x��2�1/2

. �32�

Equations �30� and �31� show that in the limit of a large
number of qubits the density operators �̂ and �̂0 are equiva-

lent for all observables Â whose � �� norm diverges slower
than 2n. We thus need a large number of qubits n in order to
represent the quantum information of a wave function faith-
fully in a qubit register. Furthermore, according to Eq. �32�
the accuracy of this representation is also determined by the
L2 norm of the derivative of the wave function. Hence, the
smaller the derivative of the wave function, the better works
its conversion into digital information �for a fixed number of
qubits�.

We have already mentioned that the time needed for the
execution of the phase estimation algorithm grows exponen-
tially with the number of qubits. Thus there is a trade-off
between accuracy and speed for our analog-to-digital conver-
sion algorithm. Squeezing operations �18,19�, i.e., operators
of the form

S�r� ª exp� r

2
�a2 − �a†�2��, r � R , �33�

could speed up the phase estimation algorithm considerably.
For, the squeezing operator could magnify the wave function
��x� by a factor ��1 while preserving its shape. This would
decrease the time for phase estimation by a factor �−1. Note
that we can rewrite S�r� as

S�r� = exp�ir�x̂p̂ + p̂x̂�� . �34�

In order to generate such unitaries we have to simulate the
Hamiltonian

x̂p̂ + p̂x̂ .

To achieve this, we observe that

��x � x̂,�y � p̂� = 1
2�z � �x̂p̂ + p̂x̂� .

We conclude that �x̂p̂+ p̂x̂� /2 can be obtained by the follow-
ing second-order simulation scheme which applies the fol-
lowing four Hamiltonians for a small time �T:

�1��x � x̂, �2��y � p̂, �3� − �x � x̂, �4� − �y � p̂ .

�35�

Up to terms O���T�3� we obtain a time evolution accord-
ing to the desired Hamiltonian multiplied with a slow-down
factor ��T�2 provided that the qubit is set to the state �1�.
Due to

�1 � S�r�k���z � x̂��1 � S�− r�k� = �z � rkx̂

one could simulate exponentially large interaction time by a
linear number of concatenated squeezing operations before
the interaction has taken place and undoing the squeezing
afterwards. However, the problem with a second-order simu-
lation is that the running time increases with the desired
accuracy. Since the required error decreases exponentially
with the desired qubits we expect here also exponential run-
ning time. However, on a scale where squeezing operations
are available with sufficient accuracy one could nevertheless
expect a speed-up.

III. SELECTIVE DECOUPLING AND SIMULATION
OF HAMILTONIANS

Simulation of Hamiltonians by interspersing the natural
time evolution with fast control operations is used in nuclear
magnetic resonance �NMR� since decades �13�. These tech-
niques are subject of many theoretical investigations
�14,20,21�. Here we refer only to very basic ideas.

Let H be the natural Hamiltonian �2�. Using the anticom-
mutator relation between Pauli matrices
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��i,� j� = 0, i � j � �x,y,z� , �36�

we get the equation

�
j=0

n−1

�y exp�− i�TH� �
j=0

n−1

�y = exp�− i�TH�� , �37�

where

H� ª c�
j=0

n−1

�− �x
�j�

� x̂ − �y
�j�

� p̂� . �38�

The operators H and H� do not commute, but for a small
time interval �T�1 we can use the Baker Campbell Haus-
dorff formula

exp�− i�TH�exp�− i�TH��

= exp„− i�T�H + H�� + O��T2�… , �39�

where

H + H� = − 2c�
j=0

n−1

�y
�j�

� p̂ . �40�

Thus to leading order in �T the unwanted �x
�j�

� x̂ terms have
canceled each other.

Therefore, if during a time interval T we change fre-
quently between Hamiltonian evolution and the product of
one qubit operations � j=0

n−1�y, we can realize the unitary op-
erator

BT = exp	iTc�
j=0

n−1

�y
�j�

� p̂
 . �41�

In the language of Ref. �21� we have now “simulated the
Hamiltonian”

c�
j=0

n−1

�y
�j�

� p̂ .

In a similar way, we can also select the term with x̂ in �2� by
applying �x rotations to all qubits. Complete decoupling can
be achieved if we apply �z to all spins since this reverses the
sign of the x̂ and the p̂ term. If we want to cancel all terms
except from the interaction

�x
�j�

� x̂ �42�

for one specific qubit j we apply �x to qubit j and �z to all
the other qubits. To simulate the time evolution

exp	iT�
j

2 j�x
�j�

� x̂

we may concatenate the commuting unitaries

exp�iT2 j�x
�j�

� x̂� ,

which are obtained by applying the simulated interaction
�42� on a time interval of length 2 jT. If we apply arbitrary

single qubit unitaries Uj to qubit j initially and apply Uj
†

afterwards, we obtain the time evolution

exp�iT2 j�Uj�x
�j�Uj

†� � x̂� .

This shows that we can replace the Pauli matrix �x in Eq.
�42� by other Pauli matrices or by −�x as we like.

IV. DIGITAL-ANALOG CONVERSION

Using the results of the previous sections, we can easily
describe an algorithm for digital-analog conversion. Roughly
speaking, the argument is as follows. Let Z be the transfor-
mation on the continuous and the discrete degrees of free-
dom which implements the complete analog-digital conver-
sion algorithm. Provided that the wave function � was
sufficiently smooth the system ends up almost in the product
state

������ � �̃��̃� , �43�

where �̃� is a superposition state with coefficients ��jL /2n�
with j=0,1 , . . . ,2n−1 as defined in Eq. �29� and � is the
function whose absolute square was plotted in Fig. 1 trans-
lated by L /2. If we apply Z† to the state �43� we obtain hence
almost the original wave function �. It is clearly required
that the values ��jL /2n� correspond to some sufficiently
smooth wave function. We have explained that sufficiently
smooth means here that ����x�� is small enough. Hence, the

vector �̃� corresponds to a smooth wave function whenever
the values ��jL /2n� do not vary too much for adjacent j.

In order to obtain definite accuracy bounds from this idea
we recall that the reduced state �̂ of the discrete register
satisfies

��̂ − �̃��̃��1 � b
1

2n ¬ � . �44�

If we set Â= �̃��̃� in Eq. �30�, we obtain

��̂ − �̃��̃� �1 � ��̃��̂�̃� − 1� . �45�

Hence, the largest eigenvalue of �̂ is at least 1−�. Let

��� = �
j

cj�� j � �� j� �46�

be the Schmidt decomposition of the exact bipartite state
after the analog-to-digital conversion. Then the absolute
square �c0�2 of the dominating coefficient c0 is the largest
eigenvalue of the reduced density operators on both sub-
systems. Hence, the square of the norm distance between ���
and c0 ��0� � ��0� is at most �. It follows that the error which
arises from replacing the joint state by the tensor product
state

��0���0� � ��0���0� �47�

is of the order �. We know furthermore that we may replace

the state of the digital system by �̃� such that the error in
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trace norm is in the order of �. We conclude that applying
U† to

��0���0� � �̃��̃� �48�

leads to the wave function � up to a trace norm error in the
order of �. The initialization of the continuous system to the
state ��0� is clearly a nontrivial task. It is some wave packet
which is similar to the function g translated by L /2. To con-
struct algorithms which work also for more general initial-
izations shall not be our subject here.

V. CONCLUSIONS

In this paper a quantum algorithm has been outlined that
can read in the quantum information of a wave function into
a qubit register. This can be viewed as the quantum analog of
an analog-to-digital converter which encodes an
N-dimensional system obtained by discretization of a con-
tinuous wave function into a log2 N qubit register.

The principal ingredient for the analog-to-digital con-
verter is the use of the phase estimation algorithm that is
already popular for other purposes in quantum computing.
The principal resources are interaction Hamiltonians which
are tensor products of a position or a momentum operator
with a Pauli matrix of the discrete system. Effective Hamil-
tonians of this type can for instance be obtained from the
Jaynes-Cummings Hamiltonian using standard techniques
for selective decoupling.

Whether the proposed analog-to-digital and digital-to-
analog converters could be realized depends on the one hand
on the experimental progress. On the other hand and perhaps
even more important, further theoretical work is required to
investigate more systematically the advantages that arise
when one combines discrete and continuous degrees of free-
dom in quantum computing.
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APPENDIX

In this appendix we prove Eq. �31�. To simplify the nota-
tion we set L=1. We start with the density operator �̂ and use
the mean value theorem in Eq. �27�,

�	 j

2n + x
 = �	 j

2n
 + x��	 j

2n + ��j,x�
 with

0 � ���j,x�� � �x� � W �A1�

and analogously for the conjugate function �̄�k /2n+x�.
Therewith we can write the matrix elements of the difference
operator ��̂= �̂− �̂0 in the standard basis as �24�,

���� jk =
1

2n�
−W

W

dx��g�x��2x�	 j

2n
�̄�	 k

2n + ��k,x�

+ �̄	 k

2n
��	 j

2n + ��j,x�
�� . �A2�

We can rewrite this expression in an operator form

��̂ =
1

2n�
−W

W

dx��g�x��2x����x
�� + �x

������ , �A3�

where the 2n dimensional vectors �� and �x
�� are defined in

the standard basis as

�j�� ª �	 j

2n
, �j�x
�� ª ��	 j

2n + ��j,x�
 . �A4�

Using the triangle inequality, Eq. �A3� leads to the following
estimate for the trace norm:

���̂�1 �
1

2n�
−W

W

dx�g�x��2�x�� sup
−W�x�W

�� ���x
�� + �x

��

	�� �1� . �A5�

We now consider the trace norm of the operator

B̂x
ª ���x

�� + �x
���� .

We see from this formula that the operator acts nontrivially
only on the two dimensional subspace span��� , �x

���.
Choosing an ONB ��0� , �1�� for this subspace with �0�
ª �� / � ���2 �� �2 is the Euclidean norm�, we arrive at the

following matrix representation for B̂x

Bx = � ��2� �x
��2	�ex�0� + �0�ex� �ex�1�

�1�ex� 0

 , �A6�

where �ex�ª �x
�� / � �x

���2 is a unit vector. From Eq. �A6�
the trace norm of B̂x can be bounded uniformly

�B̂x�1 � � ���2� �x
���2 �

j,k=0

1

�Bjk
x � � 4� ���2� �x

���2.

�A7�

In addition, for n�1 we can evaluate the Euclidean norms of
the vectors �� and �x

�� approximately as

� ���2 � 2
n
2 , � �x

���2 � 2n/2�
0

1

dx����x��2�1/2

.

�A8�
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Using the results of Eqs. �A7� and �A8�, we can bound the
difference between the two density operators as

���̂�1 � 4�
−W

W

dx�g�x��2�x���
0

1

dx����x��2�1/2

.

�A9�

Since for n�1 the width W
2−n and thus

�
−W

W

dx��g�x��2�x�� 
 2−n, �A10�

the inequality �A9� establishes the bound Eq. �31� with the
constant

b 
 �
0

1

dx����x��2�1/2

. �A11�
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