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We propose a scheme for realizing quantum gates �controlled-NOT �CNOT� and Toffoli� using a two-level
quantum system by means of a pulsed bias. We show how to realize a CNOT gate using a two-qubit, two-level
coupled system and a Toffoli gate using a three-qubit, two-level coupled system. For the CNOT gate, we show
how to reduce the 4�4 Hamiltonian of the coupled system to a 2�2 Hamiltonian in order to solve for
parameter values of the system. When these values are substituted into the coupled system equations for the
two-qubit system, the simulation results confirm the CNOT gate operation. We further demonstrate our proposed
scheme for a CNOT gate operation using a multilevel system of two coupled superconducting quantum inter-
ference devices as a particular example. We next use the same approach to implement a Toffoli gate using a
three-qubit system.
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I. INTRODUCTION

It has been shown that for universal quantum computing,
any unitary operator can be generated if a means exists to
achieve arbitrary single-qubit rotations, and one nontrivial
two-qubit operation like a controlled-NOT �CNOT� �1–4�. In
their paper, M. F. Bocko et al. �5� discuss the prospects and
challenges for implementing a quantum computer using su-
perconducting electronics. Methods have been proposed for
realizing single-qubit operational gates with Josephson qu-
bits �6–8� using microwaves. Recently, macroscopic quan-
tum coherence between the two charge basis states of a su-
perconducting charge qubit was demonstrated by Nakamura
et al. �9�, where it was shown how an arbitrary rotation can
be realized by controlling the gate voltage. A conditional
gate operation using two superconducting charge qubits has
been demonstrated wherein the two-qubit solid-state circuit
was controlled by means of a pulsed technique �10�. In Ref.
�10�, Yamamoto et al. used a pulse technique to demonstrate
conditional gate operation using a pair of superconducting
charge qubits in which they brought their system to a degen-
eracy point or a virtually nonoscillatory point depending on
the state of the control qubit. In Ref. �11�, Strauch et al. show
how to realize a phase gate and a swap-like gate in a capaci-
tively coupled Josephson junction system by varying bias
currents with time, through a detuning parameter. A two-
qubit phase gate using a quantum interference scheme requir-
ing three symmetric steps where the tunneling is controlled
by varying the height of the potential barrier for set intervals
of time has been proposed by Charron et al. �12�. In Ref.
�13�, Benjamin et al. show how a system with a constant
coupling can be employed for quantum computing by ac-
tively tuning the transition energies of individual qubits.

Our scheme is similar to Ref. �10� in that we reduce the
system into a two-level system with two different Hamilto-
nians depending upon the state of the control qubit A. The
scheme in Ref. �10� uses a pulsed bias to either bring the

system to a degeneracy point, where it oscillates between the
�00� and �01� states, or to a nonoscillatory point far from the
degeneracy point of the �10� and �11� states. A sufficiently
strong coupling ensures that the �10� �or �11�� state remains
unchanged. In our scheme, we use a weak coupling such that
when the bias is pulsed low, it either completely cancels the
coupling or adds to it giving rise to two frequencies of os-
cillation, one between the �00� and �01� states and the other
between the �10� and �11� states. By reducing the 4�4
Hamiltonian matrix of the coupled system to a 2�2 matrix,
we solve for parameter values of the system in order to
achieve a CNOT gate operation by controlling these two fre-
quencies. We also show that these parameters can be scaled,
where the limits on the parameter values are those imposed
by experimental conditions. This means that having found
the parameter values for a pulse width of certain duration,
the parameters for a different pulse width are just a multiple
of the original values �the multiple depends on the ratio of
the two pulse widths under consideration�.

Not only is the CNOT gate, in addition to single bit rota-
tions, sufficient to perform all logic operations within a
quantum computer, but it can also be used to construct arbi-
trary unitary transformations on any finite set of bits
�2,14–19�. Proposals have been made for constructing the
Toffoli gate �4�, which is the smallest reversible quantum
gate, using the CNOT gate and some single-qubit gates. The
Toffoli gate requires three inputs and has three outputs. Even
though this corresponds to a quantum mechanical scattering
process involving three-particle collisions �17�, the Toffoli
gate can be constructed by two-particle scattering processes
�2,3,18,19�. In this paper, we extend our pulsed bias scheme
for realizing this gate using a three-qubit, two-level system.
Two of the qubits behave as controls, whereas, the third qubit
behaves as the target and flips its state only when both of the
control qubits are in the �1� state. The target qubit is weakly
coupled to both the controls, which are not directly coupled
to each other. Like the CNOT, the state of the target changes
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during a pulse of its bias. An approach for calculating the
parameter values to achieve the gate operation will be pre-
sented in this paper.

The gate implementation techniques using a pulsed bias
scheme as described in this paper can, in general, be used for
any two-level quantum system whose Hamiltonian can be
reduced to that of a spin boson. In this paper, we show how
to derive formulae for calculating the values of parameters
related to the quantum system in order to realize the desired
gate operations. Reducing the 4�4 Hamiltonian to a 2�2
effective Hamiltonian to calculate parameter values for the
desired gate operation works well, not only for qubits of
two-level systems �which are difficult to find among solid-
state systems�, but, in principle, for all qubits of multilevel
systems as long as the other states are well separated from
the four basis states in energy. Therefore, the method is rel-
evant to the experiment.

II. COUPLED TWO-QUBIT SYSTEM

The four states of a two-qubit, two-level coupled system
are �00�, �01�, �10�, and �11�, where the first qubit represents
the control A, and the second represents the target B. Here,
�0� and �1� are the two basis states of a single-qubit, two-level
system, given as,

�0� = �1

0
� and �1� = �0

1
� .

The time evolution of the system is governed by the
Schrödinger wave equation and the state of the system at any
time is given as

���t�� = ��t��00� + ��t��01� + ��t��10� + ��t��11� , �1�

where ��t�, ��t�, ��t�, and ��t� are the probability amplitudes
representing the system in each of the four states, respec-
tively.

The Hamiltonian of the system is given as

H = HA + HB + HI, �2�

where

HA = �A�XA + 	A�ZA, HB = �B�XB + 	B�ZB, �3�

and

HI = 
�ZA�ZB. �4�

Here, HA and HB are the uncoupled Hamiltonians for qu-
bits A and B, respectively, HI is the interaction energy for the
two qubits, 	A and 	B are the biases, �A and �B are half the
uncoupled tunneling frequencies, 
 is the coupling factor,
and �XA, �ZA, �XB, and �ZB are outer products of the Pauli
matrices, �X and �Z, with the identity matrix for qubits A and
B, respectively.

III. REDUCED HAMILTONIAN FOR THE CNOT GATE

In Ref. �9�, Nakamura et al. reported the observation of
quantum oscillations in a single Cooper-pair box and,
thereby, demonstrated coherent control of a qubit in a solid-

state electronic device by applying a short voltage pulse via
a gate electrode. The resulting state, a quantum superposition
of the two charge states, is detected through a probe junction
where the current is proportional to the probability of the
qubit being in the �1� state. In general, this effect can be
extended to any two-level system whose Hamiltonian can be
reduced to that of a spin boson. Such a system has the char-
acteristic energy level anticrossing as one of the external
control parameters �bias 	� is varied. Therefore, coherent
control of the qubit can be achieved by pulsing the bias 	 on
and off. Starting with an arbitrary initial state, the probability
of the qubit in the �1� state can be written as an oscillatory
function in terms of the parameters � �tunneling� and 	
�bias�. Since we always prepare the system either in the �0� or
�1� state, the probability function can be written as

P�1� = X � Y cos�2�ft� , �5�

where the offset X, the amplitude Y, and the frequency f of
probability oscillation are given as

X =
1

2
�

	2

2��2 + 	2�
, �6�

Y =
�2

2��2 + 	2�
, �7�

f = 2	��2 + 	2� , �8�

where the ‘
’ and ‘�’ are used when the qubit starts out in
the �0� and �1� states, respectively, as its initial state. We have
chosen units where Planck’s constant is 1.

An arbitrary rotation can be realized for a single qubit by
turning the bias 	 on and off. When 	��, since the ampli-
tude Y is very small and the offset X is either 0 or 1, depend-
ing on the initial conditions, the qubit remains in the state it
has been initialized to and, hence, a memory state is realized.
However, when the bias is turned off, i.e., 	=0, the qubit
oscillates between the two basis states. We call this oscilla-
tory state of the qubit a transitional state.

The controlled-NOT �CNOT� gate is defined by the follow-
ing operator �20�:

CNOT = �00�
00� + �01�
01� + �10�
11� + �11�
10� . �9�

To realize a CNOT gate from a coupled two-qubit system, the
parameters of the governing Hamiltonian must be chosen
such that starting out in an initial state, the system evolves
into the desired state under the gate operation within a speci-
fied time interval. Unlike the dynamics of a single-qubit sys-
tem, the time evolution of a two-qubit coupled system is
governed by a 4�4 Hamiltonian matrix, which makes find-
ing a closed-form equation similar to Eq. �5� for the prob-
abilities in the �1� state of either qubit �A or B� of the system
a difficult task. Here, we find a means of reducing the 4
�4 Hamiltonian matrix of the coupled system to a 2�2
matrix, whereby the mathematics is greatly simplified.

By maintaining a high bias on the control qubit through-
out the gate operation, we can force it to remain in its ini-
tialized memory state. The 4�4 Hamiltonian matrix of the
two-qubit, two-level system can now be reduced to a 2�2
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Hamiltonian matrix of a single-qubit system, which is given
as

HB� = �B�X + �	B ± 
��Z, �10�

which describes the true evolution of qubit B only. The cou-
pling term 
 either adds or subtracts from 	B depending on
whether the expectation value of �ZA is +1 or −1 in the
subspace of target qubit B.

Thus, we have reduced the two-qubit coupled system into
an effective single-qubit system involving only the target qu-
bit B. This reduced single-qubit system has two Hamilto-
nians, as given by Eq. �10�, depending upon the state of the
control qubit A. The equation for the probability in the �1�
state for the target qubit B will be as given by Eq. �5�, how-
ever, the bias term 	 in these equations is now replaced by
the “effective” bias term �	B±
� that can take one of two
values depending upon the state of the control qubit A. The
effective bias on the target qubit when the control qubit A is
in the �0� and �1� states is �	B+
� and �	B−
�, respectively.
Therefore, there will now be two frequencies of oscillation
for the probability in the �1� state for the target qubit B. Our
purpose is to control these frequencies in order to achieve a
CNOT gate operation.

IV. CHOICE OF PARAMETERS FOR CNOT GATE

As discussed in the previous section, depending on the
state of the control qubit A, there are two oscillation frequen-
cies for the probability of oscillation in the �1� state for the
target qubit B, which are given by

f1,2 = 2	��B
2 + �	B ± 
�2� , �11�

where frequencies f1 and f2 correspond to the frequency of
the probability oscillation when the control qubit is in the �0�
and �1� states, respectively.

From Eq. �5�, which shows the probability in the �1� state
for a single qubit system, we can see that the term ��2+	2�
in the denominator of the amplitude term �Eq. �7�� is respon-
sible for the attenuation caused to the amplitude of the oscil-
lations. In this case, since we are dealing with two different
effective biases acting on the target qubit B, the effective bias
being �	B+
� and �	B−
�, depending on whether the control
qubit A is in the �0� and �1� states, respectively, the attenua-
tion to the amplitude is caused by the terms ��B

2+ �	B

+
�2� and ��B
2+ �	B−
�2�, respectively, in the denominator.

In order to achieve a CNOT gate operation, it is required that
the target qubit B does not change its state when the control
qubit A is in the �0� state. This implies that qubit B, in its
transitional state, undergoes an integer number of complete
oscillation cycles, whereby it returns to its initialized state.
Therefore, the attenuation to the amplitude by the term
��B

2+ �	B+
�2� in the denominator, is of no concern as such.
When qubit A is in the �1� state, qubit B changes state, i.e.,
from �0� to �1� and vice versa. This corresponds to a half
cycle oscillation in addition to an integer number of com-
plete oscillation cycles, i.e., the target qubit B undergoes an
odd integer number of half cycles in its transitional state and
flips its state. In this case, we require that there be no attenu-
ation to the amplitude of the oscillations by the term ��B

2

+ �	B−
�2� in the denominator. Therefore, with an effective
bias of �	B−
� acting on the target qubit when the control
qubit A is in the �1� state, it is required that 	B and 
 cancel
each other in order to realize a switched logic state with no
attenuation to the amplitude at a half cycle. In other words,

 needs to be equal to 	B in the transitional state of the target
B. The probability function oscillates between 0 and 1 with a
frequency of oscillation, f2=2�B, obtained from Eq. �11�.

From our discussion, it follows that if T is the time step
and P and Q are an integer number of complete cycles in the
transitional state of target qubit B

f1 = 2	��B
2 + �	B + 
�2� =

P

T
, �12�

and

f2 = 2	��B
2 + �	B − 
�2� = 2�B =

Q + 1
2

T
. �13�

We, thereby, have a system of two equations in two un-
knowns, which can be exactly solved for. For different val-
ues of P, Q, and T, Eqs. �12� and �13� can be used to solve
for �B, 
, and 	B. The bias on the target qubit B gives the
value to which the bias must be pulsed low �	min� in order to
bring the target qubit B to a transitional state, whereby it
undergoes oscillations. As mentioned earlier, the target qubit
can be brought back to a memory state by pulsing the bias to
an “arbitrarily” high value �	max�. There is no upper limit on
this value of the bias other than 	max having to be much
larger than �B and restrictions imposed by practical consid-
erations.

Figure 1 shows a plot of the four eigenenergies of the
coupled system. The bias on the control qubit is maintained
at an arbitrarily high value 	max. This splits the system into
two separate two-level systems, �00�, �01� and �10�, �11�, cen-
tered at +	max and −	max, respectively, depending upon the
state of the control qubit A. We start out initially with the
target qubit in a memory state �	B=	max�. Suppose the sys-
tem is initially in the �11� state. The bias on the target qubit B
is now clocked low to 	min, which is indicated by means of
an arrow in the diagram. This brings the system to the de-

FIG. 1. Energy level diagram of the coupled system of two
qubits for the calculated choice of parameters.
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generacy point of the �10� and �11� energy levels as the cou-
pling 
 cancels with the bias 	min. The target qubit B under-
goes an odd integer number of half-cycle oscillations, as
given by Eq. �13�, between the �11� and �10� states within the
transitional time T and flips its state. At the end of the time
step, the bias on the target is pulsed high �	B=	max�, forcing
the target qubit once again into a memory state. Similarly,
when the system starts out in the �10� state, it evolves to the
�11� state.

Suppose the system is initially in the �00� state. When the
bias on the target qubit is pulsed low to 	min, the system does
not reach the degeneracy point for the �00� and �01� energy
levels. The effective bias acting on the target qubit is 2	min
and the qubit undergoes oscillations of reduced amplitude
between the �00� and �01� states. Since the qubit undergoes
an integer number of complete oscillations within the time
step T as given by Eq. �12�, it returns to its initialized state.
At the end of the time step, the bias on the target is pulsed
high �	B=	max�, forcing the target qubit to maintain its
memory state. Similarly, when the system starts out in the
�01� state, the system evolves back to the �01� state at the end
of the time step.

It is important to distinguish between the fixed and con-
trollable parameters in our scheme, which depends on the
choice of the quantum system. For instance, if we use super-
conducting quantum interference devices �SQUIDs� as our
choice of a two-level quantum system, the SQUIDs used to
implement a CNOT gate using this approach will be fabricated
to have the tunneling and coupling parameters fixed to a
suitable value calculated as shown in this section. The bias
term will be the control parameter, which will be pulsed
during experimentation.

We have showed above how parameter values can be cal-
culated for a given choice of time step and the number of
complete oscillations. Because of the sensitivity of these pa-
rameters, their values are usually fixed. Therefore, instead of
starting out with values for the time step �T� and the number
of oscillations �P ,Q� and then finding the parameter values,
the procedure could be reversed, i.e., find T, P, and Q from a
given set of �B, 
, and 	B.

V. SIMULATION RESULTS—CNOT GATE REALIZATION
FOR TWO-QUBIT COUPLED SYSTEM

In the previous section, we reduced the 4�4 Hamiltonian
of a two-qubit system into a 2�2 Hamiltonian describing
the evolution of the target qubit only under a CNOT gate
operation. Using this reduced system, we were able to solve
for the parameter values �B, 
, and 	B using Eqs. �12� and
�13� for different values of T, P, and Q. Since the bias on the
control qubit is maintained arbitrarily high throughout �	max�,
in order to keep it in its initialized state, the tunneling pa-
rameter for qubit A is chosen to be the same as the calculated
value for �B.

The parameter values calculated using our reduced system
approximation are substituted for in the coupled system
Hamiltonian given by Eqs. �2�–�4� for simulation. Figure 2
shows a truth table of the present CNOT operation estimated
by the numerical calculation with the detailed values of the

probabilities listed in the caption as a matrix.
Table I shows the parameter values calculated for a time

step T of 10 ns for one-half and one oscillation cycle periods
�P=1,Q=0� in the transitional state of qubit B. We have
chosen 10 ns pulses, as they are experimentally realizable
time steps for rf SQUIDs. The simulations were carried out
over three time steps where the first and third time steps
corresponded to memory states, of 5 ns each, for the target
qubit B and the second time step corresponded to a transi-
tional state of 10 ns. Figure 3 shows the bias on the target
qubit. The bias on the control qubit A is maintained high
throughout. Since the set of equations �12� and �13� are lin-
ear, the parameter values for any other time step with the
same number of oscillation cycles �same P and Q values�
can be obtained by simply multiplying the calculated values
by an appropriate factor. For instance, the parameter values
for a time step of 1 ns can be obtained by multiplying each
of the calculated parameter values, �B, 
, and 	B, by a factor
of 10.

Figure 4 shows the evolution of probabilities of the com-
putational states of the coupled qubits under a CNOT gate
operation. Figures 4�a� and 4�b� show the gate operation
when the initial states are �00� and �01�, respectively. Qubit B
undergoes 1 complete oscillation in its transitional state,
whereby it returns to its initial state, �0� or �1�. Figures 4�c�

TABLE I. Parameter values for the CNOT gate for T=10 ns, P
=1, and Q=0.

Parameter Value �GHz�

�A=�B 0.025

	max 10.0

	min=
 0.022

FIG. 2. Truth table of the present CNOT gate operation estimated
by the numerical calculation where the values of the probabilities
are found to be

�
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
�.
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and 4�d� show the gate operation when the initial states are
�10� and �11�, respectively. In this case, the target qubit B
undergoes half an oscillation cycle in its transitional state,
whereby it switches its state from its initial state �0� to state
�1� or from �1� to �0�.

Though we have used ideal pulses in our simulations, we
find that including rise and fall times in our simulations has
little impact on the overall results as long as they are ac-
counted for. We recalculate the pulse width to include the
rise and fall times by using the following rule of thumb when
	max�


T� = T + �	max − 5�

	max
�� �rise time� + �fall time�

2
� , �14�

which provides good results for 	max�
. For a rise time of
4 ns, the new pulse width T� was calculated using Eq. �14� to

be 13.95 ns, where we have chosen the rise time equal to the
fall time. When the CNOT gate was simulated using these
nonideal pulses for the parameter values listed in Table I, the
error was found to be less than 1%, which is an improvement
over that presented in Ref. �10�.

Our previous simulation results only show the operation
of the gate as a classical one. In order for the gate to be a
quantum gate, its operation needs to be shown for the case
when the initial state is a superposition of two states. For
example, when the initial state of the system is an equal
superposition of the states �00� and �10�, the product state
��0�+ �1�� �0�, which has zero degree of entanglement, the
system as a whole evolves into the Bell state, a maximally
entangled state, as a result of coherence being maintained.
Figure 5 shows a plot of the probabilities of the qubits A and
B in the �1� state over a total time of 20 ns with half an
oscillation �P=1,Q=0� in the transitional state of qubit B.

The final state of the system in terms of probability am-
plitudes in each of the four basis states was found through
simulation, using the parameter values listed in Table I, to be

���t�� = 0.7e−0.6i�00� + 0.1e−1.6i�01� + 0.1e0.3i�10�

+ 0.7e−1.6i�11� 

�00� + ei��11�

	2
,

where � is the relative phase difference between the two
states �00� and �11�. The value of the actual calculated prob-
ability amplitude shows that the system evolves from the
product state into the maximally entangled Bell state. Thus,
our technique can be used to put a system into a state of
entanglement.

It can also be shown that when the initial state is the EPR
state �1�, an equal superposition of the �01� and �10� states,
the system evolves into the product state ��0�+ �1�� �1�.

FIG. 3. Bias on the target qubit B. The bias on the control qubit
A is maintained high throughout. The first and third time steps of
5 ns each are memory states for the target qubit. The second time
step of 10 ns �T� is the transitional state.

FIG. 4. Evolution of the prob-
abilities of the computational
states of the two-qubit coupled
system under a CNOT gate opera-
tion for each of the four initial
states. The total time is 20 ns with
a transitional state T of 10 ns.
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VI. CNOT GATE OPERATION USING A MULTILEVEL
TWO-SQUID COUPLED SYSTEM

To demonstrate the feasibility of the pulsed bias scheme
proposed above in multilevel coupled qubits, we apply it to a
system of two coupled rf SQUID qubits with realistic device
parameters. A rf SQUID consists of a superconducting loop
of inductance L interrupted by a Josephson tunnel junction.
The tunnel junction is characterized by its critical current Ic,
shunt capacitance C, and shunt resistance R. A flux-biased
SQUID with total magnetic flux � enclosed in the loop is
analogous to a “flux” particle of mass m=C�0

2 moving in a
one-dimensional potential, where �0=h /2e is the flux quan-
tum. The Hamiltonian of a rf SQUID can be written as �6�

H�x� =
p2

2m
+ U�x� , �15�

where x=� /�0 is the canonical coordinate of the “flux” par-
ticle, p=−i� /�x is the canonical momentum conjugate to x,
and U�x� is the potential energy given by

U�x� =
m�LC

2�x − xe�2

2
− EJ cos�2�x� . �16�

Here, EJ= Ic�0 /2�=m�LC
2�L/4�2 is the Josephson cou-

pling energy, �LC= �LC�−1/2 is the characteristic frequency of
the SQUID, �L=2�LIc /�0 is the potential shape parameter,
and xe=�e /�0 is the normalized external flux bias.

The coupled SQUID qubits system consists of two single
rf SQUID qubits, a control qubit and a target qubit, coupled
inductively by the mutual inductance M. For simplicity, we
assume that the two SQUIDs are identical �C1=C2=C, L1
=L2=L, and R1=R2=R�. We also assume that the external
magnetic fluxes applied to the two SQUIDs are �e1 and �e2,
and the total fluxes are �1 and �2, respectively. The Hamil-
tonian of the coupled SQUID flux qubits is given by �21�:

H�x1,x2� = H0�x1� + H0�x2� + H12�x1,x2� , �17�

where H0�xi� is Hamiltonian of the ith single qubit given by
Eq. �15� and H12 is the interaction between the two SQUID
qubits and is given by

H12�x1,x2� = m�LC
2k�x − xe1��x − xe2� . �18�

Here, xei=�ei /�0 is the normalized external flux bias of
the ith qubit and k=M /L is the coupling coefficient. The
coupled SQUID qubits are a multilevel system. The eigenen-
ergies En and eigenstates �n� of the coupled qubits are com-
puted by solving the Schrödinger equation with H�x1 ,x2� us-
ing the two-dimensional Fourier-grid Hamiltonian method
�22� using 20 eigenstates. For weak coupling, the eigenstate
of the coupled qubits �n� can be well approximated by the
product of an eigenstate of the control qubit �i� and that of
the target qubit �j� , �n�= �ij�= �i��j�. If both xe1 and xe2 are
around 0.5, the coupled SQUID qubits have four wells in the
potential energy surface �21�. The four computational states
are chosen to be the lowest eigenstates of each well and are
denoted by �1�= �10�, �2�= �11�, �3�= �00�, and �4�= �01�. At
the avoided crossing points, the spacing between the product
states are 0.538 34/�LC=42.840 GHz ��10�± �11�� and
0.538 30/�LC=42.837 GHz ��00�± �01��, respectively, which
are very close due to weak coupling. The values of xe2 at the
avoided crossing points are 0.499 933 3 and 0.500 061 7, re-
spectively. The device parameters for the SQUIDs are Z0
=50 � �i.e., L=100 pH and C=40 fF�, �L=1.15, and �LC
=5�1011 rad/s.

To implement two-qubit gates with the coupled SQUID
flux qubits, we apply a dc pulse to the target qubit. The
interaction between the pulse and the coupled qubits is given
by

V�x1,x2,t� = m�LC
2��x2 − xe2�x	�t� +

x	�t�2

2

+
k�x1 − xe1�x	�t�

2
� , �19�

where x	�t� is the magnetic flux �normalized to �0� coupled
to the target qubit from the dc pulse. According to the pulsed
bias scheme, the peak flux of the dc pulse x	0 is chosen to
bring the system from its initial eigenstate to one of the
product states. To realize the CNOT gate, a dc pulse with peak
flux x	0=−0.4333 was applied to the target qubit to bring the
system to the avoided crossing point at which xe2
=0.499 933 3. The configuration of the SQUID is at xe1
=0.499, xe2=0.4995, and k=0.0005.

Figures 6�a�–6�d� show a plot of the evolution of the
probabilities of the computational states for the coupled
SQUID qubits starting in each of the four initial states �10�,
�11�, �00�, and �01�, respectively. The parameter values were
chosen so as to realize one-half and two oscillations in the
transitional states �P=2 and Q=0�. Figures 6�a� and 6�b�
show the evolution from the initial state �10� to the final state
�11� and from the initial state �11� to the final state �10�.
Figures 6�c� and 6�d� show the evolution when the system
starts out initially in the �00� and �01� states, respectively.
From these plots, we can see that although the probabilities

FIG. 5. Realization of CNOT gate operation for a superposition of
states corresponding to one-half or one oscillation cycles �P=1,Q
=0� in the transitional state of qubit B. The time step, for the tran-
sitional state is T=10 ns and the total time is 20 ns. The system is
initially in a product state, an equal superposition of the �00� and
�10� states. The final state of the system is the Bell state, a maxi-
mally entangled state.
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of the states �00� and �01� are not always zero for the duration
of the pulse, the coupled qubits return back to the initial
states after the pulse. The maximum probabilities of these
states will tend to zero with an increase in the distance be-
tween the two avoided crossing points in xe2, which can be
accomplished by increasing the coupling. Thus, by applying
the dc pulse to the target qubit of the coupled SQUID flux
qubits system, the CNOT gate is realized successfully.

VII. TOFFOLI GATE

The controlled-controlled NOT �CCNOT� gate, or the Tof-
foli gate, uses three qubits. Like the CNOT, it is a reversible
and universal gate. There are three inputs to the gate, two of
which, A and B, are control qubits and the third, C, is the
target. The target qubit flips its state only when both the
control qubits are in the logic �1� state.

Methods have been proposed for realizing the Toffoli gate
using two-bit CNOT gates and some one-bit gates �4�. In this
section, we will show how this gate can be implemented
using the reduced Hamiltonian approach discussed in Sec.
IV.

Consider a system of three qubits, A, B, and C, where A
and B are control qubits and C is a target qubit coupled to A
and B. The two control qubits A and B are not coupled to
each other. The target qubit C is coupled to each of the
controls through the coupling terms 
AC and 
BC, respectively
�see Fig. 7�.

The Hamiltonian of the system is given as

H = HA + HB + HC + HAC + HBC, �20�

where

HAC = 
AC�ZA�ZC, �21�

and

HBC = 
BC�ZB�ZC. �22�

Here, HA, HB, and HC are the uncoupled Hamiltonians for
qubits A, B, and C, respectively. HAC is the interaction en-
ergy for the two qubits A and C; HBC is the interaction en-
ergy for the two qubits B and C; 	A, 	B, and 	C are the
biases; �A, �B, and �C are half the uncoupled tunneling fre-
quencies of A, B, and C, respectively; 
AC is the coupling
factor between qubits A and C; 
BC is the coupling factor
between qubits B and C; and �XA, �ZA, �XB, �ZB, �XC, and
�ZC are the outer products of the Pauli matrices with identity
matrices.

By keeping 	A and 	B large, control qubits A and B are
maintained in memory states. Using the paradigm of Sec. IV,
in this case for a three-qubit system, the 8�8 Hamiltonian
matrix of the system can be reduced to a 2�2 Hamiltonian
matrix, for qubit C, of the form

HC� = �C�X + �	C ± 
AC ± 
BC��Z, �23�

where the coupling term, 
AC �
BC� either adds or subtracts
from 	C depending on whether the expectation value of
�ZA ��ZB� is +1 or −1 in the subspace of target qubit C. The
expectation value of �ZA ��ZB� is +1 when the state of con-
trol qubit A �B� is �0� and the value of �ZA ��ZB� is −1 when
the state of control qubit A �B� is �1�.

FIG. 6. Evolution of probabili-
ties of the computational states for
the coupled SQUID qubits for the
initial states �a� �00�, �b� �01�, �c�
�10�, and �d� �11�, respectively.

FIG. 7. A three-qubit, two-level coupled system. A and B are the
control qubits and C is the target qubit. The target is coupled to
each of the two control qubits through the coupling terms 
AC and

BC. The two control qubits are not coupled to each other.
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The probability of the target qubit C in the �1� state is as
given by Eqs. �5�–�8�, where the bias term 	 in these equa-
tions is now replaced by the “effective” bias term
�	C±
AC±
BC� depending upon the states of the control qu-
bits A and B. Therefore, there are four different frequencies
as follows

f = 2	��C
2 + �	C ± 
AC ± 
BC�2� . �24�

Here, if we choose 
AC and 
BC to be equal to each other,
due to symmetry, we will have only three frequencies given
by

f1 = 2	��C
2 + �	C + 2
AC�2� , �25�

f2 = 2	��C
2 + �	C − 2
AC�2� , �26�

f3 = 2	��C
2 + 	C

2� . �27�

For the operation of the CCNOT gate, we require that the
target qubit, C, flip its state only when each of the control
qubits, A and B, are in the �1� state, which corresponds to an
odd integer number of half-cycle oscillations. In order to
avoid any attenuation at a half cycle, we need 	C to cancel
with the coupling term, 2
AC, and therefore,


AC = 
BC =
	C

2
. �28�

From Eqs. �26� and �28�, we have

f2 = 2�C =
m/2

T
, �29�

where m is an odd integer �m /2 is an odd integer number of
half cycles� and T is the total time step.

Equation �25� corresponds to the state when both the con-
trol qubits, A and B, are in the �0� state and the target qubit,
C, is in either state �0� or �1�. For the target qubit C to main-
tain its initialized state, it is required that it undergo an inte-
ger number of complete oscillation cycles in its transitional
state, when 	C is clocked low. From Eq. �29�, we know that
frequency f2 corresponds to an odd integer number of half
cycles. For frequency f1 to realize a complete number of
oscillation cycles, it needs to be an even integer multiple of
f2. In other words, we have from Eqs. �25�, �28�, and �29�,

f1 = 2	��C
2 + �2	C�2� = �2P�f2 = �2P��2�C� , �30�

where P is an integer.
Similarly, Eq. �27� corresponds to each of the four states

�010�, �011�, �100�, and �101�, where one of the two control
qubits is in the �1� state and the other is in the �0� state. In
each case, the target qubit C needs to undergo an integer
number of complete oscillation cycles. In other words, fre-
quency f3 needs to be an even integer multiple of f2. Hence,
we have from Eqs. �27�–�29�,

f3 = 2	��C
2 + 	C

2� = �2Q�f2 = �2Q��2�C� , �31�

where Q is an integer.

To solve for the parameter values �C and 	C, we choose
	C, 
AC, and 
BC in accordance with Eq. �28� to be functions
of �C

	C = 2
AC = 2
BC =
	M

2
�C, �32�

where M is an integer. Using Eq. �32� in Eqs. �30� and �31�,
we have

	��C
2 + M�C

2� = P�2�C� ,

	��C
2 +

M

4
�C

2� = Q�2�C� . �33�

The set of equations �29� and �33� are solved for �C, P,
and Q for different values of m, T, and M. In our simula-
tions, we used a time step T of 10 ns. We chose the value of
m to be 5, which gave 2 1

2 oscillations whenever the target
qubit C, in its transitional state, underwent a reversal of state.
From Eq. �29�, the value of �C can be directly calculated.
For our choice of T and m, �C was calculated to be
0.125 GHz.

Next, for different integer values of M, the set of equa-
tions �33� were evaluated to solve for P and Q. With M being
an integer, it was not possible to obtain exact integer values
for both P and Q simultaneously, i.e., either one of them
evaluated to be an integer while the other was a number
close to an integer. For instance, for M =60, P and Q evalu-
ated to be 3.9 ��4.0� and 2.0, respectively, while for M
=63, P and Q evaluated to be 4.0 and 2.05 ��2.0�, respec-
tively. This is the case even when both the coupling terms are
not equal. For our simulations, we chose the value of M to be
60 from which, using Eq. �32�, the values of 	C, 
AC, and 
BC
were calculated to be 0.484 GHz, 0.242 GHz, and
0.242 GHz, respectively. This means that for each of the
states �000� and �001�, the target C undergoes 20 oscillation
cycles in its transitional state, whereby it returns to its ini-
tialized state. In each of the states �010�, �011�, �100�, and
�101�, qubit C undergoes ten complete oscillations in its tran-
sitional state to return to its initialized state. From Eq. �29�
and the evaluated value of �C, the qubit undergoes 2 1

2 oscil-
lation cycles in its transitional state in each of the states �110�
and �111� and, hence, flips its state.

VIII. SIMULATION RESULTS OF TOFFOLI GATE

Like the CNOT gate, the simulations for the Toffoli gate
were carried out over a total time span of 20 ns where the
first and third time steps of 5 ns each were memory states
and the second time step of 10 ns was a transitional state.
The biases on the two control qubits were maintained high
throughout while the bias on the target qubit was pulsed
similar to that shown in Fig. 3 �the high and low values being
listed in Table II�. Depending upon the state of the control
qubits, target C either flipped its state �when both controls
were in the �1� state� by undergoing 2 1

2 oscillations or re-
turned to the state it was in at the start of the time step by
undergoing an integer number of complete oscillations.
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Table II lists the corresponding parameter values for the
Toffoli gate operation. The values of �A and �B were made
equal to the calculated value of �C. Figure 8 shows the truth
table of the Toffoli gate estimated by the numerical calcula-
tion. From the simulation results, it is clear that the CCNOT

gate was realized using our approach.

IX. CONCLUSION

We have shown in this paper how to realize quantum
gates by pulsing the bias of a quantum two-level system. We
have shown how to realize a CNOT gate using a two-qubit,
two-level coupled system. Under a CNOT gate operation, by
keeping the state of control qubit A constant, we reduced the
4�4 Hamiltonian to a 2�2 Hamiltonian for the target qubit
B. Using the reduced Hamiltonian, we were able to solve for
parameter values for the coupling term, tunneling frequency,
and bias in the transitional state. Since the governing equa-
tions used to calculate the parameter values are linear, the
parameter values are resizable, depending upon the pulse
width; therefore, there is no theoretical restriction on the
range of calculated values for the parameters. We further

demonstrated our proposed scheme by simulating the CNOT

gate operation for a multilevel system of two coupled
SQUIDs using the parameters calculated.

We have also shown how the same approach can be used
to realize the Toffoli gate. In this case, the state of the two
control qubits are kept constant and the 8�8 Hamiltonian of
the three-qubit system is reduced to a 2�2 Hamiltonian for
target C. The parameter values for proper gate operation
were calculated using this approach and a CCNOT gate was
realized in simulation.
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TABLE II. Parameter values for the Toffoli gate. The values
were calculated as discussed in Sec. VII. The time step T in the
transitional state is 10 ns and the total time is 20 ns. The values of
m, M, P, and Q were chosen to be 5, 60, 3.9, and 2, respectively.

Parameter Value �GHz�

�A=�B=�C 0.125


AC=
BC 0.242

	max 10.0

	min 0.484

FIG. 8. Truth table of the present Toffoli gate operation esti-
mated by the numerical calculation.
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