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I. INTRODUCTION

The first proposal of a unified formalism for quasiprob-
ability distribution functions in continuous phase space has
its origin in the seminal works produced by Cahill and
Glauber �1�. Since then a huge number of papers have ap-
peared in the literature covering a wide range of practical
applications in different physical systems modeled by means
of infinite-dimensional Hilbert spaces �2,3�. In particular, the
phase-space description of some important effects in quan-
tum mechanics, such as interference, entanglement, and de-
coherence, has opened up astounding possibilities for the
comprehension of intriguing aspects of the microscopic
world �4�. However, if physical systems with a finite-
dimensional space of states are considered, then the qua-
siprobability distribution functions are described by a set of
discrete variables defined over a finite lattice �5–15�. In this
sense, Opatrný et al. �9� were the first researchers to propose
a unified approach to the problem of discrete quasiprobabil-
ity distribution functions in the literature. Basically, they
used a discrete displacement-operator expansion to introduce
s-parametrized phase-space functions associated with opera-
tors defined over a finite-dimensional Hilbert space. Further-
more, the authors showed that the discrete Glauber-
Sudarshan, Wigner, and Husimi functions are particular cases
of s-parametrized phase-space functions and depend on the
arbitrary reference state whose characteristic function cannot
have zero values. It is worth mentioning that the dependence
on the right choice of reference state and the associated prob-
lems with the mod�N� invariance of the discrete displace-
ment operators represent two important restrictions inherent
to their approach which deserve to be carefully investigated.
Nowadays, beyond these fundamental features, discrete qua-
siprobability distribution functions in finite-dimensional

phase spaces have potential applications for quantum-state
tomography �16,17�, quantum teleportation �18–21�, phase-
space representation of quantum computers �22�, open quan-
tum systems �23�, quantum information theory �24�, and
quantum computation �25�.

The main aim of this paper is to present a consistent for-
malism for the quasiprobability distribution functions de-
fined over a discrete N2-dimensional phase space, which is
based upon the mathematical fundamentals developed in
�26�. First, we review important topics and introduce new
properties concerning the mod�N�-invariant operator basis,
which leads us not only to define a parametrized phase-space
function in terms of the discrete s-ordered characteristic
function, but also to discuss some characteristics inherent to
the extended Cahill-Glauber formalism for finite-
dimensional spaces. The restriction on the right choice of
reference state is overcome in this approach through the
vacuum state established by Galetti and de Toledo Piza �8�,
whose analytical properties were extensively explored in
�10�. Consequently, the discrete Glauber-Sudarshan, Wigner,
and Husimi functions are well defined in the present context
and represent specific cases of s-parametrized phase-space
functions describing density operators associated with physi-
cal systems whose space of states is finite. In addition, we
also establish a hierarchical order among them through a
smoothing process characterized by a discrete phase-space
function that closely resembles the role of a Gaussian func-
tion in the continuous phase space. In this point, it is worth
emphasizing that our ab initio construction inherently em-
bodies the discrete analogs of the desired properties of the
Cahill-Glauber approach. Next, we apply such a discrete ex-
tension to the context of quantum information processing,
quantum tomography, and quantum teleportation in order to
obtain a phase-space description of some topics related to
unitary depolarizers, discrete Radon transforms, and general-
ized Bell states. In particular, we attain results within which
some of them deserve to be mentioned: �i� we show that the
symmetrized Schwinger operator basis introduced in �6� can
be considered a unitary depolarizer; �ii� we establish a link
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between measurable quantities and s-ordered characteristic
functions by means of discrete Radon transforms, which can
be used to construct any quasiprobability distribution func-
tions defined over a N2-dimensional phase space; and finally,
�iii� we present a quantum teleportation protocol that leads us
to reach a generalized phase-space description of the physi-
cal process discussed by Bennett et al. �18�.

This paper is organized as follows. In Sec. II we present
some basic properties inherent to our discrete mapping ker-
nel which allow us to define a parametrized phase-space
function in terms of a discrete s-ordered characteristic func-
tion. Following, in Sec. III we show that the extended Cahill-
Glauber formalism not only introduces mathematical tools
for the analysis of finite quantum systems, but also can be
applied in the context of quantum information processing,
quantum tomography, and quantum teleportation. Moreover,
we also employ a slightly modified version of the scattering
circuit to measure any discrete Wigner function in the phase-
space representation. Finally, Sec. IV contains our summary
and conclusions.

II. MAPPING KERNEL

There is a huge variety of probability distribution func-
tions defined in continuous quantum phase spaces whose
range of practical applications in physics covers different
areas and scenarios �2,3�. For example, the well-known
Cahill-Glauber formalism �1� provides a general mapping
technique of bounded operators which permits, in particular,
to define a generalized probability distribution function
F�s��q , p�=Tr�T�s��q , p��� associated with an arbitrary physi-
cal system described by the density operator �. In this ap-
proach, the mapping kernel �hereafter �=1�

T�s��q,p� =� dq�dp�

2�
exp�i�q�p − p�q��D�s��q�,p�� �1�

is defined as a Fourier transform of the parametrized operator

D�s��q�,p�� = exp��s/4��q�2 + p�2��D�q�,p�� , �2�

where D�q� , p��=exp�i�p�Q−q�P�� is the usual displacement
operator written in terms of the coordinate and momentum
operators satisfying the Weyl-Heisenberg commutation rela-
tion �Q ,P�=i1 and s is a complex parameter. Thus, for
s=−1, 0, and +1 the generalized probability distribution
function leads to the so-called Husimi, Wigner, and Glauber-
Sudarshan functions, respectively. Besides, these functions
present specific properties and correspond to different or-
dered power-series expansions in the annihilation and cre-
ation operators of the density operator: the Husimi function
H�q , p� is infinitely differentiable and it is associated with
the normally ordered form; the Wigner function W�q , p� is a
continuous and uniformly bounded function; it can take
negative values and corresponds to the symmetrically or-
dered form; and finally, the Glauber-Sudarshan function
P�q , p� is highly singular; it does not exist as a regular func-
tion for pure states and it corresponds to the antinormally
ordered form. After this condensed review of the Cahill-
Glauber formalism for the quasiprobability distribution func-

tions, we will establish the discrete representatives of these
functions in an N2-dimensional phase space.

A. mod„N…-invariant operator basis

Let us introduce the symmetrized version of the unitary
operator basis proposed by Schwinger �27� as

S��,�� =
1

�N
exp� i�

N
���U�V�, �3�

where the labels � and � are associated with the dual coor-
dinate and momentum variables of a discrete N2-dimensional
phase space. Consequently, these labels assume integer val-
ues in the symmetrical interval �−� ,��, with �= �N−1� /2. A
comprehensive and useful compilation of results and proper-
ties of the unitary operators U and V can be found in Ref.
�10�, since the initial focus of our attention is the essential
features exhibited by Eq. �3�. Note that the set of N2 opera-
tors 	S�� ,��
�,�=−�,. . .,� constitutes a complete orthonormal
operator basis which allows us, in principle, to construct all
possible dynamical quantities belonging to the system �27�.
Thus, the decomposition of any linear operator O in this
basis is written as

O = �
�,�=−�

�

O��,��S��,�� , �4�

with the coefficients O�� ,�� given by Tr�S†�� ,��O�. It must
be stressed that this decomposition is unique since the rela-
tions S†�� ,��=S�−� ,−�� and Tr�S†�� ,��S��� ,����
=�

��,�
�N�

�
��,�
�N� are promptly verified. The superscript �N� on the

Kronecker delta denotes that this function is different from
zero when its labels are mod�N� congruent.

The mod�N�-invariant operator basis recently proposed in
�26�,

T�s���,�� =
1

�N
�

�,�=−�

�

exp�i����,�;N� −
2�i

N
��� + ���


	S�s���,�� , �5�

is defined by means of a discrete Fourier transform of the
extended mapping kernel

S�s���,�� = �K��,���−sS��,�� ,

where the extra term K�� ,�� can be expressed as a sum of
products of Jacobi theta functions evaluated at integer argu-
ments �28�,

K��,�� = 	2�
3�0�ia�
3�0�4ia�

+ 
4�0�ia�
2�0�4ia��
−1	
3��a��ia�
3��a��ia�

+ 
3��a��ia�
4��a��ia�exp�i���

+ 
4��a��ia�
3��a��ia�exp�i���

+ 
4��a��ia�
4��a��ia�exp�i��� + � + N��
 ,

�6�

with a= �2N�−1. As mentioned in �26�, K�� ,�� is a bell-

MARCHIOLLI, RUZZI, AND GALETTI PHYSICAL REVIEW A 72, 042308 �2005�

042308-2



shaped function in the discrete variables �� ,�� and equals 1
for �=�=0; in addition, the complex parameter s obeys
�s��1. The phase ��� ,� ;N�=NI�

NI�
N−�I�

N−�I�
N is responsible

for the mod�N� invariance of the operator basis �5�,
I�

N= �� /N� being the integral part of � with respect to N. This
definition stands for the discrete version of the continuous
mapping kernel �1� and represents the cornerstone of the
present approach.

By analogy with decomposition �4�, the expansion

O =
1

N
�

�,�=−�

�

O�−s���,��T�s���,�� �7�

can also be verified for any linear operator. Here, the coeffi-
cients O�−s��� ,��=Tr�T�−s��� ,��O� correspond to a one-to-
one mapping between operators and functions belonging to
an N2-dimensional phase space characterized by the discrete
labels � and �. In particular, if one considers s=−1 and
O=� in Eq. �7�, we obtain the diagonal representation

� =
1

N
�

�,�=−�

�

P��,����,����,�� , �8�

where P�� ,��=Tr�T�1��� ,���� is the discrete version of the
Glauber-Sudarshan function for finite Hilbert spaces and
T�−1��� ,�� is the projector of discrete coherent states �10�.
For s=0, we verify that

� =
1

N
�

�,�=−�

�

W��,��G��,�� �9�

recovers the well-established results in �8�, W�� ,��
=Tr�G†�� ,���� being the discrete Wigner function and
G�� ,�� the mod�N�-invariant operator basis whose math-
ematical properties were studied in �10�. Furthermore, we
note that the Husimi function in the discrete coherent-state
representation, H�� ,��=Tr�T�−1��� ,����, can be promptly
obtained from Eq. �8� or �9� by means of a trace operation.
Next, we will discuss some properties inherent to the set of
N2 operators 	T�s��� ,��
�,�=−�,. . .,� with emphasis on estab-
lishing a hierarchical process among the quasiprobability dis-
tribution functions in finite-dimensional spaces.

B. Basic properties

The discrete mapping kernel T�s��� ,�� presents some in-
herent mathematical features that lead us to derive a set of
properties which characterize its algebraic structure. For in-
stance, it is straightforward to show that the equalities

�i�
1

N
�

�,�=−�

�

T�s���,�� = 1,

�ii� Tr�T�s���,��� = 1,

�iii� Tr�T�−s���,��T�s����,���� = N���,�
�N� ���,�

�N�

are promptly verified where, in particular, the third property
has been reached with the help of the auxiliary relation

Tr�T�t���,��T�s����,����

=
1

N
�

�,�=−�

�

exp�2�i

N
����� − �� + ���� − ����

	�K��,���−�t+s�.

Note that for s=−1, the first property coincides with the
completeness relation of the discrete coherent states �the
proof of this relation was given in �10��; the second property
simply states that T�s��� ,�� has a unit trace. Finally, the third
property is the counterpart to the orthogonality rule estab-
lished for the operators S�� ,��. Furthermore, we also verify

the condition T�s*��� ,��= �T�s��� ,���†, which implies that
for real values of the parameter s, the discrete mapping ker-
nel is Hermitian; consequently, the mappings of Hermitian
operators in the N2-dimensional phase space lead us to obtain
real functions. Now, let us establish a hierarchical process
among the discrete Glauber-Sudarshan, Wigner, and Husimi
functions.

The connection between the discrete Glauber-Sudarshan
and Wigner functions is reached with the help of Eq. �8�
through a smoothing process of P�� ,��—i.e.,

W��,�� =
1

N
�

��,��=−�

�

E��� − �,�� − ��P���,��� , �10�

where E���−� ,��−���Tr�T�0��� ,��T�−1���� ,���� is ex-
pressed by means of a discrete Fourier transform of the func-
tion K�� ,��—note that E���−� ,��−�� can be interpreted as
a Wigner function evaluated for the discrete coherent states
labeled by �� and ��. Similarly, the link between discrete
Wigner and Husimi functions can also be established through
Eq. �9� as follows:

H��,�� =
1

N
�

��,��=−�

�

E��� − �,�� − ��W���,��� . �11�

Therefore, Eqs. �10� and �11� exhibit a sequential smoothing
which characterizes a hierarchical process among the qua-
siprobability distribution functions in finite-dimensional
spaces, P�� ,��→W�� ,��→H�� ,��. It is worth mentioning
that

H��,�� =
1

N
�

��,��=−�

�

���,����,����2P���,��� �12�

establishes an additional relation which allows us to connect
both the discrete Husimi and Glauber-Sudarshan functions
without the intermediate process given by W�� ,��,
��� ,� ��� ,����2= �K���−� ,��−���2 being the overlap prob-
ability for discrete coherent states. Opatrný et al. �9� have
used a similar formalism in order to establish a set of param-
etrized discrete phase-space functions for finite-dimensional
Hilbert spaces, where some mathematical procedures were
introduced to circumvent the condition of mod�N� invariance
of the discrete displacement operators. In that approach, the
discrete s-parametrized functions basically depend on the ar-
bitrary reference state whose characteristic function cannot
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have zero values. Here, we have established a suitable math-
ematical procedure that allows us to overcome some intrinsic
problems encountered in �9�, the vacuum state being defined
in �8,10� as our reference state.

Next, we present two important properties associated with
the trace of the product of two bounded operators and the
matrix elements �m�T�s��� ,���n� in the finite number basis
	�n�
n=0,. . .,N−1. The first one corresponds to the overlap

�iv� Tr�AB� =
1

N
�

�,�=−�

�

A�−s���,��B�s���,�� ,

where, in particular, for s=0, the trace of the product of two
density operators coincides with the overlap of the discrete
Wigner functions of each density operator,

Tr��1�2� =
1

N
�

�,�=−�

�

W1��,��W2��,�� .

In addition, the mean value of any bounded operator can also
be obtained from this property,

�O� � Tr�O�� =
1

N
�

�,�=−�

�

O�−s���,��F�s���,�� , �13�

the parametrized function F�s��� ,�� being defined as the ex-
pectation value of the discrete mapping kernel �5�—i.e.,

F�s���,�� � Tr�T�s���,����

=
1

�N
�

�,�=−�

�

exp�i����,�;N� −
2�i

N
��� + ���


	
�s���,�� , �14�

while 
�s��� ,���Tr�S�s��� ,���� represents the discrete
s-ordered characteristic function �1�. Note that ��� ,� ;N�
can be discarded in Eq. �14� since the discrete labels � and �
are confined into the closed interval �−� ,��. In fact, this
phase will be important only in the mapping of the product
of M quantum operators �10�. Besides, for s=−1,0 , +1 the
parametrized function is directly related to the discrete Hu-
simi, Wigner, and Glauber-Sudarshan functions, respectively.
Hence, the characteristic function can now be promptly cal-
culated for each situation through the inverse discrete Fou-
rier transform of the generalized probability distribution
function F�s��� ,��.

The second one refers to the nondiagonal matrix elements
in the finite number basis

�v� �m�T�s���,���n� =
1

N
�

�,�=−�

�

exp�i����,�;N�

−
2�i

N
��� + ���
�K��,���−s�mn��,�� ,

with

�mn��,�� = exp�−
i�

N
��� �

�=−�

�

exp�2�i

N
���F�,nF�−�,m

*

�15�

written in terms of the coefficients �8�

F�,n = Nn
�− i�n

�N
�

�=−�

�

exp�−
�

N
�2 +

2�i

N
���Hn��2�

N
�� ,

where Nn is the normalization constant and Hn�z� is a Her-
mite polynomial. It is easy to show that �mn�� ,�� satisfies
the relations �mn�0,0�=�m,n

�N� and �00�� ,��=K�� ,��, which
are associated with the orthogonality rule for the finite num-
ber states and the diagonal matrix element �0�T�s��� ,���0�
for the vacuum state. Moreover, adopting the mathematical
procedure established in �29� for the continuum limit, we
obtain

�mn�q�,p�� =�m!

n! �q� + ip�
�2

�n−m

Lm
�n−m�� �q� + ip��2

2
�

	exp�−
1

4
�q�2 + p�2�
 �n � m� ,

with Ln
�m��z� being the associated Laguerre polynomial. Con-

sequently, the nondiagonal matrix elements for �s��1 take
the analytical form

�m�T�s��q,p��n� =
2

1 − s
�m!

n!
�−

1 + s

1 − s
�m

	��2�q − ip�
1 − s


n−m

Lm
�n−m��2�q2 + p2�

1 − s2 �
	exp�−

q2 + p2

1 − s
� .

This result coincides exactly with that obtained by Cahill and
Glauber �1� for the mapping kernel �1�, since T�s��� ,�� goes
to T�s��q , p� in the limit N→�. Following, we will discuss
some applications for the generalized probability distribution
function F�s��� ,�� with emphasis on the discrete phase-space
representation of quantum tomography and quantum telepor-
tation.

III. APPLICATIONS

Nowadays, within the context of quasiprobability distri-
bution functions in finite-dimensional spaces, the discrete
Wigner function has a central role in some recent researches
on quantum-state tomography �16,17�, quantum teleportation
�18–21�, phase-space representation of quantum computers
�22�, open quantum systems �23�, quantum information
theory �24�, and quantum computation �25�. Basically, these
works are based on the well-established Wootters’ approach
�5� for discrete Wigner functions, in which “the field of real
numbers that labels the axes of continuous phase space is
replaced by a finite field having N elements,” N being the
power of a prime number. Notwithstanding this, there are
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other formalisms for finite-dimensional Hilbert spaces with
convenient inherent mathematical properties which can also
be applied in the description of similar quantum systems
�6–15,26�. In this section, we will show that the present for-
malism not only introduces mathematical tools for the analy-
sis of finite quantum systems but also can be applied, for
example, to the context of quantum information processing,
quantum tomography, and quantum teleportation.

A. Quantum information processing

Within the most important quantum operations in quan-
tum information processing, unitary operations have a
prominent position �30�. Besides, in the scope of quantum
information theory, the unitary depolarizers play an impor-
tant role in quantum teleportation and quantum dense coding
�21,31�. With respect to N-dimensional Hilbert spaces, uni-
tary depolarizers are defined on a domain � as elements of
the set

D�N� = 	X��X�X�
† = X�

†X� = 1,� � �
 , �16�

which satisfy the relation

1

N
�

���

X�OX�
† = Tr�O�1 �17�

for any linear operator O acting on finite-dimensional vector
spaces, where 1 is an identity operator. Recently, Ban �32�
has shown that the Pegg-Barnett phase operator formalism is
useful for quantum information processing as well as in in-
vestigating quantum optical systems. In this sense, it is worth
mentioning that the symmetrized version of the Schwinger
operator basis S�� ,�� can also be considered a unitary depo-
larizer, since the elements of the set

D�N� = 	�NS��,�����NS��,�����NS��,���†

= ��NS��,���†��NS��,��� = 1,− � � �,� � �

�18�

obey the property

1

N
�

�,�=−�

�

��NS��,���O��NS��,���† = Tr�O�1 . �19�

This result shows that the average over all possible discrete
dual coordinate and momentum shifts on the N2-dimensional
phase space completely randomizes any quantum state
defined on the finite-dimensional vector space.
Furthermore, for s=i� and ��R, the elements of the set
	�NS�i���� ,��
�,�=−�,. . .,� generalize Eq. �18�, S�i���� ,�� being
the parametrized Schwinger operator basis. Unfortunately,
the implementation of such unitary operations in a realistic
quantum-computer technology encounters an almost unsur-
mountable obstacle: the degrading and ubiquitous decoher-
ence due to the unavoidable coupling with the environment
�33�. However, recent progress �34� has developed the idea
of protecting or even creating a decoherence-free subspace
for processing quantum information.

B. Marginal distributions, Radon transforms, and discrete
phase-space tomography

The marginal distributions associated with the generalized
probability distribution function F�s��� ,�� are obtained
through the usual mathematical procedure

Q�s���� �
1

�N
�

�=−�

�

F�s���,�� = �
�=−�

�

exp�−
2�i

N
���
�s���,0� ,

�20�

R�s���� �
1

�N
�

�=−�

�

F�s���,�� = �
�=−�

�

exp�−
2�i

N
���
�s��0,�� .

�21�

Note that the second equality in both definitions has been
attained with the help of Eq. �14�. Consequently, the mar-
ginal distributions are obtained by means of discrete Fourier
transforms of the s-ordered characteristic function calculated
in specific slices of the dual plane �� ,��. Now, if one con-
siders the hierarchical process established by Eqs. �10� and
�11�, alternative expressions for the marginal distributions
associated with the Wigner and Husimi functions can also be
derived,

Q�0���� = �
��=−�

�

E��� − ��Q�1����� ,

R�0���� = �
��=−�

�

E��� − ��R�1����� ,

Q�−1���� = �
��=−�

�

E��� − ��Q�0����� ,

R�−1���� = �
��=−�

�

E��� − ��R�0����� ,

where the smoothing function E��� is given by

E��� =
1

�2N


3�0�ia�
3�2�a��ia� + 
4�0�ia�
4�2�a��ia�

3�0�ia�
3�0�4ia� + 
4�0�ia�
2�0�4ia�

.

Thus, a sequential smoothing process is immediately
established among the discrete marginal distributions:
Q�1����→Q�0����→Q�−1���� and R�1����→R�0����
→R�−1����. The importance of the quantum-mechanical mar-
ginal distributions for s=0 in the context of quantum tomog-
raphy in discrete phase space has been stressed by Leonhardt
�16�, where measurements on subensembles of a given quan-
tum state are necessary in the reconstruction process.

The Radon transforms represent an important mathemati-
cal key for quantum-state reconstruction �35�. Pursuing this
line, Vourdas �15� has introduced a wide class of symplectic
transformations in Galois quantum systems which allows us
to reconstruct the discrete Wigner function from measurable
quantities. Basically, these symplectic transformations con-
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sist of Bogoliubov-type unitary transformations generated by
J��1 ,�2 ,�3�=M��3�N��2�C��1�, where

C��1� =
1

�N
�

�,�=−�

�

exp�−
i�

N
�1 + �1���
S„�,�1 − �1��… ,

N��2� =
1

�N
�

�,�=−�

�

exp� i�

N
��2� − 2���
S��,0� ,

M��3� =
1

�N
�

�,�=−�

�

exp�−
i�

N
��3� + 2���
S�0,��

are unitary operators written in terms of the symmetrized
Schwinger basis S�� ,��, with �1=�4�1+�2�3�−1,
�2=�2�4

−1�1+�2�3�, and �3=�3�4�1+�2�3�−1. Here, the dis-
crete elements of the set 	�i
i=1,. . .,4 assume integer values in
the closed interval �−� ,�� and satisfy the relation
�1�4−�2�3=1 mod�N�. It is worth mentioning that this con-
straint implies the existence of the inverse elements since
�1=�4

−1�1+�2�3�. Now, let us initially apply the unitary trans-
formation J��1 ,�2 ,�3� on the parametrized Schwinger ba-
sis S�s��� ,��. Thus, after some algebra we obtain

J��1,�2,�3�S�s���,��J†��1,�2,�3�

= �K��1� + �2�,�3� + �4��
K��,�� 
s

S�s���1� + �2�,�3� + �4�� .

�22�

Using this auxiliary result in the calculation of
J��1 ,�2 ,�3�T�s��� ,��J†��1 ,�2 ,�3�, we promptly obtain
the intermediate expression

1
�N

�
�,�=−�

�

exp�i����,�;N� −
2�i

N
��� + ���


	�K��1� + �2�,�3� + �4��
K��,�� 
s

S�s���1� + �2�,�3� + �4�� .

The next step consists in replacing the dummy discrete vari-
ables � and � by �4��−�2�� and �1��−�3�� in the double
sum, respectively, with the aim of establishing the compact
expression

T�s����,��� =
1

�N
�

��,��=−�

�

exp�i�����,��;N� −
2�i

N
�����

+ �����
 	 � K���,���
K��4�� − �2��,�1�� − �3���
s

	S�s����,��� , �23�

��=�4�−�3� and ��=�1�−�2� being the new discrete vari-
ables written as a linear combination of the old ones. In
particular, this transformed mod�N�-invariant operator basis
can be used to derive the marginal distributions through the
standard mathematical procedure

Q�s���;�1,�3� =
1

�N
�

��,��=−�

�

F�s����,�����,�1��+�3��
�N� , �24�

R�s���;�2,�4� =
1

�N
�

��,��=−�

�

F�s����,�����,�2��+�4��
�N� . �25�

These results characterize the Radon transform in the present
context and say that the sum of the parametrized function
F�s���� ,��� on specific lines in the N2-dimensional phase
space represented by the discrete variables �� and �� are
equal to the marginal distributions for any value of the pa-
rameter s �when s=0, the marginal distributions coincide
with probabilities�. In terms of the discrete s-ordered charac-
teristic function, Eqs. �24� and �25� can be written as

Q�s���;�1,�3� = �
�=−�

�

exp�−
2�i

N
����K��1�,�3��

K��,0� 
s

	
�s���1�,�3�� ,

R�s���;�2,�4� = �
�=−�

�

exp�−
2�i

N
����K��2�,�4��

K�0,�� 
s

	
�s���2�,�4�� ,

whose inverse expressions are given by


�s���1�,�3�� =
1

N
� K��,0�

K��1�,�3��
s

�
�=−�

�

exp�2�i

N
���

	Q�s���;�1,�3� , �26�


�s���2�,�4�� =
1

N
� K�0,��

K��2�,�4��
s

�
�=−�

�

exp�2�i

N
���

	R�s���;�2,�4� . �27�

Note that Eqs. �26� and �27� establish a link between mea-
surable quantities �right-hand side �RHS�� and discrete
s-ordered characteristic functions �LHS�; moreover, they can
be used to construct, for instance, the quasiprobability distri-
bution functions in finite-dimensional spaces. In summary,
we have established a set of important theoretical results
which constitute a discrete version of that obtained by Vogel
and Risken �36� for the continuous case.

From the theoretical point of view, the ideas of quantum
computation can nowadays be used for illuminating some
fundamental processes in quantum mechanics �37�. In this
sense, Paz and co-workers �17� have shown that tomography
and spectroscopy are dual forms of the same quantum com-
putation �represented by a “scattering” circuit�, since the
state of a quantum system can be modeled on a quantum
computer. Furthermore, using different versions of program-
mable gate arrays, the authors have been capable not only of
evaluating the expectation value of any operator acting on an
N-dimensional space of states, but also of measuring other
probability distribution functions �e.g., Husimi and Kirk-
wood functions� in a discrete phase space. Here, we employ
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a slightly modified version of the scattering circuit to mea-
sure the discrete Wigner function W�� ,��. Basically, we
modify this circuit by inserting a controlled-U operation be-
tween the Hadamard gates, with U=�NS�� ,�� acting on a
quantum system described by some unknown density opera-
tor �, and also a controlled Fourier transform �FT� after the
second Hadamard gate. This is illustrated in Fig. 1, where a
set of measurements on the polarizations along the z and y
axes of the ancillary qubit �0� yields the expectation values
��z�=�N Re�W�� ,��� and ��y�=�N Im�W�� ,���, respec-
tively. In the absence of the controlled-FT operation, these
measurements lead us to obtain the characteristic function

�s��� ,�� for s=0—namely, ��z�=�N Re�
�0��� ,��� and
��y�=�N Im�
�0��� ,���. However, to construct the discrete
Husimi function, some modifications must be included in the
primary circuit �see Ref. �17� for more details� or the link
established by Eq. �11� between the Wigner and Husimi
functions should be employed. Both situations deserve a de-
tailed theoretical investigation since their operational costs
can be prohibitive from the experimental point of view. Next,
we will present a phase-space description of the process in-
herent to quantum teleportation for a system with an
N-dimensional space of states.

C. Discrete phase-space representation of quantum
teleportation

In the last years, great advance has been reached in the
quantum teleportation arena. In particular, we observe that �i�
different theoretical schemes for teleportation of quantum
states involving continuous and discrete variables have been
proposed and investigated in the literature �18–21,38� and
�ii� its experimental feasibility has been demonstrated in
simple systems through pairs of entangled photons produced
by the process of parametric down-conversion �39�. More-
over, the essential resource in both theoretical and experi-
mental approaches is directly associated with the concept of
entanglement, which naturally appears in quantum mechan-
ics when the superposition principle is applied to composite
systems. An immediate consequence of this important effect

has its origin in the theory of quantum measurement �40�,
since the entangled state of the multipartite system can reveal
information about its constituent parts.

Recently, the quasiprobability distribution functions have
represented important tools in the phase-space description of
the quantum teleportation process for a system with an
N-dimensional space of states. For instance, Koniorczyk et
al. �19� have presented a unified approach to quantum tele-
portation in arbitrary dimensions based on the Wigner-
function formalism, where the finite- and infinite-
dimensional cases can be treated in a conceptually uniform
way. Paz �20� has extended the results obtained by Koniorc-
zyk et al. to the case where the space of states has arbitrary
dimensionality. To this end, the author has used a different
definition for the discrete Wigner function which permits us
to analyze situations where entanglement among subsystems
of arbitrary dimensionality is an important issue. Here, we
use the mod�N�-invariant operator basis T�s��� ,�� in order to
obtain a discrete phase-space representation of quantum tele-
portation which permits us to extend the results reached by
Paz in the discrete Wigner-function context for any discrete
quasiprobability distribution functions.

1. Generalized Bell states

The generalized Bell states were first introduced by Ben-
nett et al. �18� in the study of quantum teleportation for
systems with N�2 orthogonal states. Basically, these states
can be defined as ���1,�2

�=V1
�1 � U2

−�2��0,0�, where

��0,0� =
1

�N
�

�=−�

�

�v��1 � �v��2

represents the pure state maximally entangled for a bipartite
system �in this case, the reduced density matrix of each con-
stituent part is equal to �1/N�1i for i=1,2�, 	�v��i
�=−�,. . .,�

and 	�u�� j
�=−�,. . .,� being the eigenstates of the Schwinger
unitary operators Vi and U j, respectively. Furthermore, the
generalized Bell states satisfy the following properties:

�i� ���1,�2
���1�,�2�

� = �
�1�,�1

�N�
�

�2�,�2

�N� �orthogonality relation� ,

�ii� �
�1,�2=−�

�

���1,�2
����1,�2

� = 11 � 12 �identity relation� ,

�iii� U+���1,�2
� = U1 � U2���1,�2

�

= exp�− �2�i/N��1����1,�2
� ,

V−���1,�2
� = V1 � V2

−1���1,�2
� = exp��2�i/N��2����1,�2

� .

Note that U+ displaces both systems in coordinates by the
same amount �1, while V− displaces them in momentum by
the quantity �2 in the opposite direction. In addition, as
	���1,�2

�
�1,�2=−�,. . .,� are common eigenstates of U+ and V−,
such states can be interpreted as corresponding to the eigen-
states of the total momentum and relative coordinate opera-
tors �19,20�; indeed, these states are the discrete version of

FIG. 1. Slightly modified version of the “scattering circuit” used
to evaluate the real and imaginary parts of the expectation value
Tr�U�� for a unitary operator U, where �0� represents the ancillary
qubit state which acts as a probe particle in a scattering experiment
and H denotes a Hadamard transform. In particular, for a
controlled-U operation given by U=�NS�� ,��, the measurements
of the ancillary qubit polarizations along the z and y axes allow us
to construct the discrete Wigner function W�� ,��=Tr�T�0��� ,����
(discrete characteristic function 
�0��� ,��=Tr�S�0��� ,����) in the
presence �absence� of the controlled-FT operation.
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the continuous ones used by Einstein, Podolsky, and Rosen
�41�. Thus, the generalized Bell measurements will be char-
acterized in our context by the set of diagonal projection
operators 	���1,�2

����1,�2
�
�1,�2=−�,. . .,�.

Now, let us establish some further results related to the
generalized Bell states and their discrete phase-space
representation. The first one corresponds to the
mapping of ���1,�2

����1�,�2�
� in terms of the basis

	Ti
�si���i ,�i�
�i,�i=−�,. . .,� for each subsystem—i.e.,

���1,�2
����1�,�2�

� =
1

N2 �
�1,�1,�2,�2=−�

�

T1
�s1���1,�1�

�T2
�s2���2,�2���−s1,−s2�

	��1,�2,�1�,�2���1,�1,�2,�2� �28�

with the coefficients of the expansion given by

��−s1,−s2���1,�2,�1�,�2���1,�1,�2,�2�

= Tr�T1
�−s1���1,�1� � T2

�−s2���2,�2����1,�2
����1�,�2�

�� .

Consequently, the second one refers to the inverse mapping
of Eq. �28�, which can be directly reached with the help of
property �ii� as follows:

T1
�s1���1,�1� � T2

�s2���2,�2�

= �
�1,�2,�1�,�2�=−�

�

��s1,s2���1,�1,�2,�2��1,�2,�1�,�2��

	���1,�2
����1�,�2�

� , �29�

being

��s1,s2���1,�1,�2,�2��1,�2,�1�,�2��

= Tr�T1
�s1���1,�1� � T2

�s2���2,�2����1�,�2�
����1,�2

�� .

It is worth mentioning that a general connection between the
coefficients of both expansions �28� and �29� can also be
promptly established for any values of 	s1 ,s2
�R,

��−s1,−s2���1,�2,�1�,�2���1,�1,�2,�2�

= ��−s1,−s2���1,�1,�2,�2��1�,�2�,�1,�2�

= ���−s1,−s2���1,�1,�2,�2��1,�2,�1�,�2���
*.

The analytical expression of these coefficients will be omit-
ted here due to its apparent irrelevance in the phase-space
description of the quantum teleportation process.

However, some useful results derived from these coeffi-
cients deserve to be mentioned and discussed in detail. For
instance, Eq. �29� allows us to calculate the parametrized
function

F�1,�2

�s1,s2���1,�1,�2,�2� = Tr�T1
�s1���1,�1� � T2

�s2���2,�2�

	���1,�2
����1,�2

�� , �30�

which coincides with � for particular values of �i and �i�. In
this situation, the analytical expression

F�1,�2

�s1,s2���1,�1,�2,�2� =
1

N2 �
�,�=−�

�

exp�2�i

N
����1 + �2 + �1�

+ ���1 − �2 − �2����K��,���−�s1+s2�

can be reduced to the following discrete quasiprobability dis-
tribution functions:

�i� s1 = s2 = 0�Wigner function�

W�1,�2
��1,�1,�2,�2� = ��1,−��1+�2�

�N� ��2,�1−�2

�N� ,

�ii� s1 = s2 = − 1�Husimi function�

H�1,�2
��1,�1,�2,�2� = N−1�K��1 + �2 + �1,�1 − �2 − �2��2.

To measure the discrete Wigner function associated with the
generalized Bell states, some minor modifications should be
implemented in the scattering circuit �see Fig. 1�: the first
one concerns to the controlled-U operation between the
Hadamard gates, since it must be replaced by
U= ��NS1��1 ,�1�� � ��NS2��2 ,�2�� in order to process
operations for bipartite systems, while the second one
consists in preparing the input density operator in the
generalized Bell states—namely, �= ���1,�2

����1,�2
�. This

procedure leads us to obtain the expectation value ��z�
=NW�1,�2

��1 ,�1 ,�2 ,�2� through a set of measurements on
the polarization along the z axis of the ancillary qubit. Fur-
thermore, these minor modifications on the scattering circuit
can also be used to measure any discrete Wigner function
associated with a general bipartite system.

2. Quantum teleportation

Basically, the quantum teleportation process consists in a
sequence of events that allows us to transfer the quantum
state of a particle onto another particle through an essential
feature of quantum mechanics: entanglement �18,39�. In this
sense, let us introduce a tripartite system described by
�=�1 � ���0,0���0,0��23, where subsystems 2 and 3 were ini-
tially prepared in one of the Bell states. The plan is to tele-
port the initial state of subsystem 1 through the protocol
established in �20�.

�i� We initiate the protocol considering the density opera-
tor associated with the tripartite system written in terms of
the new basis 	Ti

�si���i ,�i�
�i,�i=−�,. . .,� for each subsystem
i=1,2 ,3 as follows:

� =
1

N3 �
�1,�1,�2,�2,�3,�3=−�

�

F1
�−s1���1,�1�F23

�−s2,−s3�

	��2,�2,�3,�3�T1
�s1���1,�1� � T2

�s2���2,�2� � T3
�s3�

	��3,�3� ,

where

F1
�−s1���1,�1� = Tr1�T1

�−s1���1,�1��1� ,
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F23
�−s2,−s3���2,�2,�3,�3� = Tr23�T2

�−s2���2,�2� � T3
�−s3���3,�3�

	���0,0���0,0��23� .

Next, we perform a measurement on subsystems 1 and 2 that
projects them into the Bell states �this procedure corresponds
to a collective measurement which determines the total mo-
mentum and relative coordinate for composite subsystem
1-2�. For convenience, before the generalized Bell measure-
ment, let us express the phase-space operators T1

�s1���1 ,�1�
� T2

�s2���2 ,�2� according to Eq. �29�,

� =
1

N3 �
�1,�1,�2,�2,�3,�3=−�

�

F1
�−s1���1,�1�F23

�−s2,−s3���2,�2,�3,�3�

	 �
�1,�2,�1�,�2�=−�

�

��s1,s2���1,�1,�2,�2��1,�2,�1�,�2��

	����1,�2
����1�,�2�

��12 � T3
�s3���3,�3� .

Thus, after the measurement on the first two subsystems,
only the terms with �1=�1�=� and �2=�2�=� survive. Con-
sequently, a reduced density operator for the third subsystem
can be promptly obtained,

�3R =
1

N
�

�3,�3=−�

�

��,�
�−s1,−s3���3,�3�T3

�s3���3,�3� , �31�

which does not depend on the complex parameter s2. Here,
the coefficients are given by

��,�
�−s1,−s3���3,�3� = �

�1,�1=−�

�

R�,�
�s3−s1���1,�1,�3,�3�F1

�−s1���1,�1� ,

with

R�,�
�s3−s1���1,�1,�3,�3� =

1

N2 �
�,�=−�

�

exp�2�i

N
����1 − �3 + ��

− ���1 − �3 − �����K��,���s3−s1.

Note that ��,�
�−s1,−s3���3 ,�3� simply tells us how to construct,

independently of parameters s1 and s3, the final parametrized
function for the third subsystem from the initial parametrized
function of the first one.

�ii� Now, let us analyze the particular case s1=s3=s. In
this situation, Eq. �31� assumes the simplified form

�3R =
1

N
�

�3,�3=−�

�

F1
�−s���3 − �,�3 + ��T3

�s���3,�3� , �32�

where the coefficients F1
�−s���3−� ,�3+�� play a central role

in the phase-space description of the quantum teleportation
process. In fact, they allow us to conclude that, after the
generalized Bell measurement, the third subsystem has a pa-
rametrized function which is displaced in phase space by an
amount �−� ,�� with respect to the initial state of the first
subsystem—namely, F3R

�−s���3 ,�3�=F1
�−s���3−� ,�3+��.

Therefore, the recovery operation basically depends on the

calibration process of the generalized Bell measurements
performed on the first two subsystems: for instance, when
�=�=0, we reach a complete recovery operation.

In short, we have presented a quantum teleportation pro-
tocol that leads us to obtain a phase-space description of this
process for any discrete quasiprobability distribution func-
tions associated with physical systems described by the
N-dimensional space of states.

IV. CONCLUSIONS

In this paper we have employed the mod�N�-invariant op-
erator basis 	T�s��� ,��
�,�=−�,. . .,� recently proposed in �26�
with the aim of obtaining s-parametrized phase-space func-
tions which are responsible for the mapping of bounded op-
erators acting on a finite-dimensional Hilbert space on their
discrete representatives in an N2-dimensional phase space. In
fact, we have established a set of important formal results
that allows us to reach a discrete analog of the continuous
one developed by Cahill and Glauber �1�. As a consequence,
the discrete Glauber-Sudarshan �s=1�, Wigner �s=0�, and
Husimi �s=−1� functions emerge from this formalism as spe-
cific cases of s-parametrized phase-space functions describ-
ing density operators associated with physical systems whose
space of states has a finite dimension. In addition, we have
also established a hierarchical order among them that con-
sists of a well-defined smoothing process where, in particu-
lar, the kernel K�� ,�� performs a central role. Next, we have
applied our formalism to the context of quantum information
processing, quantum tomography, and quantum teleportation
in order to obtain a phase-space description of some topics
related to unitary depolarizers, discrete Radon transforms,
and generalized Bell states. Indeed such descriptions have
allowed us to attain important results, within which some
deserve to be mentioned: �i� we have shown that the symme-
trized version of the Schwinger operator basis
	S�� ,��
�,�=−�,. . .,� can be considered a unitary depolarizer;
�ii� we have also established a link between measurable
quantities and discrete s-ordered characteristic functions with
the help of Radon transforms, which can be used to construct
any quasiprobability distribution functions in finite-
dimensional spaces; and finally, �iii� we have presented a
quantum teleportation protocol that leads us to obtain a gen-
eralized phase-space description of this important process in
physics. It is worth mentioning that the mathematical formal-
ism developed here opens possibilities of future investiga-
tions in similar physical systems �42� or in the study of dis-
sipative systems, where the decoherence effect has a central
role in the quantum information processing �e.g., see Ref.
�23��. These considerations are under current research and
will be published elsewhere.
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