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The entanglement in a general Heisenberg antiferromagnetic chain of arbitrary spin-s is investigated. The
entanglement is witnessed by the thermal energy which equals the minimum energy of any separable state.
There is a characteristic temperature below that an entangled thermal state exists. The characteristic tempera-
ture for thermal entanglement is increased with spin s. When the total number of lattice is increased, the
characteristic temperature decreases and then approaches a constant. This effect shows that the thermal en-
tanglement can be detected in a real solid state system of larger number of lattices for finite temperature. The
comparison of negativity and entanglement witness is obtained from the separability of the unentangled states.
It is found that the thermal energy provides a sufficient condition for the existence of the thermal entanglement
in a spin-s antiferromagnetic Heisenberg chain.
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I. INTRODUCTION

The entanglement of quantum systems has been exten-
sively implemented to realize quantum computation and se-
cure communication. As an important resource in quantum
information processing �1�, it is necessary to qualify the en-
tanglement. The entanglement of formation �2� and the rela-
tive entropy of entanglement �3,4� are basic measures for the
bipartite systems. Using these measures, thermal entangle-
ment �5–10� has been investigated in some solid state sys-
tems of Heisenberg spin-1 /2 model. Anisotropy effect �6�,
non-nearest interaction �7�, high dimensions �8�, and mul-
tiple qubits �9� were considered. Meanwhile, the entangle-
ment witness �11–17� for spin-1 /2 systems was proposed.
The existence of entanglement was observed in an experi-
mental situation �18�. The thermal energy �13,14� and the
magnetic susceptibility �18� were regarded as the entangle-
ment witnesses for a macroscopic solid state system. The
effect of the edges of lattices �13� was considered. The en-
tanglement of the Bose-Hubbard model �14� has been wit-
nessed by the energy. Besides a spin-1 /2 model, a more uni-
versal quantum system focuses on a high spin-s Heisenberg
model �19–24�. In the integer spin systems such as CsNiCl3
�20� and MnCl3 �bipy� �24�, there is the exciting phenom-
enon of Haldane gap �19–24�. Additionally, the efficiency of
the quantum communication �25–28� was also enhanced by
utilizing the entanglement between two qutrits �a three-
dimensional quantum system�. Due to many interesting fea-
tures of high-spin quantum systems, the entanglement in a
quantum Heisenberg system with arbitrary spin-s needs to be
studied. Recently, a computable measure of entanglement,
i.e., the negativity �29�, has been theoretically generalized to
the high-spin systems using the separability principle
�30,31�. Therefore one entanglement witness can be sug-
gested to experimentally detect the entanglement in such
high-spin quantum systems.

In this paper, the entanglement in a spin-s antiferromag-
netic Heisenberg chain is investigated. In Sec. II, one en-

tanglement witness for high-spin quantum systems is intro-
duced. Thermal entanglement may be indicated by the
characteristic temperature where the thermal energy equals
to the minimum energy of all separable states. For bipartite
lattices of spin-s, the analytic expression of the minimum
energy of the separable state is deduced. In Sec. III, it is
demonstrated that the thermal energy provides a sufficient
condition of the existence of the thermal entanglement for
high-spin systems compared to the negativity.

II. ENTANGLEMENT WITNESS FOR A SPIN-S
HEISENBERG CHAIN

For an isotropic spin-s Heisenberg chain, the Hamiltonian
H is given by

H = �
i=1

L

JS� i · S� i+1, �1�

where S� i= �Si
x ,Si

y ,Si
z� and Si

���=x ,y ,z� are the spin-s opera-
tors for the ith spin, and J is the interaction coefficient. The
spin operators Si

x, Si
y can be expressed by the lifting operator

and the lowering one, Si
+ and Si

−. In the Hilbert space of
��m�i ,m=−s ,−s+1,… ,s	, Si

±�m�i=
�s±m+1��s�m��m±1�i

and Si
z�m�i=m�m�i. The periodic boundary condition of L+1

=1 is assumed. The cases of J�0 and J�0 correspond to
the antiferromagnetic and ferromagnetic cases, respectively.
In the following discussion, an antiferromagnetic chain is
considered. The state at a thermal equilibrium temperature T
is ��T�=e−H/kT /Z where Z is the partition function. For the
convenience, both Boltzmann constant k and Planck constant
� are assumed to be one. One entanglement witness for a
spin-s quantum system can be generalized to �13,14�

W = �H� − Emin, �2�

where �H�=tr��H� is the thermal energy at the thermal state
� and Emin is the minimum energy that any separable state
may be obtained. This minimum energy can always be
achieved by a pure separable state ���sep. When the value of
W is nonnegative, the state � is the sparable �unentangled�*Corresponding author. Electronic address: szhu@suda.edu.cn
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state. Only if W�0, there is the thermal entanglement in the
state of �. Because the ground energy E0 is always less than
�H�, there is a maximum gap for entanglement, G= �E0

−Emin�. In Eq. �2�, the solution of the minimum energy Emin
for any separable state needs to be calculated. An isotropic
spin-s Heisenberg chain is an example of bipartite lattices.
The Hamiltonian can be written by H=�i=1

L Hi where Hi

=JS� i ·S� i+1. If the minimum-energy separable state ��i�sep for
Hi is known, the total separable state for H can be expressed
by ���sep=�i=1

L ��i�sep. In the case of an isotropic antiferro-
magnetic chain, the state of ��i�sep can be analyzed by the
standard symmetry methods �32�. The minimum-energy
separable state for Hi can be written as

��i�sep =
1

4s �
m=0

s


Cm��s − m�i + �m − s�i� � �
m=0

s

�− 1�m
Cm

���s − m�i+1 + �m − s�i+1�, 2s + 1 is odd,

��i�sep =
1

4s �
m=0

s−1/2


Cm��s − m�i + �m − s�i� � �
m=0

s−1/2

�− 1�m
Cm

���s − m�i+1 − �m − s�i+1�, 2s + 1 is even. �3�

When 2s+1 is even, the coefficient satisfies Cm+1=2s
−m /m+1 Cm. However, when 2s+1 is odd, Cm+1=2s
−m /m+1 Cm for m�s−1 and Cs=s+1/4s Cs−1. As an ex-
ample, an antiferromagnetic Heisenberg chain with spin s
=1 is investigated. Without losing generality, the parameters
of the minimum-energy separable state �A��B� can be as-
sumed as

�j� = aj�1� + bje
i	j

1
�0� + cje

i	j
2
�− 1�, j = A,B . �4�

By means of the standard symmetry method, aj =cj, 	 j
2=0

and 	A
1 −	B

1 =
. To find the minimum energy, the energy can
be calculated by

�A��B�H�A��B� = − 16Jaj
2bj

2 �2aj
2 + bj

2 = 1� . �5�

It is easily seen that the minimum energy for any separable
state can be achieved by aj =1/2, bj =
2/2.

For the simplest case of L=2, the ground state energy can
be expressed by E0=−2J�s2+s� while the minimum energy
for any separable state is Emin=−2Js2. Therefore the maxi-
mum gap for entanglement G�s� is given by G�s�=2Js. The
bigger gap is obtained at the higher spin-s system. That is,
the entanglement is easily detected in a high-spin system.
There is a characteristic temperature Tc for W=0. Since �Hi�
is increased with increasing value of the temperature �33�, it
is evident that W�0 when T�Tc. It is obvious that the ther-
mal entanglement between two nearest neighboring spins ex-
ists only if T�Tc. In Fig. 1, the characteristic temperature Tc
is plotted when the spin-s is varied. It is found that Tc is
almost linearly increased with s. The high spin quantum sys-
tem can increase the temperature range for the existence of
the thermal entanglement.

For an L-partite Heisenberg chain, the corresponding
minimum energy is Emin=−JLs2. There is also a characteris-
tic temperature Tc below which the entanglement exists be-

tween arbitrary two neighboring spins. The relation of Tc to
the total number of lattices L is shown in Fig. 2 where the
coupling is chosen to be J=1. The upper triangles represent
the numerical results of Tc for spin s=1 while the lower
squares denote the values of Tc for spin s=1/2. It is seen that
the characteristic temperatures Tc for both different spin-s
are monotonously decreased with L and then approaches a
constant at a certain number of lattices. In the limit of L
→�, the constant value for s=1 is approximately given by
Tc=1.05 which is higher than that of Tc=0.80 for s=1/2.
This is consistent with recent analyses �9,10,14�. For spin-s
=1/2, the constant value of the characteristic temperature is
Tcc=0.8 that is approximately 1/4 of the value in Ref. �14�.
This is due to that the parameters chosen in our numerical
calculations are about 1 /4 of that in Ref. �14�. When the
number of lattices L is very large, it is very interesting to
note that the difference �Tcc

s of the constant characteristic
temperature Tcc between different spin-s is a function of s.
That is, �Tcc

s =Tcc
s+1/2−Tcc

s 0.4s for J=1. The fact that the
characteristic temperature Tc approaches a constant can
qualitatively explain the detection of the thermal entangle-

FIG. 1. The characteristic temperature Tc is plotted when the
spin-s is varied.

FIG. 2. The characteristic temperature Tc is plotted as a function
of the total number of lattices L. The upper triangles are the results
of Tc for s=1. The corresponding constant value is about Tc=1.05.
The lower squares represent the values of Tc for s=1/2, and the
constant value of Tc is 0.80.
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ment at finite temperature in a real solid state system of a
larger number of lattices �18�.

III. RELATION OF ENTANGLEMENT WITNESS TO
NEGATIVITY

Through the thermal energy, the entanglement of a
Heisenberg chain can be witnessed. Based on the separability
principle, the negativity N can be used to quantify the en-
tanglement �29�. The negativity N is introduced by

N��� = ��
i

i� , �6�

where i is the ith negative eigenvalue of �T which is the
partial transpose of the mixed state �. The measure corre-
sponds to the absolute value of the sum of negative eigen-
values of �T. For the separability of unentangled states, the
partial transpose matrix �T has nonnegative eigenvalues if it
is unentangled. As an example of thermal states in an isotro-
pic spin-s antiferromagnetic chain, the relation of entangle-
ment witness to negativity is investigated.

Considering a two-spin isotropic antiferromagnetic
Heisenberg chain, any thermal state � is an SU�2�-invariant
state �33�. In the case of s=1/2, the partial transpose matrix
�T has negative eigenvalues when the correlation function
satisfies �33�

�S�1 · S�2� � −
1

4
. �7�

For a thermal state, Eq. �7� is also equivalent to �H��−J /2
or W�0 where Emin=−J /2. The negativity can also be ex-
pressed by

N��� = −
W

J
. �8�

It shows that the thermal entanglement exists for N�0 or
W�0. That is, both the entanglement witness and the nega-
tivity provides the same condition for thermal entanglement
in the case of s=1/2. The temperature range for thermal
entanglement is given by T�2J / ln 3. However, for a ther-
mal state of s=1, the negative partial transpose needs

��S�1 · S�2�2� � 2, �9�

which is also expressed by �H2��8J2. Equation �9� deter-
mines a temperature range for the existence of the entangle-
ment. That is, the entanglement exists when T�2J / ln 2.08.
Compared with the entanglement witness of Eq. �2�, the ther-
mal energy satisfies

�H� � − 2J . �10�

This temperature range of Eq. �10� is T�6J / ln 10. It shows
that the area of thermal entanglement decided by the nega-
tivity is larger than that determined by the entanglement wit-
ness. The exact relation of negativity and entanglement wit-
ness can be expressed as

N��� =
1

8J2 ��W − 2J�2 + V�H�� − 1, �11�

where the variance V�H� is written by V�H�= �H2�− �H�2.
When the temperature T�Tc, the entanglement witness may
be assumed to W=0. The difference of �=N− �W� is plotted
in Fig. 3 when the temperature and coupling are varied. It
shows that there is almost no differences for the weak cou-
pling in Fig. 3�a�. When the coupling J is increased, the
difference becomes large. The contour map is shown in Fig.
3�b� where the dotted line represents W=0. Since the tem-
perature area of entanglement decided by negativity is larger
than that by the witness, the difference �=0 corresponds to
the negativity N=0. It is seen that the critical temperature of
N is higher than that of W. It demonstrates that the entangle-
ment witness W provides a more sufficient condition for ther-
mal entanglement.

IV. DISCUSSION

The entanglement in an isotropic spin-s antiferromagnetic
Heisenberg chain is investigated using the entanglement wit-
ness of thermal energy and the negativity. The analytic ex-
pression of the minimum-energy separable state is deduced.
The entanglement witness determines a characteristic tem-
perature Tc below which an entangled thermal state can be
obtained. It is found that the characteristic temperature is
almost linearly increased with the increasing number of spin-
s. For an L-partite spin chain, Tc decreases with increasing
the number of lattices. However, Tc approaches a constant
when the number of lattices is very large. This shows that the
entanglement can be detected in a real solid state system of a
large number of lattices even for finite temperature. It is also
shown that the characteristic temperature is a linear function
of the coupling. From the separability principle, the en-
tanglement witness is different from the negativity in detect-
ing thermal entanglement of high-spin quantum systems. The
thermal energy provides a more sufficient condition for the
existence of the entanglement.
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FIG. 3. �a� The difference �=N− �W� of the negativity N and the
witness W is plotted when the temperature and coupling are varied.
�b� The corresponding contour map. The dotted line represents W
=0.
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