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In this paper, we study decoherence in Grover’s quantum search algorithm using a perturbative method. We
assume that each two-state system �qubit� that belongs to a register suffers a phase-flip error ��z error� with
probability p independently at every step in the algorithm, where 0� p�1. Considering an n-qubit density
operator to which Grover’s iterative operation is applied M times, we expand it in powers of 2Mnp and derive
its matrix element order by order under the large-n limit. �In this large-n limit, we assume p is small enough,
so that 2Mnp can take any real positive value or zero. We regard x�2Mnp ��0� as a perturbative parameter.�
We obtain recurrence relations between terms in the perturbative expansion. By these relations, we compute
higher orders of the perturbation efficiently, so that we extend the range of the perturbative parameter that
provides a reliable analysis. Calculating the matrix element numerically by this method, we derive the maxi-
mum value of the perturbative parameter x at which the algorithm finds a correct item with a given threshold
of probability Pth or more. �We refer to this maximum value of x as xc, a critical point of x.� We obtain a curve
of xc as a function of Pth by repeating this numerical calculation for many points of Pth and find the following
facts: a tangent of the obtained curve at Pth=1 is given by x= �8/5��1− Pth�, and we have xc�

−�8/5�loge Pth near Pth=0.
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I. INTRODUCTION

Many researchers think that decoherence is one of the
most serious difficulties in realizing quantum computation
�1–4�. The decoherence is caused by interaction between the
quantum computer and its environment. The interaction lets
the state of the computer become correlated with the state of
the environment. Consequently, some of the information of
the quantum computer leaks into the environment. This pro-
cess causes errors in the state of the quantum computer, and
as a result, the probability that the quantum algorithm gives
the right answer decreases. To overcome this problem, quan-
tum error-correcting codes are proposed �5–7�.

Not only for practical purposes but also for theoretical
interest, an important question is how robust the quantum
algorithm is against this disturbance. If we know the upper
bound of the error rate that allows the quantum computer to
obtain a solution with a certain probability or more, this
bound is useful for us to design quantum gates.

Grover’s algorithm is considered to be an efficient
amplitude-amplification process for quantum states. Thus it
is often called a search algorithm �8,9�. By applying the
same unitary transformation to the state in iteration and
gradually amplifying the amplitude of one basis vector that
an oracle indicates, Grover’s algorithm picks it up from a
uniform superposition of 2n basis vectors with a certain prob-
ability in O�2n/2� steps. In view of computational time �the
number of queries for the oracle�, the efficiency of Grover’s
algorithm is proved to be optimal �10�.

In Ref. �11�, we study decoherence in Grover’s algorithm
with a perturbative method. We consider the following

simple model. First, we assume that we search �0…0� from
the uniform superposition of 2n logical basis vectors ��x� :x
� �0,1	n	 by Grover’s algorithm. This assumption simplifies
the iterative transformation. Second, we assume that each
qubit of the register interacts with the environment indepen-
dently and suffers a phase damping, which causes a phase-
flip error ��z error� with probability p and does nothing with
probability �1− p� to the qubit. In this model, we expand an
n-qubit density operator to which Grover’s iterative opera-
tion is applied M times in powers of 2Mnp. Then, we take
the large-n limit, so that we can simplify each order term of
the expansion of the density operator and we obtain its
asymptotic form.

In this large-n limit, we assume p is small enough, so that
2Mnp can take any real positive value or zero. We regard
x�2Mnp ��0� as a perturbative parameter. We can interpret
x=2Mnp as the expected number of phase-flip errors ��z
errors� that occur during the running time of computation. In
Ref. �11�, we give a formula for deriving an asymptotic form
of an arbitrary-order term of the perturbative expansion.
However, this formula includes a complicated multiple inte-
gral and the number of terms in its integrand increases ex-
ponentially. Because of these difficulties, we obtain explicit
asymptotic forms only up to the fifth-order term.

In this paper, using recurrence relations between terms of
the perturbative expansion, we develop a method for com-
puting higher-order terms efficiently. By this method, we de-
rive an explicit form of the density matrix of the disturbed
quantum computer up to the 39th-order term with the help of
a computer algebra system. �In actual fact, we use MATH-

EMATICA for this derivation.� Because we consider the
higher-order perturbation, we can greatly extend the range of
the perturbative parameter that provides a reliable analysis,
compared with our previous work in Ref. �11�. Calculating
the matrix element up to the 39th-order term numerically
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from the form obtained by the computer algebra system, we
derive the maximum value of the perturbative parameter x at
which the algorithm finds a correct item with a given thresh-
old of probability Pth or more. �We refer to this maximum
value of x as xc, a critical point of x.�

Grover’s algorithm can find the correct item by less than
�� /4�
2n steps with given probability Pth or more under no
decoherence �p=0�. When we fix Pth, the number of itera-
tions that we need increases as the decoherence becomes
stronger �p becomes larger�. Finally we never detect the cor-
rect item with Pth or more for p� pc. Thus, we can think pc
to be a critical point for Pth. �pc depends on Pth.� However,
we actually obtain xc=xc�Pth� for the perturbative parameter
x=2Mnp instead of pc= pc�Pth�. From the relation xc

=xc�Pth�, we can draw a phase diagram as shown in Fig. 1.
The diagram consists of two domains. One is where the
quantum algorithm is effective and the other is where it is
not effective.

Figures 2 and 3 represent a curve of xc=xc�Pth� obtained
by repeating the numerical calculation of xc for many points
of Pth. In Fig. 2, we use a linear scale on both horizontal and
vertical axes. We prove later that a tangent of the curve x
=xc�Pth� at Pth=1 is given by x= �8/5��1− Pth�. In Fig. 3, we
use logarithmic and linear scales on the horizontal and ver-
tical axes, respectively. We observe xc�−�8/5�loge Pth near
Pth=0 from this figure.

Here, we mention that we can investigate our model by
Monte Carlo simulations, as well. In fact, we compare results
obtained by our perturbative method with results obtained by
Monte Carlo simulations in Figs. 5 and 6 in Sec. IV, and we
confirm that they are consistent. From these analyses, we
conclude that our perturbative method is valid in a certain
range of the perturbative parameter.

However, the Monte Carlo simulation method has some
difficulties for investigating our model. First, the execution
time of computation increases exponentially in n �the num-
ber of qubits�. We always come up against this problem
when we simulate a process of a quantum computer with a

classical computer. Second, the Monte Carlo simulation
method is not suitable for obtaining a variation of a physical
quantity as a function of some parameters, because we carry
out each simulation with fixing parameters such as the error
rate p and the threshold of probability Pth. Thus we prefer
our perturbative method to the Monte Carlo simulation
method for computing xc �the critical point of x� that is ob-
tained by evaluating the probability of detecting a correct
answer as a function of x and Pth.

A related result is obtained in the study of the accuracy of
quantum gates by Bernstein and Vazirani �12�, and Preskill
�13�. They consider a quantum circuit where each quantum
gate has a constant error because of inaccuracy. Thus, it is an

FIG. 1. A schematic representation of xc as a function of Pth. Pth

is the threshold of probability. x represents both the perturbative
parameter and the expected number of errors during the running
time of computation. xc is the critical point of x. Both Pth and x are
dimensionless. We can easily obtain xc=0 for Pth=1. This fact is
included in the above schematic graph. The above graph represents
a phase diagram that consists of two domains. One domain is where
the quantum algorithm is effective and the other domain is where it
is not effective.

FIG. 2. xc as a function of Pth. �The thick solid curve represents
x=xc�Pth�.� Pth is the threshold of probability. xc is the critical point
of x �the perturbative parameter�. We use a linear scale on both
horizontal and vertical axes. The data are obtained by repeating
numerical calculation of xc for many points of Pth. Because x
=xc�Pth� shows a sharp divergence at Pth=0, we start calculation of
xc from Pth=1. While we are going from Pth=1 toward Pth=0, we
make the finite difference of Pth smaller gradually. �We put �Pth

=5.0�10−4 around Pth=1 and �Pth=5.0�10−7 around Pth=3.7
�10−3.� The thin dashed line represents the tangent of x=xc�Pth� at
Pth=1.

FIG. 3. xc as a function of Pth. �The thick solid curve represents
x=xc�Pth�.� We use logarithmic and linear scales on the horizontal
and vertical axes, respectively. In this figure, we use the same data
of x=xc�Pth� as in Fig. 2. The thin dashed line represents x=
−�8/5�loge Pth. We observe xc�−�8/5�loge Pth near Pth=0.
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error of a unitary transformation and it never causes dissipa-
tion of information from the quantum computer to its envi-
ronment. They estimate the inaccuracy 	 for which the quan-
tum algorithm is effective under a fixed number of time steps
T, and obtain 2T	
1− Pth, where 0�	�1. If we regard p /2
as the inaccuracy 	 and 2Mn as the number of whole steps in
the algorithm T, it is similar to our observation that xc
=2Mnp��8/5��1− Pth� near Pth=1, except for a factor.

Barenco et al. study the approximate quantum Fourier
transformation �AQFT� and its decoherence �14�. Although
their motivation is slightly different from Refs. �12,13�, we
can think of their model as the quantum Fourier transforma-
tion �QFT� with inaccurate gates. They confirm that the
AQFT can give a performance that is not much worse than
the QFT.

This article is organized as follows. In Sec. II, we describe
our model and perturbation theory defined in our previous
work �11�. In Sec. III, we give recurrence relations between

terms of the perturbative expansion. We develop a method
for calculating higher-order perturbation efficiently with
these relations. In Sec. IV, we carry out numerical calcula-
tions of the matrix element of the density operator by the
efficient method obtained in Sec. III. Moreover, we investi-
gate the critical point xc and obtain the phase diagram shown
in Figs. 2 and 3. In Sec. V, we give a brief discussion. In the
Appendix, we give a proof of an equation that appears in
Sec. III.

II. MODEL AND PERTURBATION THEORY

In this section, we first describe the model that we ana-
lyze. It is a quantum process of Grover’s algorithm under a
phase damping at every iteration. Second, we formulate a
perturbation theory for this model.

A. Model

First of all, we give a brief review of Grover’s algorithm
�8�. Starting from the n-qubit uniform superposition of logi-
cal basis vectors,

W�0 . . . 0� =
1


2n �
x��0,1	n

�x� for n � 2, �1�

Grover’s algorithm gradually amplifies the amplitude of a
certain basis vector �x0� that a quantum oracle indicates,
where x0� �0,1	n. The operator W in Eq. �1� is an n-fold
tensor product of a one-qubit unitary transformation and
given by W=H�n. The operator H is called Hadamard trans-
formation and represented by the following matrix,

H =
1

2


1 1

1 − 1
� , �2�

where we use the orthonormal basis ��0�, �1�	 for this matrix
representation. The quantum oracle can be regarded as a

FIG. 4. 30th-, 40th-, and 50th-order polynomials, which we ob-
tain as parts of Taylor series of C40���, as functions of � for 0
��� �9/5��. The dashed, thick solid, and thin solid lines repre-
sent the 30th-, 40th-, and 50th-order polynomials, respectively.

FIG. 5. �P��� ,x� as a function of x with �=�max, where
�max= �1/2��2Mmax+1�
, Mmax=17, 
=arcsin 
1/2n, and n=9.
Both �P� and x are dimensionless. The thin solid curve represents
�P��� ,x� obtained by numerical calculation up to the 39th-order
perturbation. Black circles represent results obtained by Monte
Carlo simulations of the n=9 case �nine qubits� with Mmax=17.
Each circle is obtained for x=2Mmaxnp=306p, where p is varied
from p=2.0�10−3 to 2.0�10−2 at intervals of �p=2.0�10−3. In
these simulations, we make 50 000 trials for taking an average.

FIG. 6. �P��� ,x� as a function of ��rad� with fixed p. Both �P�
and � are dimensionless. To estimate �P��� ,x�, we put x
=2��arcsin 
1/2n�−1np, where n=9. Four thin solid curves repre-
sent p=2.0�10−3, 4.0�10−3, 6.0�10−3, and 8.0�10−3 in order
from top to bottom. Black circles represent results obtained by
Monte Carlo simulations of the n=9 cases �nine qubits�. Each circle
is obtained for �= �1/2��2M +1�
, where 
= �arcsin 
1/2n�−1, n
=9, and M � �0,1 , . . . ,Mmax�=17�	.
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black box and actually it is a quantum gate that shifts phases
of logical basis vectors as

Rx0
: ��x0� → − �x0� ,

�x� → �x� for x � x0,
� �3�

where x0 ,x� �0,1	n. �We note that all operators �quantum
gates� in Grover’s algorithm are unitary. Thus, H†=H−1,
W†=W−1, Rx0

† =Rx0

−1, and so on.�
To let the probability of observing �x0� be greater than a

certain value �1/2, for example�, we repeat the following
procedure O�
2n� times: �1� apply Rx0

to the n-qubit state;
�2� apply D=WR0W to the n-qubit state. R0 is a selective
phase-shift operator, which multiplies �0…0� by a factor
�−1� and does nothing to the other basis vectors, as defined
in Eq. �3�. D is called the inversion-about-average operation.

From now on, we assume that we amplify an amplitude of
�0…0�. From this assumption, we can write an operation it-
erated in the algorithm as

DR0 = �WR0W�R0. �4�

After repeating this operation M times from the initial state
W�0��=W�0. . .0��, we obtain the state �WR0�2MW�0�. �We of-
ten write �0� as an abbreviation of the n-qubit state �0…0� for
simple notation.�

Next, we think about the decoherence. In this paper, we
consider the following one-qubit phase damping �15,16�:

� → �� = p�z��z + �1 − p�� for 0 � p � 1, �5�

where � is an arbitrary one-qubit density operator. �z is one
of the Pauli matrices and given by

�z = 
1 0

0 − 1
� , �6�

where we use the orthonormal basis ��0�, �1�	 for this matrix
representation. For simplicity, we assume that the phase
damping of Eq. �5� occurs in each qubit of the register inde-
pendently before every R0 operation during the algorithm.
This implies that each qubit interacts with its own environ-
ment independently.

Here, we add some notes. First, because R0�U�2n� is
applied to all n qubits and H�U�2� is applied to only one
qubit, we can imagine that the realization of R0 is more dif-
ficult than that of W=H�n. Hence, we assume that the phase
damping occurs only before R0. Second, although we assume
a very simple decoherence defined in Eq. �5�, we can think of
other complicated disturbances. For example, we can con-
sider decoherence caused by an interaction between the en-
vironment and two qubits and it may occur with a probability
of O�p2�. In this paper, we do not assume such complicated
disturbances.

B. Perturbation theory

Let ��M� be the density operator obtained by applying
Grover’s iteration M times to the n-qubit initial state W�0�.
The decoherence defined in Eq. �5� occurs 2Mn times in
��M�. We can expand ��M� in powers of p and �1− p� as fol-
lows:

��M� = �1 − p�2MnT0
�M� + �1 − p�2Mn−1pT1

�M� + ¯

= �
k=0

2Mn

�1 − p�2Mn−kpkTk
�M�, �7�

where �Tk
�M�	 are given by

T0
�M� = �WR0�2MW�0��0�W�R0W�2M , �8�

T1
�M� = �

i=1

n

�
l=0

2M−1

�WR0�2M−l�z
�i��WR0�lW�0��0�W�R0W�l�z

�i�

��R0W�2M−l, �9�

T2
�M� = �

i=1

n

�
j=1

i
j

n

�
l=0

2M−1

�WR0�2M−l�z
�i��z

�j��WR0�lW�0��H.c.�

+ �
i=1

n

�
j=1

n

�
l=0

2M−1

�
m=1

2M−l−1

�WR0�2M−l−m�z
�i��WR0�m�z

�j�

��WR0�lW�0��H.c.� , �10�

and so on, �z
�i� represents the operator applied to the ith qubit

for 1� i�n, and �H.c.� represents a Hermitian conjugation of
the ket vector on its left side. �Here, we note W†=W, R0

†

=R0, and �z
�i�†=�z

�i�.� We can regard Tk
�M� as a density opera-

tor whose trace is not normalized. It represents the sum of
states where k errors occur during the iteration of M opera-
tions.

On the other hand, from Eq. �7�, we can expand ��M� in
powers of p as follows:

��M� = �0
�M� + 2Mnp�1

�M� +
1

2
�2Mn��2Mn − 1�p2�2

�M� + ¯

= �
k=0

2Mn 
2Mn

k
�pk�k

�M�, �11�

where

�0
�M� = T0

�M�,

�1
�M� = − T0

�M� +
T1

�M�

2Mn
,

�k
�M� = �− 1�k�

j=0

k

�− 1� j
2Mn

j
�−1
k

j
�Tj

�M�

for k = 0,1, . . . ,2Mn . �12�

Here, let us take the limit of an infinite number of qubits �the
large-n limit�. We assume that we can take very small p, so
that 2Mnp can be an arbitrary real positive value or zero. If
2Mnp is small enough, we can consider x�2Mnp ��0� to
be a perturbative parameter and the series of Eq. �11� to be a
perturbative expansion.

Under this limit, we derive an asymptotic form of
�0���M��0�. In the actual derivation, we take the limit of n
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→� holding x=2Mnp finite. �0���M��0� is the probability that
the quantum computer finds a correct item after M opera-
tions. Because we divide Tj

�M� by �Mn� j as in Eq. �12�, the
expectation value of �k

�M� can converge to a finite value in the
limit n→� for k=0,1 , . . . ,2Mn.

With these preparations, we will investigate the following
physical quantities. Let Pth be the threshold of probability for
0
 Pth�1, so that if the quantum computer finds a correct
item �in our model, it is �0�� with probability Pth or more, we
regard it effective, and otherwise we do not consider it ef-
fective. Then, we consider the least number of the operations
that we need to repeat for amplifying the probability of ob-
serving �0� to Pth or more for a given p. We refer to it as
Mth�p , Pth�. �Mth�p , Pth� is the least number of M that satis-
fies �0���M��0�= Pth for a given p.� As p becomes larger with
fixing Pth, we can expect that Mth�p , Pth� increases mono-
tonically. In the end, we never observe �0� at least with a
probability Pth for a certain pc or more. �Hence, pc depends
on Pth.� Regarding Pth as a threshold for whether the quan-
tum computer is effective or not, we can consider pc to be a
critical point.

In our perturbation theory, we calculate physical quanti-
ties using the dimensionless perturbative parameter x
=2Mnp. Thus, we take M and x for independent variables.
�In our original model defined in Sec. II A, we take M and p

for independent variables.� We can define as well M̃th�x , Pth�
which represents the least number of operations iterated for
amplifying the probability of �0� to Pth for given x. Further-
more, we also obtain xc or more for which we can never
detect �0� at least with probability Pth.

Next, we evaluate �0���M��0�. First, from simple calcula-
tion, we obtain the unperturbed matrix element,

�0���M��0�p=0 = �0�T0
�M��0� = sin2��2M + 1�
� , �13�

where

sin 
 =
1


2n
, cos 
 =
2n − 1

2n . �14�

�This parameter 
 is introduced by Boyer et al. �9�.� From
Eq. �13�, we notice the following facts. If there is no deco-
herence �p=0�, we can amplify the probability of observing
�0� to unity. Taking large �but finite� n, we obtain sin 
�

and 
�1/
2n, and we can observe �0� with unit probability
after repeating Grover’s operation Mmax��� /4�
2n times.

To describe the asymptotic forms of matrix elements, we
introduce the following notation. Because �0�T0

�M��0� is a pe-
riodic function of M and its period is about �
2n under the
large-n limit, it is convenient for us to define a new variable
�=limn→�M
�rad�. Here, we give a formula for the
asymptotic form of the kth order of the matrix element under
n→� for k=1,2 , . . . . �The derivation of this formula is
given in Secs. IV–VII and Appendix A of Ref. �11�.� Prepar-
ing a k-digit binary string �= ��1 , . . . ,�k�� �0,1	k, we define
the following 2k terms:

�T̃�1,. . .,�k
��1, . . . ,�k��2

= �� sin

cos
�

�1

�2�1��cos

sin
�

�2

�2�2�

� ¯ �cos

sin
�

�k

�2�k�

��cos

sin
�

�s=1
k �s

�2
� − �
s=1

k

�s���2

for k = 1,2, . . . , �15�

where

� f

g
�

�

�x� = � f�x� for � = 0,

g�x� for � = 1,
� �16�

and � denotes the addition modulo 2. We notice that the
function of �1 and the other functions of �2 , . . . ,�k, �
−�s=1

k �s, are different �sine and cosine functions are put in
reverse�. These terms are integrated as

lim
n→�

�0�Tk
�M��0�

�Mn�k =
1

�k�
0

�

d�1�
0

�−�1

d�2 ¯ �
0

�−�1−¯−�k−1

d�k

� �
��1,. . .,�k���0,1	k

�T̃�1,. . .,�k
��1, . . . ,�k��2.

�17�

We can obtain the matrix elements as follows. From Eq.
�13�, we obtain

lim
n→�

�0�T0
�M��0� = sin2 2� . �18�

From Eqs. �15� and �17�, we obtain

lim
n→�

�0�T1
�M��0�

Mn
=

1

�
�

0

�

d���sin 2� cos 2�� − ���2

+ �cos 2� sin 2�� − ���2	

=
1

2
−

1

4
cos 4� −

1

16�
sin 4� , �19�

lim
n→�

�0�T2
�M��0�

�Mn�2 =
1

�2�
0

�

d��
0

�−�

d�

� ��sin 2� cos 2� cos 2�� − � − ���2

+ �cos 2� cos 2� sin 2�� − � − ���2

+ �sin 2� sin 2� sin 2�� − � − ���2

+ �cos 2� sin 2� cos 2�� − � − ���2	

=
1

4
−

1

16
cos 4� −

3

64�
sin 4� , �20�

and so on.
The asymptotic form of the perturbative expansion of the

whole density matrix is given by
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�P���,x� = lim
n→�

�0���M��0� = C0��� + C1���x

+
1

2
C2���x2 + ¯ = �

k=0

�

Ck���
1

k!
xk, �21�

where

C0��� = F0��� ,

C1��� = − F0��� +
1

2
F1��� ,

Ck��� = �− 1�k�
j=0

k 
−
1

2
� j k!

�k − j�!
Fj��� for k = 0,1,. . . ,

�22�

and

Fk��� = lim
n→�

�0�Tk
�M��0�

�Mn�k for k = 0,1,… . �23�

In Eq. �21�, the kth-order term is divided by k!, so that we
can expect the series �P��� ,x� to converge to a finite value
for large x.

III. RECURRENCE RELATIONS BETWEEN ORDER
TERMS

In this section, we obtain recurrence relations between
order terms of the perturbative series. Using this result, we
develop a method for computing higher-order terms effi-
ciently.

When we compute limn→��0�Tk
�M��0� / �Mn�k for large k

from Eqs. �15� and �17�, we notice the following difficulties:
�1� Eq. �17� includes a kth-order integral; and �2� Eq. �17�
includes 2k terms being integrated. Even if we use a com-
puter algebra system, these troubles are serious. �In Ref. �11�,
we obtain limn→��0�Tk

�M��0� / �Mn�k only up to k=5.�
To develop an efficient derivation of higher-order terms,

we pay attention to the following relations:

Fk��� = lim
n→�

�0�Tk
�M��0�

�Mn�k =
fk���

�k for k = 0,1, . . . ,

�24�

where

f0��� = sin2 2� , �25�

g0��� = cos2 2� , �26�

fk��� = �
0

�

d��fk−1�� − ��cos2 2� + gk−1�� − ��sin2 2�� ,

�27�

gk��� = �
0

�

d��gk−1�� − ��cos2 2�

+ fk−1�� − ��sin2 2�� for k = 1,2,… . �28�

We can prove the above relations from Eqs. �15� and �17�.
Both Eqs. �27� and �28� contain only first-order integrals.
Moreover, each of them contains only two terms being inte-
grated. Thus, we can compute F0��� ,F1��� , . . . in that order
efficiently from Eqs. �24�–�28� using a computer algebra sys-
tem. �In actual fact, we use MATHEMATICA for this deriva-
tion.� Equations �27� and �28� constitute a pair of recurrence
formulas.

Here, we note some properties of Fk���. First, fk��� and
gk��� are analytic at any � for k=0,1 , . . . . In other words,
fk��� and gk��� have Taylor expansions about any �0 which
converge to fk��� and gk��� in some neighborhood of �0 for
k=0,1 , . . ., respectively. We can prove these facts by math-
ematical induction as follows. To begin with, both f0��� and
g0��� are analytic at any � from Eqs. �25� and �26�. Next,
we assume that fk��� and gk��� are analytic at any � for
some k� �0,1 , . . . 	. Then, fk+1��� and gk+1��� are analytic
at any � because they are integrals of functions made of the
sine and cosine functions fk���, and gk���, as shown in Eqs.
�27� and �28�. Thus, by mathematical induction, we conclude
that fk��� and gk��� are analytic functions for k=0,1 , . . . .

From Eq. �24�, we can obtain Fk��� by dividing fk��� by
�k for k=0,1 , . . . . Thus, it is possible that Fk��� diverges
by marching off to infinity near �=0. However, in fact we
can show

Fk��� =
fk���

�k = const � �2 + O��4� for k = 0,1,. . . ,

�29�

where const denotes some constant. �We prove Eq. �29� in
the Appendix.�

IV. NUMERICAL CALCULATIONS

In this section, we carry out numerical calculations of
�P��� ,x� defined in Eq. �21� using recurrence relations Eqs.
�27� and �28�. Moreover, we investigate the critical point xc,
over which the quantum algorithm becomes ineffective for
the threshold probability Pth.

First of all, we need to derive an algebraic representation
of �P��� ,x�. We compute an explicit form of �P��� ,x� as
follows. First, using recurrence relations Eqs. �27� and �28�,
we derive fk��� and gk���. Second, using Eq. �24�, we de-
rive Fk��� from fk���. Next, using Eq. �22�, we derive
Ck��� from Fk���. Finally, using Eq. �21�, we derive
�P��� ,x� from Ck���, which is the kth-order term of the
perturbative expansion.

In Ref. �11�, we obtain an explicit form of the matrix
element only up to the fifth-order perturbation �that is,
F5���� because we compute Fk��� from Eq. �17� directly.
However, in this paper, we succeed in deriving an explicit
form of the matrix element up to the 39th-order perturbation
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�that is, F39���� with the help of the computer algebra sys-
tem thanks to the recurrence relations Eqs. �27� and �28�.
�We do not write down the explicit forms of
F3��� , . . . ,F39��� here except for F5���, because they are
very complicated.� By the method explained above, we de-
rive the algebraic form of �P��� ,x� up to the 39th-order
perturbation.

However, this explicit form of �P��� ,x� is not suitable for
numerical calculation. The reason is as follows. Let us con-
sider F5��� for example. The explicit form of F5��� is given
by

F5��� =
1

240
+

45 + 720�2 − 256�4

1 966 080�4 cos 4�

−
3 + 32�2 + 256�4

524 288�5 sin 4� . �30�

It is very difficult to evaluate the value of F5��� near �=0
from Eq. �30� directly. If we take the limit �→0 in the
second term of Eq. �30�, we obtain

lim
�→0

45 + 720�2 − 256�4

1 966 080�4 cos 4� = + � . �31�

However, taking the limit �→0 in the third term of Eq. �30�,
we obtain

lim
�→0


−
3 + 32�2 + 256�4

524 288�5 �sin 4�

= − lim
�→0


3 + 32�2 + 256�4

131 072�4 � sin 4�

4�
= − � . �32�

As explained above, to evaluate F5��� near �=0 from Eq.
�30� directly, we have to subtract one huge value from an-
other huge value. Thus, if we carry out this operation by
computer, an underflow error occurs and we cannot predict
the result of the numerical calculation at all. �We show that
Fk��� is analytic at �=0 and lim�→0Fk���=0 for k
=0,1 , . . . in Eq. �29�. However, it is difficult to calculate
F5��� numerically from Eq. �30�.�

In fact, when �=1.0�10−7, the second term of Eq. �30�
is equal to 2.288 81�1023 and the third term of Eq. �30� is
equal to −2.288 81�1023, assuming that the computer sup-
ports only six significant figures. Hence, the sum of the sec-
ond term and the third term in Eq. �30� is equal to zero, and
only the first term of Eq. �30�, 1 /240, contributes to F5���
for �=1.0�10−7. However, this numerical calculation is
meaningless. We can find such an underflow error in almost
all the higher-order terms F3��� ,F4��� ,F5��� , . . . .

To avoid this trouble, we carry out the following proce-
dure. We expand the explicit form of Ck��� in powers of �

up to the 40th-order term and define C̄k��� as the finite
power series obtained in the variable � for k=0,1 , . . . ,39.
�Ck��� is originally an analytic function and it has a Taylor

expansion about �=0.� We substitute these �C̄k��� :k
=0,1 , . . . ,39	 for Eq. �21� and obtain

�P̄���,x� = �
k=0

39

C̄k���
1

k!
xk. �33�

We use this �P̄��� ,x� for numerical calculation. ��P̄��� ,x� is
a polynomial, whose highest power in � is equal to 40 and
whose highest power in x is equal to 39.�

Here, we make some comments on our approximation
method for Ck���. In this paper, we use a polynomial of high
degree for approximating Ck���. The reasons for this choice
are as follows: �1� to obtain the Taylor series of Ck��� is
easy, and �2� because we can calculate integrals and deriva-

tives of polynomials with ease, C̄k��� is suitable for apply-
ing Newton’s method. �We use Newton’s method for calcu-
lating xc later.� However, approximation with a polynomial
of high degree sometimes causes oscillations, and conse-
quently errors of numerical calculation. The Padé approxi-
mant method is effective in the treatment of this problem.
However, we do not use this method here, because we have
to carry out tough calculations for deriving the Padé approxi-
mants of Ck���.

We use a 40th-order polynomial for approximating Ck���
in this paper. Figure 4 shows 30th-, 40th-, and 50th-order
polynomials, which we obtain as parts of Taylor series of
C40���, as functions of � for 0��� �9/5��. The dashed,
thick solid, and thin solid lines represent the 30th-, 40th-, and
50th-order polynomials, respectively. From Fig. 4, we find
that the 30th-, 40th-, and 50th-order polynomials start to di-
verge near �=3.4, 4.3, and 5.3 rad, respectively. From this
observation, we think the approximation of C40��� with the

40th-order polynomial, that is C̄40���, is valid in the range of
0����. �Strictly speaking, this is not a rigorous proof but
evidence that the polynomial expansion up to the 40th-order
term is sufficient for approximating Ck��� for k
=0,1 , . . . ,39 in the range of 0����.�

To investigate the range of x where our perturbative ap-
proach is valid, we need to estimate the 40th-order perturba-
tion. From numerical calculation, we obtain

0 � � 1

40!
C̄40���� � 1.24 � 10−50 �34�

for 0����. �From now on, we limit � to 0���� for
our analysis, because the approximation of Ck��� with the
40th-order polynomial is reliable in this range, as shown in
Fig. 4.� Hence, if we limit x to 0�x�10.0, the 40th-order
perturbation is bounded to

0 � � 1

40!
C̄40���x40� � 1.24 � 10−10. �35�

�From now on, we write the approximate form �P̄��� ,x� as
�P��� ,x� for convenience as long as this naming does not
create any confusion.�

Let us investigate �P��� ,x� obtained in Eq. �33� by nu-
merical calculations. To confirm reliability of our perturba-
tion theory, we compare the obtained �P��� ,x� with results
of Monte Carlo simulations of our model in Figs. 5 and 6. In
these simulations, setting n=9 �nine qubits�, we fix p and
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cause phase-flip errors ��z errors� at random in each trial. We
take the average of �0���M��0�p, the probability of observing
�0� at the Mth step �M =0,1 , . . . ,Mmax�=17��, with 50 000
trials for each value of p. �Because �� /4�
29=17.7. . ., we
put Mmax=17.�

Figure 5 shows �P��� ,x� as a function of x with �

=�max, where �max= �1/2��2Mmax+1�
, Mmax=17, 

=arcsin 
1/2n, and n=9. �Hence, the only independent pa-
rameter is actually p.� At x=0, there is no error in the quan-
tum process and �P� is nearly equal to unity. As the error rate
x becomes larger, �P� decreases monotonically.

Figure 6 shows �P��� ,x� as a function of � with fixed p.
Because we use the variable x=2Mnp instead of p in the
perturbation theory, we have to rewrite x as

x = 2Mnp = 2��arcsin 
1/2n�−1np , �36�

which we obtain by substituting �=limn→�M
 for x
=2Mnp without taking the limit n→�, and we give some
finite n to Eq. �36�. In Fig. 6, we set n=9 and plot curves
with p=2.0�10−3, 4.0�10−3, 6.0�10−3, and 8.0�10−3 in
order from top to bottom. We also plot results of the simu-
lations. When we plot the result of the simulation for the Mth
step, we put

� = �1/2��2M + 1�
 = �1/2��2M + 1��arcsin 
1/2n�−1,

�37�

where n=9 and M � �0,1 , . . . ,Mmax�=17�	. We obtain Eq.
�37� from Eq. �13� and �=limn→�M
.

From Fig. 6, we notice that the maximum value of �P� is
taken at �
� /4 for each p and the shift becomes larger as
p increases. This fact means that �th�pc , Pth� becomes
smaller than � /4, as Pth decreases. �We write �th�p , Pth�
=limn→�Mth�p , Pth�
 and Mth�p , Pth� represents the least
number of operations iterated for amplifying the probability
of �0� to Pth under the error rate p.�

Finally, we compute xc as a function of Pth. We show the
result in Figs. 2 and 3. We obtain xc for 0�∀ Pth�1 as

follows. We calculate �̃th�x , Pth� for given Pth varying x from

zero, where �̃th�x , Pth�=limn→�M̃th�x , Pth�
 and M̃th�x , Pth�
represents the least number of operations to amplify the
probability of �0� to Pth under given x. �We use Newton’s
method for obtaining a root of � for the equation
�P��� ,x�= Pth for given x.� When x becomes a certain value,

we cannot find a root of �̃th�x , Pth� and we regard it as xc. By
repeating this calculation for many points of Pth, we obtain
the curves shown in Figs. 2 and 3.

Using Eq. �21�, the tangent at Pth=1 is given by

xc = c�1 − Pth�, c = −
1

C1��/4�
=

8

5
, �38�

because �̃th�xc , Pth�=� /4 and xc=0 for Pth=1. This means
that the algorithm is effective for 2Mnp
 �8/5��1− Pth� near
Pth=1, as shown in Fig. 2. This result is similar to those
obtained by Bernstein and Vazirani �12� and Preskill �13�, as
explained in Sec. I. Moreover, we notice xc�
−�8/5�loge Pth near Pth=0 from Fig. 3.

V. DISCUSSION

From Fig. 2, we find that the algorithm is effective for x
=2Mnp
 �8/5��1− Pth� near Pth=1, and this relation is ap-
plied to a wide range of Pth approximately. Thus, if we as-
sume that Pth is equal to a certain value �1/2� Pth�1, for
example�, we can expect that the algorithm works for x
=2Mnp�O�1� �x is equal to or less than some constant.�
Hence, if the error rate p is smaller than the inverse of the
number of quantum gates �2Mn�−1, the algorithm is reliable.
If this observation holds good for other quantum algorithms,
it can serve as a strong foundation to realize quantum com-
putation.

After we studied decoherence in Grover’s algorithm with
a perturbation theory in Ref. �11�, some other groups have
tried similar analyses. Shapira et al. investigated the perfor-
mance of Grover’s algorithm under unitary noise �17�. They
assumed a noisy Hadamard gate and estimated the success
probability to detect a marked state up to the first-order per-
turbation. Hasegawa and Yura considered decoherence in a
quantum counting algorithm, which is a combination of
Grover’s algorithm and the quantum Fourier transformation,
under the depolarizing channel �18�.
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APPENDIX: PROOF OF EQ. (29)

In this section, we prove Eq. �29�, which we can rewrite
in the form

fk��� = const � �k+2 + O��k+4� for k = 0,1,. . . .

�A1�

To put it more precisely, we can obtain the following rela-
tions in which Eq. �A1� is included:

fk��� = a0
�k��k+2 + a1

�k��k+4 + a2
�k��k+6 + ¯

= �
j=0

�

aj
�k��k+2�j+1�, �A2�

gk��� = b0
�k��k + b1

�k��k+2 + b2
�k��k+4 + ¯

= �
j=0

�

bj
�k��k+2j for k = 0,1,. . . , �A3�

where fk��� and gk��� are defined in Eqs. �25�–�28�.
We prove Eqs. �A2� and �A3� by mathematical induction.

First, when k=0, we obtain the following results from Eqs.
�25� and �26�:

f0��� = sin2 2� = 
�
n=0

�
�− 1�n22n+1

�2n + 1�!
�2n+1�2

= 4�2 −
16

3
�4 +

128

45
�6 + ¯ , �A4�
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g0��� = cos2 2� = 
�
n=0

�
�− 1�n22n

�2n�!
�2n�2

= 1 − 4�2 +
16

3
�4 + ¯ . �A5�

Thus, Eqs. �A2� and �A3� are satisfied for k=0.
Next, assuming that Eqs. �A2� and �A3� are satisfied for

some k, we investigate whether or not Eqs. �A2� and �A3�
hold for �k+1�. Let us consider Eq. �A2� for �k+1�. From
Eq. �27�, we obtain

fk+1��� = �
0

�

d��fk�� − ��cos2 2� + gk�� − ��sin2 2�� .

�A6�

Here, we expand cos2 2� and sin2 2� as follows:

cos2 2� = �
j=0

�

cj�
2j , �A7�

sin2 2� = �
j=0

�

dj�
2�j+1�. �A8�

From Eqs. �A2�, �A3�, �A7�, and �A8�, we can rewrite Eq.
�A6� in the form

fk+1��� = �
0

�

d��
i=0

�

�
j=0

�

�ai
�k�cj�� − ��k+2�i+1��2j

+ bi
�k�dj�� − ��k+2i�2�j+1�� . �A9�

Applying the formula

�
0

�

d��� − ��i�2j =
i!�2j�!

�i + 2j + 1�!
�i+2j+1 �A10�

to Eq. �A9�, we find that fk+1��� includes only terms of
�k+3 ,�k+5 ,�k+7 , . . .. Therefore, Eq. �A2� holds for �k+1�.
Next, let us consider Eq. �A3� for �k+1�. From Eq. �28�, we
obtain

gk+1��� = �
0

�

d��gk�� − ��cos2 2� + fk�� − ��sin2 2�� .

�A11�

Using Eqs. �A2�, �A3�, �A7�, and �A8�, we can rewrite Eq.
�A11� in the form

gk+1��� = �
0

�

d��
i=0

�

�
j=0

�

�bi
�k�cj�� − ��k+2i�2j

+ ai
�k�dj�� − ��k+2�i+1��2�j+1�� . �A12�

Applying Eq. �A10� to Eq. �A12�, we find that gk+1��� in-
cludes only terms of �k+1 ,�k+3 ,�k+5 , . . . . Therefore, Eq.
�A3� holds for �k+1�. Hence, from mathematical induction,
we conclude that Eqs. �A2� and �A3� are satisfied for k
=0,1 , . . . . This implies that Eq. �A1� holds.
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