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Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in
experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty
state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity
and discuss the classical limit for the state. The measured fidelity for the input state is 0.85±0.05, which is
higher than the classical case of 0.73±0.04. We also verify that the teleportation process operates properly for
the nonclassical state input and its squeezed variance is certainly transferred through the process. We observe
the smaller variance of the teleported squeezed state than that for the vacuum state input.
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I. INTRODUCTION

Quantum teleportation enables the reliable transfer of an
unknown quantum state from one location to another �1�.
This transfer is achieved by utilizing shared quantum en-
tanglement and classical communication between two sta-
tions. The initial approaches using qubits �1,2� have been
extended to a continuous-variable �CV� system �3–5� em-
ploying the Einstein-Podolsky-Rosen �EPR� correlation �6�.
So far, several experiments for CVs have been demonstrated
for a coherent state input using quadrature-phase amplitudes
of an electromagnetic field mode �7–10�. Teleportation of
quantum entanglement, i.e., entanglement swapping has been
also realized �10,11�. Furthermore, CV teleportation has been
extended to a multipartite protocol known as a quantum tele-
portation network �12,13�.

The experiments with a coherent state input have been
performed by assuming that the input is a pure state. For
such a state, there has been much investigation of fidelity as
a success criteria, and its value and the classical limit are
well understood �14–18�. However, the input state would be
not always pure but mixed due to some inevitable losses and
imperfection in real experiments. Furthermore, there may be
a situation in which a manipulated state in some imperfect
quantum circuits will be teleported as an input. In this case,
the state would be considered as a mixed state. But the suc-
cess criterion for CV teleportation of a mixed state input has
not been investigated very much so far.

In entanglement swapping, a subsystem of a bipartite en-
tangled state is teleported. Since the subsystem is generally a
mixed state, entanglement swapping is considered as the
teleportation of a mixed state. The success of this teleporta-
tion has been verified by examining the quantum entangle-
ment between the output and the partner subsystem �10,11�
in terms of the inseparability criterion �19,20�. However, this
verification is applicable only to the case of a bipartite en-
tangled state or a two-mode state and is not applicable to the
case of a single-mode mixed state input. Therefore, an op-
erational method of verification for a single-mode mixed
state should be established.

The previous experiments for CVs have been carried out
using Gaussian states, i.e., those states whose Wigner func-
tions have Gaussian distribution on the phase space. Even
when a Gaussian state suffers from some losses and becomes
a mixed state, the state is just transformed into another
Gaussian state. So we focus on only Gaussian states. In such
states, single-mode mixed states are provided as displaced
squeezed thermal states �21�. The fidelity for these states has
been studied �22,23� and applied to quantum teleportation
�24�. However, the success criterion or the classical limit has
not been understood as mentioned above.

In this paper, we experimentally demonstrate CV telepor-
tation of a squeezed vacuum which belongs to Gaussian
states. Due to some inevitable losses in real experiments, a
squeezed vacuum is degraded and necessarily becomes a
mixed state which is no longer a minimum uncertainty state
and called a squeezed thermal state. However, as long as its
squeezed variance is smaller than the vacuum variance, we
call the mixed state a squeezed vacuum in the present work.
Note that general squeezed thermal states include both the
squeezed vacuum states and the states with the squeezed
variances larger than the vacuum variance.

We investigate quantum teleportation of a squeezed
vacuum state and calculate the fidelity given in Refs.
�22–24�. We establish an operational method of evaluation
for the teleportation of the mixed state and discuss the clas-
sical limit for the state. Moreover, we also verify that the
teleportation process operates properly for a squeezed
vacuum input and its squeezed variance is certainly trans-
ferred through the process. We observe the smaller variance
of the teleported squeezed state than that for the vacuum
state input.

This paper is organized as follows. In Sec. II, we describe
a squeezed state which is an input state in our teleportation.
In Sec. III, we briefly summarize the procedure of quantum
teleportation and explain in detail our experimental setup. In
Sec. IV, we show the experimental results and calculate the
fidelity. In Sec. V, we discuss the classical limit for a set of
mixed squeezed states. Section VI is the conclusion.
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II. A SQUEEZED THERMAL STATE

We consider the quantum teleportation of a squeezed
vacuum state of an electromagnetic field mode. The field
mode can be represented by an annihilation operator â �25�,
whose real and imaginary parts �â= x̂+ ip̂� correspond to
quadrature-phase amplitude operators with the canonical
commutation relation �x̂ , p̂�= i /2 �units free, with �=1/2�. In
this notation, the variances of a vacuum state are given by
���x̂�2�vac= ���p̂�2�vac=1/4. A squeezed vacuum state is de-
fined as the state which has reduced variance from the
vacuum variance in one quadrature at the expense of in-
creased variance in the other, for example, ���x̂�2��1/4
� ���p̂�2� �25�. This state belongs to the class of minimum-
uncertainty states: ���x̂�2����p̂�2�=1/16.

Squeezed states used in successful experiments of quan-
tum teleportation or the generation of entanglement are com-
monly generated using an optical parametric oscillator
�OPO� �7–11� or a Kerr medium �26�. In these experiments,
each squeezed state suffers from some inevitable losses,
mainly in its generation process, having excess noise in the
antisqueezing component. Such squeezed states are not pure,
but mixed states. This is certainly true of our squeezed
vacuum input. This mixed squeezed vacuum is regarded as a
squeezed thermal state. Assuming that the x quadrature is
squeezed, its variances are written as follows:

�in
x = ���x̂in�2� = e−2r coth��/2�/4,

�in
p = ���p̂in�2� = e+2r coth��/2�/4, �1�

where r is the squeezing parameter and coth�� /2� /4 is the
variance of an initial thermal state. � is the inverse tempera-
ture 1/2kBT where kB is the Boltzmann constant and T is
temperature. Accordingly a squeezed thermal state is no
longer the minimum-uncertainty state: �in

x �in
p �1/16.

Let us consider the quantum teleportation of a more gen-
eral, squeezed thermal state, i.e., a displaced squeezed ther-
mal state with some rotation in the phase space. This state
may be also the most general Gaussian state �21�. The
Wigner function of such a Gaussian state is given by �23�

W�x�,p�� =
1

2���in
x �in

p

�exp�−
1

2�in
x �x� − x0�2 −

1

2�in
p �p� − p0�2	 ,

�2�

where x� , p� are coordinates rotated from x and p axes by an
angle 	 in the phase space: x�=x cos 	+ p sin 	, p�=
−x sin 	+ p cos 	. x0 and p0 represent displacement of the
state 
0=x0+ ip0. From Eqs. �1� and �2�, the Gaussian state
can be fully characterized by four parameters r, �, 	, and 
0.

In a teleportation process, displacement 
0 of an input
state can be easily reconstructed at the output station by set-
ting the gains of classical channels to unity. This exact re-
construction of the displacement is the definition of unity
gain. Note that the unity gains are calibrated by using a
strong field with a sufficiently large displacement 

0
�1,

which is treated classically �9�. It follows from the unity gain
that the fidelity, which is the overlap between the input and
output states, does not depend on their displacement �22,23�.
Thus, we just perform the teleportation of a squeezed state
with a particular displacement, 
0=0, in our experiment.

Furthermore, the coordinates, namely the angle 	, can be
experimentally adjusted in such a way that the angle for the
output coincides with that for the input. Note that this adjust-
ment of the angle is also made with the strong �classical�
field. As a result, the fidelity does not also depend on the
�relative� angle �22,23�. Therefore, we carry out the telepor-
tation experiment with 	=0.

Accordingly, we just examine the teleportation of a
squeezed thermal state with the variances of �in

x and �in
p of

Eq. �1�. In a broad sense, such states include the states whose
squeezed variances are not smaller than the vacuum vari-
ance, namely �in

x �1/4. In the present work, however, we
teleport a squeezed vacuum state with the squeezed variance
�in

x �1/4 �see Fig. 2�.

III. TELEPORTATION PROCEDURE

In this section, we briefly summarize the procedure of CV
teleportation and describe our experimental setup. The
scheme of the procedure is outlined in Fig. 1. First, sender
Alice and receiver Bob share entangled EPR beams, which
can be generated by combining two squeezed states at a
50-50 beam splitter �BS�. One of the EPR beams is sent to
Alice �mode 1� and the other is to Bob �mode 2�. For the
purpose of verifying the protocol, an input state is created by
Victor �the “verifier”�. Note that an input state is unknown to
both Alice and Bob in an ideal case. Alice combines the
mode 1 and an input state at a 50-50 BS, and then measures
x and p quadratures by two homodyne detectors: x for one

FIG. 1. Schematic setup of the experiment for quantum telepor-
tation of a squeezed state. OPOs represent optical parametric oscil-
lators. AM and PM denote amplitude and phase modulators. LOs
are local oscillators for homodyne detection. The ellipses indicate
the squeezed quadrature of each beam. All beam splitters except
99-1 BS are 50-50 beam splitters. Symbols and abbreviations are
defined in the text.
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beam �Ax� and p for the other �Ap�. This measurement cor-
responds to the Bell-state measurement for CVs �4�. The
output photocurrents of measurement results are transmitted
to Bob through classical channels. After receiving the classi-
cal information from Alice, Bob reconstructs the teleported
output state by performing a phase-space displacement on
the mode 2 beam. His displacement process consists of two
parts. One is the amplitude and phase modulations of a light
beam �AM and PM� based on the classical information from
Alice, because we define the quantum state to be frequency
sidebands at ±1 MHz �with a bandwidth of 30 kHz�. The
other is the coherent combination of this modulated beam
and the mode 2 at a highly reflecting mirror �a 99-1 BS in
our experiment�.

In the absence of losses, the variances �out
x and �out

p asso-
ciated with the output state are written by �7�

�out
x = gx

2�in
x +

e−2r−�1 + gx�2

8
+

e+2r+�1 − gx�2

8
, �3�

�out
p = gp

2�in
p +

e−2r−�1 + gp�2

8
+

e+2r+�1 − gp�2

8
, �4�

where r− ,r+ are the squeezing and the antisqueezing param-
eters for squeezed states used to generate the EPR beams. gx
and gp are suitably normalized gains of classical channels
and defined as gx= �x̂out� / �x̂in� and gp= �p̂out� / �p̂in�. When the
gains are adjusted to unity, the displacement of an input state
is properly reconstructed at Bob’s station.

Finally Victor analyzes an output state from Bob’s station.
In our experiment, we verify that the squeezed variance of a
squeezed vacuum state is properly transferred. When the
state is teleported with gx=gp=1, the teleported state should
show the smaller variance in the x quadrature than that for
the case of a vacuum input �r=0,�→
� is

��out
x �sq � ��out

x �vac. �5�

This is because the variance �in
x in the present work is

smaller than the vacuum variance of 1 /4. Although some
losses are inevitable and the gains might slightly differ from
unity in real experiments, the relation of Eq. �5� should be
satisfied in our work. Similarly, the inequality of ��out

p �sq

� ��out
p �vac should be expected to hold. We verify that the

quantum teleportation process satisfies these inequalities.
We also verify the success of quantum teleportation by

using a fidelity. When an input state is a mixed state, the
fidelity is described as follows �27�:

F = �Tr����̂in�̂out
��̂in�1/2��2

. �6�

This is an overlap between an input state �̂in and an output
state �̂out. If an input is a pure state 
�in�, the fidelity F be-
comes F= ��in
�̂out
�in�. In the ideal quantum teleportation,
the fidelity goes to unity, F=1, whereas F=0 means that the
teleported state is orthogonal to the input state.

Our experimental setup is shown in Fig. 1. We generate
three independent, squeezed vacuum states. One of these
states is used as an input for teleportation and the other two
are used to produce entangled EPR beams. In order to gen-
erate each squeezed vacuum state, we use a subthreshold

degenerate OPO with a 10 mm long potassium niobate crys-
tal �KNbO3�. The crystal is temperature tuned for type-I non-
critical phase matching. Each OPO cavity is a bow-tie-type
ring cavity, which consists of two spherical mirrors �radius of
curvature 50 mm� and two flat mirrors. The round trip length
is 500 mm and the waist size in the crystal is 20 �m. The
output of a Ti-sapphire laser at 860 nm is frequency doubled
in an external cavity with the same configuration as the
OPOs and divided into three beams to pump the three OPOs.

EPR beams are generated by combining two squeezed
vacuum states from OPO1 and OPO2 at a 50-50 BS with a
� /2 phase shift as shown in Fig. 1. We characterize the
quantum entanglement with the inseparability criterion pro-
posed in Refs. �19,20� and obtain the result of ����x̂1

− x̂2��2�+ ����p̂1+ p̂2��2�=0.47±0.04�1. This result shows
the existence of quantum entanglement between the EPR
beams.

The normalized gains of two classical channels are ad-
justed in the manner of Ref. �9�. This method provides the
same value of gain calculated from the comparison of dis-
placement of input and output states. We obtain the measured
gains of gx=0.98±0.04 and gp=0.98±0.03, respectively.
These gains can be considered as unity within the experi-
mental accuracy and show no drift during the experiment.
Therefore, we treat them as unity for simplicity. Note that
because a squeezed vacuum input has no displacement, the
gains should be carefully adjusted. The obtained gains are
cross-checked with the measurement results of teleportation
of a vacuum without EPR beams, because the results depend
only on the gains from Eqs. �3� and �4� with r±=0 and �in

x,p

=1/4. The effect to the fidelity caused by deviation from the
unity gain has been discussed in detail in Ref. �28�.

IV. RESULTS

Before performing teleportation, we first measure the in-
put squeezed vacuum state at the Ap homodyne detector at
Alice by removing Alice’s 50-50 BS. Figure 2 shows the
measurement results. The squeezing and antisqueezing are
−2.66±0.49 dB and 7.45±0.17 dB, respectively, compared
to the vacuum noise level. Visibility between the input and
LO at the Ap detector is 0.968. From this visibility and the
results, we infer −2.92±0.56 dB of squeezing �in

x and
7.68±0.27 dB of antisqueezing �in

p , where we assume that
the x quadrature is squeezed. In the teleportation experiment,
the relative phase of the input is properly adjusted and
locked.

We then proceed to the experiment of teleportation. Fig-
ure 3 shows Victor’s measurement results of the output state
from Bob. First we consider the case without EPR beams in
Fig. 3�a�, which is the so-called classical teleportation. In
this case, the variances are somewhat large due to the quan-
tum duty �quduty� that must be paid for crossing the border
between quantum and classical domains �4�. We observe the
noise levels of 4.86±0.20 dB and 4.92±0.20 dB in the x and
p quadratures for the vacuum input. These levels correspond
to three units of the vacuum variance �4.77 dB in a logarith-
mic scale�: one from the input intrinsic variance and two
units from the quduty �4�. These results ensure the unity
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gains of classical channels within the experimental accuracy.
For the squeezed vacuum input, we observe the minimum
noise level of 4.12±0.23 dB in the x quadrature and the
maximum noise level of 8.92±0.16 dB in the p quadrature in
this classical teleportation.

Next, we carry out quantum teleportation with EPR
beams as shown in Fig. 3�b�. In the case of a vacuum input,
the output variances are reduced from the classical case due
to the quantum entanglement. We obtain the noise levels of
2.90±0.21 dB and 3.01±0.19 dB, respectively, for ��out

x �vac

and ��out
p �vac. The noise reduction from the classical telepor-

tation indicates the success of quantum teleportation of the
vacuum. Based on these variances and the measurement re-

sults �in
x , �in

p of the squeezed input, we can calculate the
expected output variances ��out

x �sq and ��out
p �sq for our

squeezed input using Eqs. �3� and �4�. The calculated vari-
ances are 1.71±0.58 dB and 8.24±0.31 dB for ��out

x �sq and
��out

p �sq, respectively.
The squeezed vacuum state shown in Fig. 2 is subse-

quently teleported. We obtain the minimum noise level of
2.03±0.24 dB for ��out

x �sq and the maximum noise level of
8.18±0.17 dB for ��out

p �sq �not shown�, respectively, which
are in good agreement with the expected variances. The
squeezed variance of the teleported state is clearly smaller
than that of the teleported vacuum state in the x quadrature,
and then the inequality ��out

x �sq� ��out
x �vac is satisfied. Simi-

larly the inequality ��out
p �sq� ��out

p �vac holds. Therefore, the
squeezed variance of our squeezed vacuum input is certainly
teleported. We verify that the teleportation process operates
properly for the nonclassical input of the squeezed vacuum.

Note that the observed squeezed variance of the teleported
state is larger than Victor’s shot noise level, which shows
that the output state is not a nonclassical state. In order to get
a nonclassical state at Bob’s place, the quantum entangle-
ment with stronger nonclassical correlation is required. If an
input squeezed state and two squeezed states used for the
generation of EPR beams have the same degree of squeezing
r, the variance of the output state becomes �out

x =3e−2r /4
from Eqs. �3� and �4�. To perform teleportation such that the
output is squeezed, i.e., �out

x �1/4, the squeezing of e−2r

�1/3 is needed, which corresponds to more than 4.77 dB.
The next challenge is to generate a teleported state whose
variance is below the shot noise level.

We next evaluate the success of the teleportation process
by a fidelity. The process can be regarded as a generalized
thermalizing quantum channel �29� and does not alter the
Gaussian character of an input state. Assuming both input
and output states show Gaussian distribution without dis-
placement, we can characterize these states by measuring the
variances � j

x and � j
p �j=in,out� as in Eq. �1�.

Since a vacuum is one of the coherent states, the fidelity
Fvac for the vacuum teleportation at unity gains is simply
given by �15�

Fvac =
2

��1 + 4�out
x ��1 + 4�out

p �
. �7�

From the measured variances, we obtain the fidelity of
0.67±0.02 for quantum teleportation of a vacuum input,
which exceeds the classical limit of 0.5 �14–16�. This result
clearly shows the success of quantum teleportation of a
vacuum state. But we cannot apply this classical limit to the
case of the squeezed state input, since the fidelity depends on
an input state like Eq. �6�.

It could be considered that a �mixed� squeezed vacuum
input is transformed into a squeezed thermal state through
the imperfect teleportation process. For these squeezed
states, the fidelity Fsq in Eq. �6� can be calculated explicitly
as follows �22�:

Fsq =
2 sinh��in/2�sinh��out/2�

�Y − 1
,

FIG. 2. The measurement results on the input squeezed state
recorded by the Ap homodyne detector with Alice’s 50-50 BS re-
moved. Trace �i� shows the corresponding vacuum noise level; trace
�ii� is the variance of the squeezed state with the LO phase scanned;
traces �iii� and �iv� are the minimum and the maximum noise levels
with the LO phase locked. The measurement frequency is 1 MHz,
and the resolution and video bandwidth are 30 kHz and 300 Hz,
respectively. All traces except for �ii� are averaged ten times.

FIG. 3. The measurement results on the output states recorded
by Victor in the x quadrature, where �a� is the classical teleportation
without the EPR beams, �b� the teleportation with the EPR beams,
�i� the corresponding shot noise level, �ii� the vacuum state input,
�iii� the squeezed state input with the phase of the input state
scanned, and �iv� the minimum noise levels with the phase of the
input state locked. The measurement conditions are the same as for
Fig. 2.
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Y = cosh2�rin − rout�cosh2���in + �out�/2�

− sinh2�rin − rout�cosh2���in − �out�/2� . �8�

From Eq. �1�, the squeezing parameter rj and the inverse
temperature � j are given by

rj =
1

4
ln
� j

p

� j
x�, � j = ln
1 +

2

4�� j
x� j

p − 1
� , �9�

where j= �in,out�. Thus we can calculate the fidelity from the
measured variances.

We apply the fidelity Fsq to the particular input state in
this experiment. The fidelity for the “perfect” classical tele-
portation could be calculated from the measurement results
on the input state shown in Fig. 2. The fidelity for the clas-
sical teleportation Fsq

C is calculated as 0.73±0.04, and we
regard this value as the classical limit for the input. The
measured fidelity of the classical case without the EPR
beams is 0.73±0.05, which is in good agreement with the
classical limit. In the quantum case with the EPR beams, we
obtain the result of Fsq

Q =0.85±0.05 which is higher than the
classical limit. This fact shows the success of quantum tele-
portation and it means that the teleported state in the quan-
tum teleportation is closer to the input state than that in the
classical teleportation.

V. DISCUSSION

Here we discuss the classical limit for a set of squeezed
thermal states using the fidelity. The classical limit for the set
has not been investigated so far.

In the case of a set of coherent states, the classical limit of
0.5 is derived by averaging the fidelity for coherent states
randomly chosen from the set �14–16�. A coherent state is
characterized only by one parameter, i.e., its displacement.
Thus the displacement is randomly selected in the derivation
of the limit, and the fidelity of each state is averaged over the
set.

From Eq. �2�, however, a squeezed thermal state is fully
characterized by four parameters: displacement 
0, an angle
	, inverse temperature �, and squeezing r. In order to derive
the classical limit for a set of squeezed thermal states, these
four parameters should be chosen randomly or with some
probability, and the classical limit is calculated by averaging
the fidelity over the set. However, as mentioned in Sec. II,
the fidelity does not depend on 
0 and 	 at the appropriate
setting where 
0 and 	 are the same for input and output
states �22,23�. Such a setting is realizable in experiments.
Thus, we just consider only two parameters � and r.

Now we investigate the dependence of the fidelity Fsq on
the variance coth�� /2� and the antisqueezing e+2r rather than
� and r. In particular, coth�� /2� is the variance of a thermal
state, normalized to the vacuum variance, and it may indicate
the mixedness of a squeezed thermal state. From Eq. �1� and
the results of Fig. 2, our input squeezed vacuum shows
2.39±0.31 dB of coth�� /2� and 5.06±0.26 dB of e+2r.

Using these values and Eqs. �3� and �4�, we can calculate
the fidelity Fsq

C for “perfect” classical teleportation, which is
plotted as a function of coth�� /2� and e+2r in Fig. 4. The

trace in Fig. 4�a� shows the dependence of Fsq
C on the vari-

ance coth�� /2� with the fixed antisqueezing e+2r of 5.06 dB.
On the other hand, the trace in Fig. 4�b� shows the depen-
dence of Fsq

C on the antisqueezing e+2r with the fixed variance
coth�� /2� of 2.39 dB. The measured fidelity Fsq

Q =0.85
±0.05 is plotted as the cross “�,” which is larger than the
fidelity Fsq

C =0.73±0.04 for our input state.
In Fig. 4�a�, the fidelity Fsq

C increases from 0.44 at 0 dB of
coth�� /2�, as the variance coth�� /2� or the mixedness in-
creases. The variance of 0 dB corresponds to a pure
squeezed vacuum with 5.06 dB squeezing. The fidelity of
0.44 at 0 dB is slightly smaller than 0.5 for a vacuum state,
which indicates that a pure squeezed state is more fragile
than a vacuum state through a classical teleportation process.
This agrees with the fact that it is not possible to transfer the
nonclassical feature of squeezing in classical teleportation. In
the limit of coth�� /2�→
 or T→
 where an input state
may become completely mixed and classical, the fidelity Fsq

C

goes to unity. Note that the fidelity is very sensitive to small
amounts of mixedness �23�.

On the other hand, in Fig. 4�b�, the fidelity Fsq
C decreases

from 0.84 at 0 dB of e+2r as the antisqueezing increases. The
tendency of Fsq

C means that it is more difficult to transfer a
squeezed thermal state with a larger degree of squeezing
through the classical teleportation. The value of 0.84 at 0 dB
of e+2r is much larger than 0.5, which shows that a thermal
state can be more easily teleported than a vacuum through a
classical teleportation process. This fact indicates that the
fidelity varies sensitively with the mixedness �2.39 dB of
coth�� /2� in our experiment�.

FIG. 4. The calculated fidelity Fsq
C between the input and the

output. �a� The dependence of Fsq
C on the variance coth�� /2� with

the fixed antisqueezing e+2r of 5.06 dB. The measured value of the
fidelity Fsq

Q is plotted as the cross “�” at coth�� /2� of 2.39 dB. �b�
The dependence of Fsq

C on the antisqueezing e+2r with the fixed
variance coth�� /2� of 2.39 dB. The measured value of the fidelity
Fsq

Q is plotted as the cross “�” at e+2r of 5.06 dB.
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As mentioned before the classical limit can be obtained
by averaging the fidelity Fsq

C over the set of input states,
which are characterized by � and r, or the variance
coth�� /2� and the antisqueezing e+2r. The question is to what
extent the set should cover values of coth�� /2� and e+2r.
Concerning the variance of coth�� /2�, some states with
coth�� /2��1 would be treated as classical thermal states.
They could be easily teleported in classical teleportation with
almost unity fidelity as shown in Fig. 4�a�. If the set of in-
terest contains such classical states, the value of the classical
limit would increase. On the other hand, the fidelity shows a
decreasing tendency with the antisqueezing e+2r as shown in
Fig. 4�b�. When the fidelity is averaged over the whole range
of e+2r, the classical limit would become a small value.
Therefore, the classical limit depends strongly on an input
set and the situation where the set is used. It is difficult to
calculate the general classical limit for an input set which
includes the state with coth�� /2� and e+2r chosen from the
whole range of them.

Finally, note that the fidelity is strongly dependent on a
set of input states and very sensitive to mixedness of the
states. Therefore, the fidelity may not be good measure of a
success criterion of quantum teleportation, especially for a
mixed state, as argued in Ref. �23�. The establishment of the
criterion for the mixed state is needed. An alternative pos-
sible evaluation is the T-V diagram, which characterizes the
teleportation process in terms of signal-to-noise ratios in a
manner analogous to the quantum nondemolition measure-
ment �5�. This measure is effective to Gaussian states, but it
has a drawback not to provide the same classical limit as
commonly accepted fidelity even in the case of coherent state
inputs. Other measures have been proposed in Ref. �28�.

VI. CONCLUSION

We have demonstrated the CV quantum teleportation of a
squeezed vacuum state and calculated the fidelity for the

state. The measured fidelity of the squeezed state input in the
quantum teleportation is 0.85±0.05, which is higher than the
classical case 0.73±0.04. This result shows that the tele-
ported state in the quantum teleportation process is more
similar to the input state than that in the classical teleporta-
tion.

We have also established an operational method of evalu-
ation for quantum teleportation of a squeezed thermal state
and discussed the classical limit for a set of squeezed thermal
states. Four parameters defined in Eqs. �1� and �2� can be
experimentally tunable. For example, the antisqueezing e+2r

can be varied with pump power of OPO, and displacement

0 can be adjusted through a displacement operation. How-
ever, the general classical limit and the success criterion
�with or without fidelity� for mixed states remain topics for
future study.

Furthermore, we have observed the smaller variance of a
teleported squeezed state than that for the case of a vacuum
state input. This means that the nonclassical feature of a
squeezed vacuum state is preserved throughout the telepor-
tation process. The next challenge is to generate a teleported
state whose variance is below the shot noise level. In CV
quantum teleportation and quantum information processing it
is important to transfer the squeezing and to reconstruct a
squeezed state at the receiving station.
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