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We study the role of the information deposited in the environment of an open quantum system in the course
of the decoherence process. Redundant spreading of information—the fact that some observables of the system
can be independently read off from many distinct fragments of the environment—is investigated as the key to
effective objectivity, the essential ingredient of classical reality. This focus on the environment as a commu-
nication channel through which observers learn about physical systems underscores the importance of quantum
Darwinism—selective proliferation of information about “the fittest states” chosen by the dynamics of deco-
herence at the expense of their superpositions—as redundancy imposes the existence of preferred observables.
We demonstrate that the only observables that can leave multiple imprints in the environment are the familiar
pointer observables singled out by environment-induced superselection �einselection� for their predictability.
Many independent observers monitoring the environment will therefore agree on properties of the system as
they can only learn about preferred observables. In this operational sense, the selective spreading of informa-
tion leads to appearance of an objective classical reality from within the quantum substrate.
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I. INTRODUCTION

Emergence of a classical reality within the quantum Uni-
verse has been the focus of discussions on the interpretation
of quantum theory ever since its inception. Measurement—
the process through which we learn about the world—has the
power to transform fuzzy quantum states into solid classical
facts. Understanding measurements has been therefore
rightly regarded as the key to unlocking the mystery of the
quantum-classical transition since the early days �1�. Bohr’s
interpretation proposed in 1928 �2� introduced the classical
domain “by hand,” with a demand that much of the
Universe—including measuring devices—must be classical.
This Copenhagen interpretation proved to be workable and
durable, but is ultimately unsatisfying, because of the arbi-
trary split between the quantum and the classical. Thus,
Copenhagen interpretation notwithstanding, attempts to ex-
plain the emergence of the classical, objective reality �in-
cluding measurement outcomes� using only quantum theory
were made ever since its structure became clear in the late
1920s.

Von Neumann �3� introduced a particularly influential
model of the measurement process. In his approach—and in
contrast to Bohr’s view—the apparatus A is also quantum.
“Bit-by-bit measurement” �4� is the simplest example: a two-
dimensional system S in pure state ��0�+��1� interacts with
a two-dimensional apparatus initially in state ��0

A�. In course
of the controlled-NOT �or “measurement”� gate the apparatus
becomes—as one would now say—entangled with the sys-
tem S:

���0� + ��1�� � ��0
A� → ��0� � ��0

A� + ��1� � ��1
A� . �1�

This is premeasurement. It implies correlation of S and A,
but does not yield a definite outcome.

The structure of Eq. �1� suggests a relative state interpre-
tation of quantum theory �5�. However, to make contact with
the familiar reality, one must point out the preferred relative
states. Yet, in the bipartite setting of the premeasurement,
such proposals are difficult to make without some ad hoc
assumptions �e.g., about the special role of either memory
states �5� or of the Schmidt basis �6��.

The presence of entanglement in the state obtained after
the premeasurement implies a basis ambiguity—correlation
of observables of A with incompatible sets of pure states of
the system which cannot be resolved without some modifi-
cation of the model �4�. For example, the states ���0

A� , ��1
A��

of A are in one-to-one correspondence with the states
��0� , �1�� of S, while the states ����0

A�± ��1
A�� /	2� are in one-

to-one correspondence with the states ����0�±��1�� /	2� of
S. Thus, von Neumann’s model does not account for the
existence of a fixed “menu” of possible measurement
outcomes—an issue that must be addressed before the appar-
ent selection of one position on this menu �i.e., the collapse
of the wave packet� is contemplated.

Decoherence theory �see, e.g., �7–11� for reviews� added a
new element that goes well beyond the von Neumann mea-
surement model: in addition to S and A, decoherence recog-
nizes the role of the environment E that surrounds A and
interacts with the apparatus �or with any other object im-
mersed in E�. The resulting “openness” of A invalidates the
egalitarian principle of superposition: while all states in the
Hilbert space of the apparatus A are “legal” quantum super-
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positions, only some of them will retain their identity—will
be stable in spite of the coupling to E.

Returning to our example, the environment may interact
with A in such a way that an arbitrary superposition
�0��0

A�+�1��1
A� is transformed into a mixture ��0�2��0

A�
�0
A�

+ ��1�2��1
A�
�1

A� after a very short time. Thus, only the two
states ��0

A� and ��1
A� remain pure over time. Selection of

such preferred set of states is known as environment-induced
superselection, or einselection. The persistence of the corre-
lation between A and S is the desired prerequisite of mea-
surements, and only the stable pointer basis of A selected by
the interaction with E fits the bill �4,9–12�. Indeed, after the
decoherence time, the joint state of S and A, Eq. �1�, be-
comes mixed:

���2�0�
0� � ��0
A�
�0

A� + ���2�1�
1� � ��1
A�
�1

A� . �2�

As a consequence of decoherence, only classical correlations
of A with the system states ��0� , �1�� persist.

Understanding the reason for the loss of validity of the
quantum principle of superposition is a significant step in the
understanding of the quantum-classical transition, but it does
not go all the way in justifying objectivity: the einselected
pointer states are still ultimately quantum. Thus, they remain
sensitive to direct measurements—a purely quantum prob-
lem. An observer trying to find out about the system directly
will generally disturb its state, unless he happens to make a
nondemolition measurement �13,14� in the pointer basis. As
a consequence, it is effectively impossible for an initially
ignorant observer—someone who does not know what are
the pointer states of the system—to find out the state of a
physical system through a direct measurement without per-
turbing it: immediately after a direct measurement the state
will be what the observer finds out it is, but not—in
general—what it was before.

The situation becomes even more worrisome when one
considers many initially ignorant observers attempting to find
out about the system. As a consequence of the disturbance
caused by a direct measurement on the system, the informa-
tion gained by the first observer’s measurement can get in-
validated by the second observer’s measurement, etc., unless
they all happen to measure commuting observables—or
more precisely, unless the measured observables share the
system’s pointer states as eigenstates.

Quantum subjectivity is to be contrasted with the objec-
tivity of classical physics, where many ignorant observers
can—at least in principle—find out the state of the system
without modifying it. This is because classical systems admit
an underlying objective description �classical reality�, and
classical states can be found out by initially ignorant observ-
ers. This is generally not the case for quantum systems. Thus,
objective information about quantum systems can be ac-
quired directly by many only by a constrained set of prea-
greed measurements on S �see, e.g., �15,16��.

Of course—as noted in past discussions of einselection
�7,17,18�—there are good reasons for the observers to focus
on the set of states singled out by decoherence: only such
pointer states of S �or their dynamically evolved descen-
dants� continue to faithfully describe the system in spite of

its interaction with E. All other states are affected by E, mak-
ing loss of predictability inevitable. Predictability is charac-
teristic of the states of classical systems, and is thus a symp-
tom of a classical reality. But, above all, prediction is the
reason for measurements. One can therefore understand how
observers with practical experience with the emergent clas-
sicality �imposed in our Universe by einselection� will be
forced to choose the same pointer observables as they make
their choice of what to measure: save for pointer observables,
there is no other choice if measurements are to be useful for
prediction. This may look like a preagreement, but it in-
volves no consultation between observers: competing with
the environment is simply not an option.

In effect, the environment acts as a superobserver, moni-
toring the same pointer observable over and over, with fre-
quency and accuracy that cannot be matched by other �e.g.,
human� observers. They all have to measure observables that
commute with the pointer observable. Last but not least, in-
teractions available to observers are similar in structure �e.g.,
depend on distance, etc.� to the interactions responsible for
the einselection �10,18�. So, predictive utility in the presence
of decoherence and limited choice of the Hamiltonians avail-
able in our Universe motivate preagreement by constraining
measurements to pointer observables. However, even if such
preagreement imposed by einselection can help single out
what observables can become objective, the actual role of the
environment in what happens in practice far more dramatic
and decisive: the environment is not just a superobserver; it
becomes a witness. Observers use it to find out about sys-
tems of interest. Hence, they must be content with the infor-
mation that can be extracted from its fragments �as, gener-
ally, they will never be able to intercept all of E�.

In its original formulation, decoherence theory treats the
information transferred to E as inaccessible. However, in the
real world, this is typically not the case. Indeed, as was
pointed out by one of us some time ago �17–19�, the fact that
we gain most of our information by intercepting a small
fraction of the photon environment is significant for the
emergence of effectively classical states from the quantum
substrate. The purpose of this paper is to investigate the con-
sequences of such an indirect information acquisition for the
quantum-classical transition, and to explore the relation of
this “environment as a witness” �10� point of view to the
predictability of the pointer states as well as to other issues
raised and partially explored in �20�. We shall demonstrate
that the manner in which the information is stored in the
environment is the reason for the inevitable consensus
among many observers about the state of the effectively clas-
sical �but ultimately quantum� systems. In other words, the
structure of information deposition in E is responsible for the
emergence of the objective classical reality from the quan-
tum substrate.

We shall also begin to explore quantum Darwinism: the
dynamics responsible for the proliferation of correlations that
leads to the survival of the fittest information. This is a natu-
ral complement to the environment as a witness approach
that is focused on how the data about S can be extracted by
interrogating E. Quantum Darwinism allows the environment
to act as a witness �10,20,21�, adding a new dimension to the
modern decoherence-based view of the emergence of the
classical.

OLLIVIER, POULIN, AND ZUREK PHYSICAL REVIEW A 72, 042113 �2005�

042113-2



In the next section, we propose an operational notion of
objectivity and discuss how we will use it to investigate the
quantum-classical transition. Sections III and IV set up the
notation and introduce tools of information theory required
for the present study. Section V contains the core
information-theoretic analysis of the manuscript. There, we
establish a number of facts about the structure of the infor-
mation stored in the environment, and study consequences of
redundant imprinting of selected system observables in E.
These general properties are then illustrated in Sec. VI on a
dynamical model used extensively in the study of decoher-
ence. This allows us to extend the results of our analysis, and
establish a direct connection between einselection and the
emergence of an objective classical reality. Finally, we con-
sider some open questions in Sec. VII and conclude in Sec.
VIII with a summary.

II. OPERATIONAL DEFINITION OF OBJECTIVITY

Quantum Darwinism �10,20� aims to show that a consen-
sus about the properties of a quantum system—the key
symptom of classical reality—arises naturally and inevitably
from within quantum theory when one recognizes the role of
the environment as a broadcasting medium that acquires—in
the process of monitoring the system of interest that leads to
decoherence and einselection—multiple copies of the infor-
mation about preferred properties of the system of interest.

We will set up a rigorous operational framework for the
analysis of the emergence of objective classical reality of
quantum systems, based on the following definition of objec-
tivity.

Definition 1 (objective property). A property of a physical
system is objective when it is

�1� simultaneously accessible to many observers,
�2� who are able to find out what it is without prior

knowledge about the system of interest, and
�3� who can arrive at a consensus about it without prior

agreement.
This operational definition of what is objective is inspired

by the notion of “element of physical reality” used by Ein-
stein, Podolsky, and Rosen �EPR� in their famous paper �22�
on entanglement: “If, without in any way disturbing a sys-
tem, we can predict with certainty �i.e. with probability equal
to unity� the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical
quantity. �...� Regarded not as a necessary, but merely as a
sufficient condition of reality, this criterion is in agreement
with classical as well as quantum-mechanical ideas of real-
ity.” Any property of the system satisfying this requirement
would be considered an element of objective reality accord-
ing to the definition we adopt.

The environment as a witness approach recognizes that in
our everyday acquisition of data, the decision of what to
measure on S is taken out of our hands by the environment,
and rests with the dynamics responsible for decoherence—
i.e., for the monitoring of the system by E. Nevertheless, in
the absence of any structure of E, this would still be insuffi-
cient to explain the emergence of a consensus about the state
of S. Measurements on the environment suffer from the same

basis ambiguity problems as direct measurements on the sys-
tem: they can be performed in arbitrary bases. Moreover,
they generally disturb the state of the environment, and
hence, the correlations between S and E. Unless all observers
had agreed to measure the environment in the same basis,
their subsequent measurements on the environment might
not yield consensus about the system, and one would not be
able to attribute “objective properties” to its state.

The solution to this puzzle becomes obvious after a close
inspection of how we learn about systems in the real world.
Not only do the independent observers gather information
about S indirectly by measuring the environment, but differ-
ent observers have access to disjoint fragments of E. By defi-
nition, when the same information about S can be discovered
from different fragments, it must have been imprinted in the
environment redundantly. In addition, when many disjoint
fragments of the environment contain information about the
state of the system, its properties can be found out by differ-
ent observers without the danger of invalidating each other’s
conclusions. This is because observables acting on disjoint
fragments of E always commute with each other. Hence, the
first two requirements for objectivity are satisfied.

Moreover, and this is a crucial result of our study, we will
demonstrate that redundant imprinting in the environment
selects a preferred set of system observables. In particular,
for obvious reasons �23� the environment-promoted amplifi-
cation of information required to arrive at a redundant im-
printing cannot amount to cloning. Amplification comes at
the price of singling out commuting system observables. As
a consequence, even initially ignorant observers performing
arbitrary measurements on their fragments of E will find out
only about this unique observable. Selectivity of amplifica-
tion establishes that redundant imprinting in the environment
is a sufficient requirement for the emergence of classical ob-
jective reality. Thus, the state of the system is de facto ob-
jective when its complete and redundant imprint can be
found in E.

Quantum Darwinism makes novel use of information
theory by focusing on the communication capacity of the
environment. This approach complements the conventional
system-based treatments of decoherence. There, the environ-
ment is above all an information sink, a source of decoher-
ence responsible for irreversible loss of information
�4,8,9,24�. However, these two complementary approaches
do agree in their conclusions: as we will show, the pointer
observables singled out by einselection are the only ones that
can leave a redundant imprint on the environment. In part,
this can be understood as a consequence of the ability of the
pointer states to persist while immersed in the environment.
Moreover, in both approaches predictability of the preferred
states of the system �i.e., either from initial conditions, or
from many independent observations on E� is the key crite-
rion. This predictability is tied to the resilience that allows
the information about the pointer observables to proliferate,
very much in the spirit of the survival of the fittest, and
corroborates conjectures about the role of quantum Darwin-
ism in the emergence of objectivity we have described before
�10,20,21�.
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III. DEFINITIONS AND CONVENTIONS

In the setting we are considering, a system S with Hilbert
space HS interacts with an environment E with Hilbert space
HE. We denote the dimension of these state spaces by dS and
dE respectively. Furthermore, we assume that the environ-
ment is composed of N environmental subsystems
E1 ,E2 ,… ,EN �see Fig. 1�. That is, its Hilbert space has a
natural tensor product structure HE= �k=1

N HEk. This partition
plays an important role in our analysis, as it suggests a natu-
ral definition of the independently accessible fragments of E.
We will comment on it at the end of Sec. IV.

The joint quantum state of S and E is described by the
density operator �SE defined on HS � HE. The reduced state
of the system is obtained by tracing out the environment
�S=TrE��SE�. It will often be useful to consider the joint state
of the system and a fragment of the environment. Such

fragment—i.e., a subset of E= �E1 ,E2 ,… ,EN�—will be de-
noted by F. The reduced state of S and F is obtained by

tracing out the complement of F: �SF=TrF̄��SE�, where F̄
=E−F.

Following textbook quantum mechanics, we call an “ob-
servable of S” �resp. E� any Hermitian operator defined on
HS �resp. HE�. By convention, we will use the first letters of
the alphabet A ,B ,C to denote system observables while the
last letters X ,Y ,Z will be reserved for environment observ-
ables. Hermitian operators can be written in their spectral
decomposition, e.g.,

A = �
j

ajAj . �3�

Adding to our convention, observables are denoted by bold
capital letters, their eigenvalues by lowercase letters, and
spectral projectors by capital letters. Only the spectral pro-
jectors are of interest to us as they completely characterize
the measurement process, and the correlations between ob-
servables. We note that as we shall deal with Hermitian ob-
servables, coherent states that are the approximate pointer
states in many situations of interest �e.g., in underdamped
harmonic oscillators� are beyond the scope of our study.

We will use the words “system” and “environment” in a
very broad sense. Without loss of generality, we will suppose
that HS is the part of the Hilbert space of S containing the
degrees of freedom of interest. Even when the system is
macroscopic, e.g., a baseball, we are typically only interested
in a few of its degrees of freedom, e.g., center of mass, local
densities, etc. Moreover, the degrees of freedom of S that do
not couple to E �directly or indirectly� play no role in our
analysis. Hence dS can remain reasonably small even for
fairly large systems: dS is really the number of relevant dis-
tinct physical configurations of S. This considerably simpli-
fies the notation without compromising the rigor of our
analysis.

Similarly, it is not necessary to incorporate all the rest of
the Universe in E. N really counts the number of environ-
mental subsystems that may have been influenced by the
system: only they may contain information about S. Hence,
in many situations—such as a photon environment scattering
off an object—the “size” of relevant E can grow over time.

IV. INFORMATION

The approach to classicality outlined above is based on
the existence of correlations between S and its environment
that can be exploited by various observers to find out about
the system. As both S and E are quantum systems, quantum
information theory may appear to be the right tool to study
these correlations. This avenue has been considered in the
past �10,19� in parallel with the approach we pursue here and
in �20� and is currently also under investigation �25�. How-
ever, the emphasis here is on the observables, and informa-
tion about them is easier to characterize through the relevant
hypothetical measurements. As in �20�, we focus on what can
actually be found out about various observables of the sys-
tem by monitoring observables in fragments of the environ-
ment.

FIG. 1. The role and the structure of the environment in deco-
herence and in quantum Darwinism. �a� Decoherence treats the en-
vironment as a monolithic entity inaccessible to observers. The only
role of E is to be a sink of information about S. This is enough to
understand einselection—the emergence of the preferred pointer ob-
servable in the system, with decoherence-free pointer eigenspaces.
In our Universe �b� environments are typically not monolithic.
Rather, they consist of subsystems, e.g., atoms or photons. From the
point of view of decoherence, there is no difference between the
paradigms illustrated by �a� and �b�: The same environment will
lead to the same evolution of the system �e.g., in quantum Brownian
motion the same environment can be modeled either as a monolithic
field or as a collection of harmonic oscillators�. Quantum Darwin-
ism �c� recognizes that observers acquire their information about S
without interacting with it directly—from the imprints left by S on
the fragments of E. Such fragments are generally much smaller than
E. The central result of this paper is to show that the selected infor-
mation about the system that is inscribed redundantly—in many
copies—on the environment, and can be therefore found out inde-
pendently from different fragments of E by many observers, con-
cerns the einselected pointer observable.
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The core question we ask is the following: How much
does one learn about observable A by measuring a different
observable X? This question has an operational meaning. An
observer may be considering measurement of the observable
A, but cannot predict its outcome with certainty. To reduce
his ignorance, he can choose to measure a different observ-
able X. By doing so, he may decrease his uncertainty about
the value of A. The amount by which his uncertainty de-
creases is precisely the information gain we are going to
study. It represents the average number of bits required to
write down, in the most efficient way, the relevant data about
A acquired through the measurement of X.

We will mostly be interested in the case where A acts on
the system and X acts on a fragment of the environment—
which automatically implies that �A ,X�=0. However, we
will occasionally need to consider the correlations between
the measurements carried successively on the same system.
Hence, we present here the general case and return to the
special case of commuting observables in the next section.
Thus, A and X, with spectral projectors Ai and Xj, are arbi-
trary physical observables acting on an arbitrary system, in
the state described by the density matrix �. In the following
paragraph, there is no environment, just one system and two
observables that may or may not commute.

The observer’s uncertainty about the measurement out-
come of A is given by the corresponding Shannon entropy:

H�A� = − �
i

p�Ai�ln p�Ai� �4�

where the probability associated with the measurement out-
come i—with the spectral projector Ai—is given by Born’s
rule p�Ai�=Tr�Ai��. Entropy measures ignorance about the
value of A, the average number of bits missing to completely
determine its value. When the measurement of observable X
is performed and outcome Xj is obtained, the state of the
system is updated to

�→
Xj

��Xj
=

Xj�Xj

p�Xj�
�5�

according to the projection postulate of quantum theory �3�.
This state update changes the probability assignment of the
measurement outcomes of A:

p�Ai�Xj� = Tr�Ai��Xj
� =

Tr�AiXj�Xj�
p�Xj�

. �6�

It is customary to call p�Ai �Xj� “the conditional probability
of Ai given Xj” and similarly, ��Xj

is “the conditional state of
the system given Xj.”

Thus, when A is measured subsequently to X, the ran-
domness of its outcome will be characterized by

H�A�Xj� = − �
i

p�Ai�Xj�ln p�Ai�Xj� . �7�

The conditional entropy of A given X is the average of this
quantity over the measurement outcomes of X :H�A �X�
=� jp�Xj�H�A �Xj�. The difference between the initial entropy
of A and its entropy posterior to the measurement of X de-
fines the mutual information we shall use throughout:

I�A:X� = H�A� − H�A�X� . �8�

This is the average amount of information about A obtained
by measuring X.

In quantum mechanics, it is possible that a certain mea-
surement decreases one’s ability to predict the outcome of a
subsequent measurement, so mutual information is not nec-
essarily positive. This is in fact the reason why direct mea-
surements on the system cannot be used to arrive at a con-
sensus about the state of the system. A direct measurement
by one observer will invalidate the knowledge acquired by
another when their measurements do not commute. However,
this disturbance can be avoided when the measurements are
carried out on different subsystems, since the observables
commute automatically. The mutual information between
such observables has extra properties that we shall now de-
scribe.

A. Correlations between system and environment

Let us now consider the case where A acts on S and X on
E, or on a fragment F of E. As �A ,X�=0, the order in which
the measurements are carried out does not change the joint
probability distribution p�Ai ,Xj�=Tr�AiXj�Xj�=Tr�XjAi�Ai�.
It follows from Eqs. �5�–�8� that the mutual information de-
fined above can be written in an explicitly symmetric form:

I�A:X� = �
ij

p�Ai,Xj�ln
p�Ai,Xj�

p�Ai�p�Xj�
�9�

=H�A� + H�X� − H�A,X� . �10�

The amount of information about A that is obtained by mea-
suring X is equal to the amount of information gained about
X by measuring A, and is always positive. In this special
case, there is a nice diagrammatic representation of the in-
formation theoretic quantities, shown on Fig. 2.

Of particular interest to us is the maximum amount of
information about observable A of S that can be gained by
measuring a fragment F of the environment. This is defined
as

ÎF�A� = max
X�MF

I�A:X� �11�

where MF is the set of measurements acting on F only, i.e.,

the set of Hermitian operators that act trivially on HF̄

= �Ek�F̄HEk. The hat above is to emphasize that it is the
maximum amount of information.

In particular, the maximum amount of information about
the system observable A that can be retrieved from the entire

environment is denoted by ÎE�A�. This quantity plays a cru-

cial role in our analysis as only when ÎE�A��H�A� can we
hope to find out about A by probing the environment: the

amount of information in the environment, ÎE�A�, must be
sufficiently large to compensate for the observer’s initial ig-
norance, H�A�, about the value of A.
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B. Redundancy of information in the environment

When ÎE�A��H�A�, the value of A can be found out
indirectly by probing the environment. However, as noted in
Sec. II, for many observers to arrive at a consensus about the
value of an observable A, there must be many copies of this
information in E. As a consequence, independent observers
will be able to perform measurements on disjoint subsets of
the environment, without the risk of invalidating each other’s
observations.

Redundancy is therefore defined as the number of disjoint
subsets of the environment containing almost all—all but a
fraction �—of the information about A present in the entire
environment. Formally, let F1 ,F2 ,… ,FR be R disjoint frag-
ments of the environment, Fi�F j =� for i� j. Then,

R��A� = max
�Fj�

�R:ÎFj
�A� � �1 − ��ÎE�A�, ∀ j = 1,…,R�

�12�

where the maximization is carried over all partitions of
�E1 ,E2 ,… ,EN� into disjoint subsets. Clearly, for any observ-
able A ,1	R��A�	N. Redundancy simply counts the num-
ber of copies of the imprint of A in E, and hence the maxi-
mum number of observers that can independently find out
about A from E.

C. Fragments of the environment and elementary subsystems

Before closing this section, we wish to emphasize the
distinction we are making between fragments of E and el-
ementary subsystems, and comment on the role they play in
using environment as a witness. The elementary subsystems
of E are defined through the natural tensor product structure

of HE. We assume this structure to be given and fixed. In the
case of a photon environment for instance, an elementary
subsystem could consist of a single photon. A fragment of E
on the other hand is a collection of such elementary sub-
systems. For example, while no single photon can reveal the
position of an object, a small collection of them, say 1000,
may be enough to do so.

The optimization over partitions of the environment ap-
pearing in Eq. �12� is necessary to arrive at a proper math-
ematical definition of redundancy as there is no a priori pre-
ferred partition. This will allow us to derive very general
consequences of redundancy, at the price of some technical
�and perhaps also conceptual� complications. However, for
the purposes of the emergence of a consensus among several
observers—in essence an operational objective reality—this
partition should reflect the distinct fragments of environment
accessible to the different observers. While our results hold
for any such partition of the environment into disjoint sub-
systems, Nature ultimately determines what part of E is
available to each observer.

The entire environment as a witness approach—and more
precisely the very concept of redundancy—capitalizes on the
fact that the environment has a tensor product structure HE

= �Ek
HEk. This raises the obvious question of who decides

what are the elementary subsystems of E. Our primary con-
cern here is to provide a mechanism by which quantum sys-
tems can exhibit objective existence, the key symptom of the
classical behavior. As we will demonstrate, this can be
achieved given that the environment has a partition into sub-
systems, regardless of what these subsystems are. Hence,
what really matters is that various observers monitor differ-
ent fragments of the environment. As long as this require-
ment �which guarantees that the observables they measure
commute� is satisfied, their definition of subsystems of E
need not coincide. Section V will present unavoidable con-
sequences of this fact, without paying attention to the defi-
nition of the environmental subsystems. Thus, our most im-
portant conclusion—that redundancy implies selection of
preferred observables—is independent of any particular
choice of a tensor product in the environment.

However, different tensor product structure of the envi-
ronment can a priori yield different redundantly imprinted
observables since redundancy itself makes reference to the
tensor product structure. There is no definite answer to what
defines an elementary environmental subsystem, but some
considerations point toward “locality” as a judicious guide-
line. For instance, particles are conventionally defined by the
symmetries of the fundamental Hamiltonians of Nature, that
are local. When we choose the particles of the standard
model as the elementary subsystems, we are naturally led to
local couplings between S and E. They will determine how
the information is inscribed in E. After all, there is no infor-
mation without representation. Moreover, the information ac-
quisition capacities of the observers are also ultimately lim-
ited by the fundamental Hamiltonians of Nature. The
different observers occupy, and therefore monitor, different
spatial regions. Therefore, the monitored fragments Fi enter-
ing in the definition of redundancy—as well as the elemen-
tary subsystems Ek composing them—should reflect these
distinct spatial regions.

FIG. 2. Venn diagram for classical information. H�A� is the
entropy associated with a measurement of A: it is the information
needed to completely determine its outcome. H�X� is the same
quantity for the observable X. H�A ,X� is the joint entropy of A and
X. H�A �X� is the average uncertainty about A remaining after a
measurement of X. The information learned about A by measuring
X is thus I�A :X�=H�A�−H�A �X�. The equivalent definition
I�A :X�=H�A�+H�X�−H�A ,X� can also be understood from the
diagram. These two definitions of the mutual information are
equivalent �26� when probabilities can be consistently assigned to
the outcomes of all the possible measurements of A and X both
separately and jointly: this is ensured when A and X commute.
They need not coincide otherwise.
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The fact that some division of the Universe into sub-
systems is needed has been pointed out before. Indeed, the
measurement problem disappears when the Universe cannot
be divided into subsystems �10,11,17�. Therefore, assuming
that such division exists in the discussion of the information-
theoretic aspects of the origin of the classical does not seem
to be a very costly assumption.

V. CONSEQUENCES OF REDUNDANCY

We now have all the necessary ingredients to study the
consequences of the existence of redundant information
about the system in the environment. Here, we derive several
properties of the system’s redundantly imprinted observ-
ables, as well as properties of the environmental observables
revealing this information. While each of these results is in-
teresting in its own right, our ultimate goal is to combine
them and to show that the redundancy singles out a preferred
set of commuting observables, the already familiar pointer
observables. Throughout this section, we assume the exis-
tence of a perfect and redundant record of the system observ-

ables A ,B ,C,… in the environment, i.e., ÎE�A�=H�A� and
R�=0�A�
1, and similarly for B ,C,…. The general case of
imperfect imprints will be addressed in the next section. Let
us begin by studying the consequences of the existence of a
record about the value of A in the environment.

Lemma 1. ÎF�A�=H�A�, if and only if there exists an ob-
servable X��MF for which H�A �X��=0 and H�X� �A�=0.
The measurement of X� on a fragment of the environment
reveals all the information of the system observable A, and
vice versa.

Proof. When observable A is completely encoded in a

fragment of the environment, ÎF�A�=H�A�, there exists X
�MF for which I�A :X�=H�A�, which implies H�A �X�=0.
As noted in Sec. IV A, the mutual information between A
and X is symmetric when these observables act on distinct
systems, i.e., S and F. Therefore, measuring A directly on
the system provides an amount of information I�A :X�
=H�A� about the value of X, thereby decreasing its entropy
to H�X �A�=H�X�−H�A�. In general, this is not all the in-
formation about X, as H�X� may be larger than H�A� :X
reveals all of the information about A but the reverse is in
general not true. However, by picking a suitable coarse
graining X� of X, it is always possible to establish the duality
H�A �X��=0 and H�X� �A�=0.

This can be seen quite simply. The equality H�A �X�=0
implies that given Xj ,Ai is determined: each measurement
outcome of X points to a unique measurement outcome of A.
This defines a map f :Xj→Ai. Such a map may not be one to
one, so the conditional probability p�Xj �Ai� of Xj given Ai is
not necessarily deterministic. However, we can construct the
coarse-grained projectors

Xi� = �
j:f�Xj�=Ai

Xj �13�

by regrouping the Xj in the preimage of Ai. The outcome of
the associated measurements X� are therefore in one-to-one

correspondence to the outcomes of A, yielding the stated
duality. The converse is trivial with X=X�. �

An important corollary can be derived from Lemma 1 and
the following observation: when the outcome of a projective
measurement on a system is deterministic, the act of measur-
ing does not modify the state of the system.

Corollary 1. Measurements of A and X� have exactly the
same effect on the joint state of the system and the environ-
ment:

Xj��
SEXj� = AjXj��

SEXj�Aj = Aj�
SEAj , �14�

which implies �
�X̃j

SE
=��Aj

SE.

The contents of Lemma 1 and Corollary 1 formalize our
intuitive understanding of the existence of a perfect record of
the information about A in E: it allows perfect emulation of
the direct measurement A by the indirect measurement X�.
This emulation is not only perfect from the point of view of
its information yield, it also has the same physical effect on
the state of SE. This can be regarded as an illustration of the
fact that “information is physical” �27�: whenever the same
information can be retrieved by two different means, the dis-
turbance on the quantum state can be identical.1 Here, the
measurement of X can in principle yield more information
than the direct measurement A itself, e.g., A may be a very
coarse-grained observable. This is why it is in general nec-
essary to coarse-grain X in order to obtain equivalent infor-
mation, and therefore the same physical effect.

Lemma 2. When ÎF�A�=H�A�, the observable A com-
mutes with the reduced density matrix of the system,
��S ,A�=0.

Proof. Following Lemma 1 and Corollary 1, there exists
X��E for which Xj��

SEXj�=Aj�
SEAj. The reduced state of the

system can be therefore written as

�S = TrE��SE� �15�

=�
j

TrE�Xj��
SEXj�� �16�

=�
j

TrE�Aj�
SEAj� = �

j

Aj�
SAj , �17�

so �S is block diagonal in the eigensubspaces of A. �
The relation between decoherence and the existence of an

environmental record has been pointed out and investigated
in the past �4,12,17–19,29–31�. The above lemma confirms
that whenever the environment acquires a single copy of the
information about A, the state of S decoheres with respect to
the spectral projectors Ai of A. This decoherence-induced
diagonalization of the reduced state has additional important
implications when the information about the system is en-
coded redundantly in the environment.

Corollary 2. Let A be a system observable redundantly

1In the theory of generalized measurements �28�, one can in prin-
ciple make a measurement that yields no information whatsoever,
yet greatly disturb the system; hence the emphasized “can” in the
above sentence.
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imprinted in E, and let X� be the coarse-grained observable
of the fragment F of the environment that contains all the
information about A �as constructed in Lemma 1�. Then the
reduced state �SF commutes with both A and X�: the corre-
lations between these observables are classical.

Proof. By assumption A is redundantly imprinted in E.
Thus, its value can be inferred by independent measure-
ments, say X and Y, acting on two distinct fragments of the

environment, F and F̄=E−F, respectively. Following
Lemma 1, we can construct a coarse-grained observable X�
which retains essential correlations to A and with the prop-
erty that H�X� �A�=0—a measurement of A on S reveals all
the information about X�. As a consequence, the measure-

ment Y on F̄ that reveals all the information about A must
also reveals all the information about X�. Hence, Corollary 2
follows from Lemma 2.

We will now characterize the class of system observables
that can be redundantly imprinted in the environment. When
A and B are redundantly imprinted in E and redundancy is
sufficiently high, their value can be inferred from disjoint
fragments of the environment. This implies the following
relation between any redundantly imprinted observables.

Lemma 3. Let F be a fragment of the environment con-
taining a copy of the information about A. When the rest of

the environment F̄ contains a copy of the information about
B, then A and B necessarily commute on the support of �S.

Proof. The assumptions of Lemma 3 imply the existence
of two environmental observables X and Y acting on disjoint

fragments of the environment F and F̄ for which H�A �X�
=0 and H�B �Y�=0. Following the procedure of Lemma 1,
we can coarse-grain these two observables into X� and Y�
that are in one-to-one correspondence with A and B, respec-
tively. The observables X� and Y� obviously commute with
each other as they act on disjoint fragments of E, and also
commute with the system observables A and B. Then, by
Corollary 1, we have

AiBj�
SEBjAi = AiY j��

SEY j�Ai

= Y j�Ai�
SEAiY j�

= Y j�Xi��
SEXi�Y j�

= Xi�Y j��
SEY j�Xi�

= Xi�Bj�
SEBjXi�

= BjXi��
SEXi�Bj

= BjAi�
SEAiBj ,

proving the lemma. �
The above lemma states that it is impossible to acquire

perfect information about two noncommuting observables by
measuring two disjoint fragments of E simultaneously. This
is reminiscent of the Heisenberg indeterminacy principle.
However, in spite of this similarity, these two results differ in
the precise setting in which they hold. Heisenberg principle
asserts that it is impossible to know simultaneously the val-
ues of two noncommuting observables of an otherwise iso-
lated system. In our lemma, the system is already correlated

with its environment, and the observer is trying to find out
about the value of two observables using these correlations.
In other words, Heisenberg indeterminacy concerns informa-
tion about the system before it interacted with E, while
Lemma 3 focuses on the information about S that is present
in E after their interaction.

This difference illustrates the nature of our operational
approach: we are describing the physical properties of an
open quantum system, hence we focus on information about
its present state, not on what it was prior to the interaction
with E. Decoherence happens, so we are dealing with it.2

We can derive a similar result for the commutation of
environmental observables.

Lemma 4. Let F be a fragment of the environment con-
taining information about both A and B, two commuting sys-
tem observables. Then, there exist two observables X� and
Y��MF that commute on the support of �SE and reveal all
the information about A and B, respectively.

Proof. The assumptions of Lemma 4 imply the existence
of X and Y�MF such that I�A :X�=H�A� and I�B :Y�
=H�B�. Following the procedure of Lemma 1, X and Y can
be coarse grained to X� and Y� while retaining all the essen-
tial correlations to A and B. Since A and B commute, the
proof of Lemma 3 can be applied here, yielding the desired
result. �

Given these properties of redundantly imprinted observ-
ables, we can now state a very important result, which es-
sentially ensures the uniqueness of redundantly imprinted
observables.

Theorem 1. Let B and C be two system observables re-
dundantly imprinted in the environment, and let
F1 ,F2 ,… ,FR be R�2 disjoint fragments of E, each con-
taining a copy of the information about B and C. Then, there
exists a refined system observable A satisfying

�1� ÎE�A�=H�A�,
�2� R0�A��R,
�3� H�B �A�=0 and H�C �A�=0.
Proof. The assumptions of the theorem imply the exis-

tence of YFn and ZFn �MFn
for which H�B �YFn�=0 and

H�C �ZFn�=0 for all n=1,… ,R. By Lemma 3, B and C must

2To fully grasp the distinction between these two settings requires
a somewhat technical discussion. Assume that the system and envi-
ronment are initially in the uncorrelated state �SE�0�=�S�0�
� �E�0�. They interact for a time t, yielding the joint state �SE�t�
=USE�SE�0�USE† where USE=exp�−iHSEt�. When a measurement X
is carried on the environment and outcome j is observed, the con-
ditional state of the system will be

��Xj

S �t� =
TrE�Xj�

SE�t�Xj�
p�Xj�

.

According to the generalized theory of measurement �28�, this can
be described as a positive operator valued measure �POVM� acting
on the initial state of the system, �S�0�. Formally, there exists a set
of operators Aij acting on HS such that ��Xj

S �t�=�iAij�
S�0�Aij

† . How-
ever, it does not correspond to any kind of measurement acting on
�S�t�, the state of the system after it has interacted with E �see, for
example, �32� Eq. �100��. Our lemma applies also to this type of
information gathering processes that cannot be described within the
POVM formalism.
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commute as they can be inferred from disjoint fragments of
the environment. This fact, together with Lemma 4, implies
that there exist commuting coarse-grained observables Y�Fn

and Z�Fn �MFn
that reveal all of the information about B

and C, respectively. The observables B and C can be merged
into a more refined observable A with spectral projectors
given by the product of the spectral projectors of B and C:

Aij = BiCj . �18�

As Bi and Cj commute, the operators Aij form a complete set
of mutually orthogonal projectors. Similarly, the environ-
ment observables Y�Fn and Z�Fn can be merged into a more
refined observable XFn with spectral projectors Xij

Fn

=Yi�
FnZj�

Fn. A measurement of XFn on Fn reveals all the in-
formation about A. Indeed, following Corollary 1,

p�Ai�j��Xij
Fn� =

Tr�Ai�j�Xij
Fn�SEXij

FnAi�j��

Tr�Xij
Fn�SEXij

Fn�

=
Tr�Bi�Cj�Yi�

FnZj�
Fn�SEZj�

FnYi�
FnCj�Bi��

Tr�Yi�
FnZj�

Fn�SEZj�
FnYi�

Fn�

= �ii�� j j�

which implies H�A �XFn�=0. This automatically implies

ÎFn
�A�=H�A� and, since the above holds for all n=1,… ,R,

we have R0�A��R. Finally, note that Bi=� jAij and Cj

=�iAij; B and C are obtained by coarse-graining A. There-
fore, a measurement of A reveals all the information about B
and C, hence completing the proof. �

The meaning of this theorem is that whenever more than
one observable can be redundantly inferred from a fixed set
of disjoint fragments of E, they necessarily correspond to
some coarse-grained version of a maximally refined redun-
dantly imprinted observable A. The modus tollens of this
theorem is also very enlightening. Given a decomposition of
E into fragments and the associated maximally refined redun-
dantly imprinted observable A, the only observables B that
can be completely and redundantly inferred from these frag-
ments of E are those for which I�B :A�=H�B�. The value of
B must be entirely determined by a measurement of the
maximally refined A. This is obviously a sufficient condi-
tion: if a direct measurement of A reveals all the information
about B and A is redundantly imprinted in E, then so is B.
Theorem 1 shows that this requirement is also necessary.

Note that the proof relies only on a redundancy greater
than 2 and on a fixed decomposition of E into disjoint frag-
ments from which B and C are inferred. Relaxing this last
assumption raises the possibility that different decomposi-
tions lead to incompatible maximally refined redundant ob-
servables. Figure 3 represents two decompositions of E into
fragments for which the corresponding maximally refined
redundantly imprinted observables could not be compared
through the above theorem. However, this possibility is ruled
out when redundancy is high.

Theorem 2. Let B and C be two system observables both
highly redundantly encoded in E, such that R0�B��R0�C�
�N. Then, �B ,C�=0 on the support of �S.

Proof. By the assumptions of the theorem, there exists a

fragment F of size at most N /R0�B� containing all informa-
tion about B. Since R0�C��N /R0�B�, there exists a fragment
F� disjoint from F, i.e., F�F�=�, that contains all infor-
mation about C. By Lemma 3 we have �B ,C�=0. �

It is intriguing to note that—in view of the above
discussion—large redundancy implies R�	N. Theorems 1
and 2 prove our claim of Sec. II. Redundant spreading of
information comes at the price of singling out a preferred set
of commuting observables: those obtained by coarse-
graining maximally refined redundantly observables.

So far, we have not considered any dynamical evolution
of the system and environment: we have focused on the cor-
relations present at a fixed time without paying attention to
how they arise. We studied consequences of regarding envi-
ronment as a witness �and interrogating it about the state of
the system�, but we haven’t yet enquired about the dynamics
that allowed the environment to acquire this information in
the first place. Ultimately, it is the coupling Hamiltonian be-
tween S and E which establishes these correlations. The cou-
pling is also responsible for the emergence of preferred sys-
tem observables—the pointer observables—that are least
affected by the openness of the system. Thus, as in the case
of einselection of the pointer states, the connection between
the emergence of an objective reality and the selection of
preferred observables has to be ultimately traced to the dy-
namics responsible for the “environmental monitoring” of S
by E—i.e., through dynamical considerations. When the cor-
relations between maximally refined observables and frag-
ments of the environment persist in time, Lemma 2 and
Theorems 1 and 2 imply the following conclusion.

Corollary 3. Highly redundantly imprinted observables
are the system’s pointer observables.

In other words, under the idealized assumption of perfect
records we have demonstrated that only the already familiar
pointer observables can leave a redundant and robust imprint
on E. Corollary 3 can be understood as a consequence of the
ability of the pointer states to persist while immersed in the

FIG. 3. Suppose B and C are redundantly imprinted in the en-
vironment, but are associated, respectively, with decompositions �a�
and �b�, represented by different arrangements of the subsystems of
E into fragments. Then, from Theorem 1 one cannot yet conclude
that there exists a maximally refined observable A from which both
B and C can be inferred. This is because the two decompositions do
not match. However, when the redundancy of B and C satisfies
R0�B�R0�C��N, then Theorem 2 proves that the maximally refined
observables obtained for each decomposition of E into fragments
must commute �i.e., they are compatible�.
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environment. This resilience allows the information about
the pointer observables to proliferate, very much in the spirit
of the Darwinian survival of the fittest. This, along with other
facts, will be illustrated on a dynamical model in the next
section.

VI. QUANTUM DARWINISM: DYNAMICAL
EMERGENCE OF OBJECTIVITY

It should by now be clear that the presence of redundant
information in the environment imposes severe physical con-
straints on the state of the system. Surprisingly, the deriva-
tion of these important facts required little physics—most of
them followed from information-theoretic arguments, once
again illustrating that information is physical. One could sum
up our conclusions by noting that the environment can be a
perfect witness—with multiple perfect records—but only for
one set of commuting observables defined by the perfect
maximally refined pointer observables. Such perfection will
generally be only approximated in the real world. It is there-
fore important to investigate the situation where multiple, yet
imperfect, copies arise through the dynamics. To this end we
shall consider selective proliferation of information in a
simple model that exhibits quantum Darwinism.

By focusing on the dynamics of SE rather than on their
state we will be able to extend our analysis. In particular, we
will show that when the imprints of the objective observable

are nearly perfect—i.e., ÎE�A�� �1−�H�A� and R��A��1
for �1 and ��1 finite but small—the conclusions ob-
tained earlier still hold. Above all, along the lines of Theo-
rem 1, there exists a unique maximally refined observable
whose information is the only one available in fragments of
E. Finally, we will be able to specify the optimal measure-
ment to be performed on fragments of E to learn about the
system. This is a considerable improvement over the result of
the last section where, in the absence of any model Hamil-
tonian, we could only demonstrate the existence of such a
measurement.

A. Dynamics of quantum Darwinism and decoherence

The model we consider is a generalization of the simple
early model of decoherence put forward in �12� and
throughly investigated as a tractable, yet nontrivial, paradigm
for decoherence: despite its simplicity, it captures the essence
of einselection. Hence, our simple model serves as a special
case that sets a conceptual framework for the study of more
sophisticated models, such as a photon environment scatter-
ing on an object and carrying away potential visual data. As
any specific model, it requires some fairly specific assump-
tions. We shall consider their role in the next section and
discuss the extent to which relaxing some of these assump-
tions affects our conclusions.

A system S is coupled to an environment E= �E1 ,… ,EN�
through the Hamiltonian:

HSE = �
Ek�E

A � ZEk, �19�

where A and ZEk are operators acting on S and Ek, respec-
tively. The joint initial state of the system and the different

environmental subsystems is assumed to be a pure product
state:

��SE�0�� = ��S� � ��E1� � ��E2� � ¯ . �20�

Hence, before the interaction, there is no correlation between
the system and the environment, nor among the environmen-
tal subsystems.

A convenient way of writing ��S� in view of expressing
the time evolution of the joint state of SE is to decompose it
in an eigenbasis �i� of A �A�i�=ai�i��:

��S� = �
i

�i�i� . �21�

Without loss of generality, we can assume that the vectors �i�
with nonzero coefficients �i in Eq. �21� are associated with
distinct eigenvalues ai of A. This can be done by choosing
appropriate bases for the degenerate eigenspaces of A. Thus,
after an interaction time t with the N subsystems of the en-
vironment, the joint state of SE evolves into

��SE�t�� = �
j

� j�j��
Ek�E

e−itajZ
Ek��Ek� �22�

=�
j

� j�j��
Ek�E

�� j
Ek� , �23�

where we have defined �� j
Ek�=e−itajZ

Ek��Ek�.
In the following sections, we will analyze the correlations

between the system S and the “observed” part of the envi-
ronment F. For example, in the case of a photon environ-
ment scattering on an object, F is the set of photons that hit

the observer’s retina, while F̄ represents those photons that
have scattered on S but that are not intercepted by the ob-
server. Equation �23� allows us to compute the state of S and
F:

�SF = �
ij

�i� j
*�i�
j� � ��i

F�
� j
F� � �ij

F̄, �24�

where

�� j
F� = �

Ek�F
e−itajZ

Ek��Ek� = �
Ek�F

�� j
Ek� , �25�

and �ij
F̄=Ek�F̄
� j

Ek ��i
Ek�= 
� j

F̄ ��i
F̄�. Similarly, the reduced

state of the system at time t reads

�S = �
ij

�i� j
*�i�
j� � �ij

E , �26�

where �ij
E =Ek�E
�Ek�e−it�ai−aj�Z

Ek��Ek�. Above, the �’s are
called the decoherence factors.

Except in carefully controlled experiments—where the
system can be very well isolated from its environment—the
number of environmental subsystems interacting with S is
huge. In this case, the �ij

E’s will be typically very small for
i� j. Each environmental subsystem contributes a factor

�Ek�e−it�ai−aj�Z

Ek��Ek� to �ij
E , so unless ��Ek� is an eigenstate of

ZEk —in which case Ek is effectively decoupled from the
system—this strictly decreases the decoherence factor.
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Hence, �ij
E goes to �ij as N increases. To be more specific,

when the initial states of the environmental subsystems are
distributed uniformly at random, the decrease of �ij

E is expo-
nential with N and typically Gaussian with time �33�.

This reasoning also applies to the decoherence factors �ij
F̄:

they tend to zero for i� j as the number of unobserved en-
vironmental subsystems increases. Even though a consider-
able number of the environmental subsystems can be inter-
cepted by the observer, an even larger fraction will usually

escape his monitoring. Thus, the �ij
F̄’s will also typically be

very small for i� j.
We have numerically studied a version of this model �the

case of two dimensional system and environmental sub-
systems� in �20�. Our results indicate that for sufficiently
large environment, several system observables can become
nearly perfectly imprinted in the environment �see Fig. 1�a�
of �20��. However, the results also clearly show that only
those observables very “close” to the pointer observable can
leave a redundant imprint in the environment �see Fig. 1�b�
of �20��. The information about the other system observables
can only be accessed by measuring the entire environment:
their value cannot be learned from small fragments of E. In
what follows, we will derive these facts analytically.

B. Decoherence: The focus on the system

In order to contrast the environment as a witness approach
to classicality as well as to illustrate significance of the dy-
namics that leads to quantum Darwinism, we will now re-
view some results that were obtained using more conven-
tional approaches. Thus, we will abandon for a moment the
study of correlations between S and parts of the environment
to focus uniquely on the state of the system, as is done in the
the standard studies of decoherence �8,9�.

We see from Eq. �26� that the off-diagonal terms of the
system’s density matrix tend to be very small when ex-
pressed in the �i� basis. It is therefore natural to expect that
these are the quasi-classical states of the system: the cou-
pling to the environment suppresses quantum superpositions
of the states �i�. Of course, the exact instantaneous diagonal
basis of �S might differ from �i�, especially when the coeffi-
cients � j of the system’s initial state Eq. �21� are almost
equal. Hence, for someone focused on the instantaneous state
of the system, it may not be clear why the basis �i� deserves
any special attention in spite of the existence of small—yet
nonzero—off-diagonal elements for �S. However, a simple
analysis shows that the basis �i� is the only basis for which
all off-diagonal terms tend to zero independently of the ini-
tial state of the system, and, thus, retain correlations with the
rest of the Universe. This ability to retain correlations is
behind the predictability of the pointer states—it is in fact
their defining feature �see �4,12� for the initial formulation,
and �10,11,34� for a recent re-assessment�.

Persistence of correlations implies continued existence of
the states �10,18�. Independence of the pointer states from
the initial state of the system is obviously a very important
property of the to-be-classical states: the quasiclassical do-
main must be independent of the initial state of the system—
e.g., the set of the pointer states of the apparatus should not

depend on the state of the measured quantum system. When
the system is initially prepared in one of the states �i�, it will
not be affected by the interaction with the environment:
pointer states are stable. In more general cases �more com-
plicated interactions, etc.�, the above simple analysis cannot
be carried out, and one usually relies on the predictability
sieve �8,9,17,24� to find the pointer basis. Predictability sieve
seeks most predictable initial states—states that produce the
smallest amount of entropy over time while subject to inter-
action with the environment.

C. Perfect correlations

We now return to the study of the correlations between S
and fragments of the environment. Our goal is to characterize
what kind and how information is stored in the environment
when it is redundant. To be more precise, we will analyze the
structure of information in a fragment F of E under the as-

sumption that the rest of the environment, i.e., F̄=E−F, con-
tains at least one additional copy of this information. Our

demand that both F and F̄ contain a copy of the information
ensures a minimum redundancy of R�2 which—although
insufficient to ensure the emergence of a consensus about the
properties of S among many observers—is enough to
rederive most of the results established in Sec. V.3 In addi-
tion, we will be able to specify optimal measurement strate-
gies on F, the fragment of E accessible to the observer, for
inferring any kind of information about S.

To build our intuition, it is enlightening to first consider

the limiting case �ij
F̄=�ij

F=�ij, where �ij
F= 
�i

F �� j
F�. We re-

turn to the general case in Sec. VI D. Following the general
argument of Sec. VI A, perfect correlation will be recovered
when the environment is infinite. In our analysis, this condi-
tion reflects the physical assumption that both the observed
and the unobserved fragments of E are very large. It is also
possible to obtain perfect correlations in much smaller sys-
tems when the dynamics is fine-tuned so that the resulting
state is Greenberger-Horne-Zeilinger-like. In either case, the
density matrix of S and F reads

�SF = �
i

��i�2�i�
i� � ��i
F�
�i

F� �27�

where the ��i
F�’s are mutually orthogonal. Note that � and

the ��i
F�’s of Eqs. �24� and �25� have been replaced respec-

tively by � and ��i
F�’s to emphasize �ij

F=�ij.
Consider the observable X�MF that perfectly distin-

guishes between the orthogonal states ��i
F�:

X = �
i

xi��i
F�
�i

F� = �
i

xiXi. �28�

Following Eq. �5�, the state of the system after a measure-
ment of X on F with outcome Xj is

3In this toy model, all the environmental subsystems couple to the

system in the same way, so only the size of the fragments F and F̄
matters. Thus, complications illustrated in Fig. 3 and analyzed in
Theorem 2 do not occur, and redundancy R�2 is indeed sufficient
to establish uniqueness of the preferred observable.
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��Xj

S = TrF���Xj

SF� =
TrF�Xj�

SFXj�
p�Xj�

= �j�
j� . �29�

This is the same as the state of S after a direct measurement
of A with outcome Aj ,��Xj

S =��Aj

S . Thus, a subsequent mea-
surement of A on the system yields outcome Ai with cer-
tainty, so H�A �X�=0. The same conclusion can be reached

for a measurement acting on F̄: thus, A is encoded redun-
dantly in E �there are at least two copies�. As a consequence,
all the results of Sec. V �with the exception of Theorem 2�
hold. It is however instructive to derive them directly for our
specific model, without appealing to the general lemmas.

As seen from Eq. �29�, the indirect measurement X per-
fectly emulates the direct measurement A on the system.
Consequently, all the information about the observable A can
be extracted by the measurement X on the environment. In
addition, we clearly see the no information–no disturbance
principle at work: once the outcome of X is known, measur-
ing A directly does not disturb the state of the system any
further, as the measurement of X “projects” the system in an
eigenstate of A �see Corollary 1�. Averaging over the mea-
surement outcomes of X yields the reduced density matrix of
S, which is a mixture of the eigenstates of A, so ��S ,A�=0
as specified by Lemma 2.

Specifying the Hamiltonian responsible for the correla-
tions between S and its environment allows one to go be-
yond the purely information-theoretic analysis of Sec. V.
Given the explicit form of the density matrix �SF, we can
address more interesting questions such as: what is the opti-
mal measurement Y on F that yields the largest amount of
information about a given system observable B? In fact, it
turns out that X is the optimal measurement on F to find out
the value of any system observable B. Regardless of what we
wish to learn about the system, the optimal strategy consists
in measuring X on F:

I�B:X� � I�B:Y� �30�

for all B�MS and Y�MF. Similarly, when a nonoptimal
measurement Y is carried on F, it is always primarily corre-
lated with the pointer observable A. In other words, when a
measurement Y is carried on a fragment of the environment,
it always reveals more information about the pointer observ-
able A than any other system observable:

I�A:Y� � I�B:Y� �31�

for all B�MS and Y�MF.
Let us prove these two very important assertions. First,

note that following Eqs. �8� and �10�, the mutual information
between any system observable B and environmental observ-
able Y takes the following form:

I�B:Y� = H�B� − H�B�Y� �32�

=H�Y� − H�Y�B� . �33�

When B is a fixed system observable, maximizing I�B :Y�
amounts to minimizing H�B �Y�. To do this, consider the
conditional state ��Yi

S of the system given a measurement out-

come Yi on F. Simple algebraic manipulations can be used to
show that

��Yi

S =
TrF�Yi�

SFYi�
p�Yi�

= �
j

p�Xj�Yi���Xj

S . �34�

We see that ��Yi

S is a convex combination of the ��Xj

S . �This is
no coincidence: it follows from Corollaries 1 and 3 and the
existence of information about A, and hence about X, in the

rest of the environment F̄.� Hence, the inequality of Eq. �30�
follows from the convexity of entropy �cf. Proposition 4�.
Similarly, when Y is a fixed measurement on F, maximizing
I�B :Y� amounts to minimizing H�Y �B�. We can consider the
state of F following a measurement of B on S

��Bi

F =
TrS�Bi�

SFbi�
p�Bi�

= �
j

p�Aj�Bi���Aj

F , �35�

a convex combination of the states of F conditioned on a
measurement of A on S. Again, the inequality Eq. �31� fol-
lows from convexity of entropy �cf. Proposition 4�.

By combining Eq. �30� with the fact that measuring X
perfectly emulates the direct measurement A on S, we get
the following equality:

ÎF�B� = I�B:A� . �36�

The information about B accessible from the fragment F is
inherently limited by its correlation with the maximally re-
fined observable A. The only assumption required to arrive
at this important equality is that correlations with both the
observed and the unobserved parts of the environment im-

pose �ij
F=�ij

F̄=�ij. This requirement is, according to Corollary

2, equivalent to saying that both F and F̄ contain a perfect
copy of the information about A.

The consequences of Eq. �36� can be better appreciated
once we recognize that it allows to evaluate the redundancy
for any system observable straightforwardly. When the value
of B can be deduced from knowledge of the value of A, then
each fragment of E containing information about A will in-
evitably contain information about B. Formally,

I�B:A� � �1 − ��ÎE�B� ⇒ R��B� � R�=0�A� . �37�

On the other hand, when the value of B cannot be deduced
from knowledge of A, B cannot be redundant:

I�B:A� � �1 − ��ÎE�B� ⇒ R��B� = 1. �38�

This is because Eq. �36� holds as long as F̄ contains infor-

mation about A. To have ÎF�B�� ÎE�B�, forces to take F̄
small enough so that it does not contain much information

about A. By virtue of Eq. �30�, F̄ also contains little infor-
mation about B, implying R��B�=1.

Note that these results can also be derived with the help of
the data processing inequality �see Proposition 5�. In effect,
the update rule of Eq. �5� shows that the sequence of mea-
surements B ,A ,X ,Y forms a Markov chain �B and Y are
arbitrary�: the joint probability of the measurement results of
B ,A ,X ,Y satisfies
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p�Yi,Xj,Ak,Bl� = p�Yi�Xj�p�Xj�Ak�p�Ak�Bl�p�Bl� , �39�

yielding Eqs. �30� and �31� directly. This alternative deriva-
tion provides a very clear interpretation of our previous re-
sult. Trying to gather information about B �instead of A�
with the indirect measurement Y �instead of X� can be
viewed as the addition of noise over the perfect communica-
tion channel that allows the transmission of information
about A in the environment.

Equations �37� and �38� extend Theorem 1 to imperfect
redundant imprints �i.e., finite ��. Only observables “close”
to the maximally refined redundant observable A—where
closeness is measured with the help of mutual information—
can leave a redundant �even imperfect� imprint in their envi-
ronment. Moreover, it confirms the behavior found in the
numerical study presented in �20�.

D. Imperfect correlations

The previous section analyzed the consequences of per-
fect correlations between S and F in terms of optimal mea-
surement strategies. However, perfect correlations are rarely
found in Nature. Even for our simple model, perfect correla-
tions can be assumed only in an asymptotic limit, as N tends
toward infinity, or by a careful tuning of the interaction time
and strength. Hence, it is important to understand what hap-
pens when the conditions are not perfect. Here, we show that

nearly perfect correlations—�F and �F̄ sufficiently small—
are enough to ensure the validity of the results established
above, up to small correction terms.

The technique we use is inspired by perturbation theory. It
relies on the construction of a “perfectly correlated” state
�SF of the form Eq. �27� which is close to the actual state
�SF of Eq. �24� generated by the dynamics. Then, using vari-
ous bounds on entropies, we will conclude that all the
information-theoretic quantities extracted from the ideal �SF

are approximately equal to those extracted from the actual
�SF. We will also examine the regime of validity of this
approximation.

Let us define

�SF = �
i

��i�2�i�
i� � ��i
F�
�i

F� , �40�

where the ��i
F�’s are obtained by applying the Gram-

Schmidt orthonormalization procedure to the states ��i
F� �see

the Appendix for the details of this construction�. With this
definition, we will show that for any two observables B and

Y, when �F=maxij��ij
F� and �F̄=maxij��ij

F̄� are small,

I��B:Y� � I��B:Y� . �41�

Above, the subscripts � and � refer to the state, either the
actual �SF or the perfect �SF, used to derive the probabilities
of the measurement outcomes, that in turn are used to quan-
tify information �this shorthand notation will be used in the
rest of this section�. Therefore, when Eq. �41� holds, all the
conclusions derived from the perfect correlation case remain
approximately true.

Equation �41� is a consequence of simple inequalities that
give an upper bound on the difference �I��B :Y�− I��B ,Y��.

First, Cauchy-Schwartz inequality �Proposition 1� gives
Tr��SF−�SF�		dS��SF−�SF�2. Second, by definition of the
trace distance between two density matrices �Definition 2�,
�ij�p��Bi ,Y j�− p��Bi ,Y j��	Tr��SF−�SF�. Finally, by com-
bining these results with Lemma 1 and Fanne’s inequality
�Proposition 3� applied separately to each of the three entro-
pies involved in I�B ,Y�=H�B�+H�Y�−H�B ,Y�, we find

�I��B:Y� − I��B:Y�� 	 − 3f��F,�F̄�ln�f��F,�F̄�/dS�

+ O„��F�3/4 + �F̄
… , �42�

with f��F ,�F̄�=	dS�2�dS−1���F�2+ ��F̄�2�. Thus, this dif-

ference tends to zero when �F and �F̄ tend to zero.
To gain further insight into the regime of validity of Eq.

�41�, recall that �F and �F̄ typically decrease exponentially
with the number of environmental subsystems that have ef-
fectively interacted with S. Therefore, for equation Eq. �41�
to hold within constant accuracy, it is sufficient that each

fragment F and F̄ contains a number of subsystems Ek scal-
ing as ln dS �or as a polynomial in ln dS�. As discussed at the
end of Sec. III, dS is the effective dimension of the probed
degree of freedom of S, i.e., the number of distinguishable
outcomes of an hypothetical measurement B. Clearly then,
ln dS is generally much smaller than the size of the environ-
ment. Therefore, the conclusions drawn from the perfect cor-
relation study remain essentially unchanged: A is the observ-
able of the system that leaves the strongest imprint in
fragments of the environment; the optimal environmental
measurement to learn about any system observable is the one
that reveals information about A; and finally failing to inter-
rogate F about A has the same effect as introducing noise in
the measurement results. These conclusions hold to within an
accuracy of roughly ln dS /N, which is enough in most situ-
ations involving macroscopic systems.

VII. DISCUSSION: OPEN QUESTIONS AND
CONNECTIONS

Environment as a witness as well as quantum
Darwinism—the dynamics responsible for the redundant im-
printing of certain states that leads to their objectivity—are
based on the same dynamical paradigm that is used in the
study of decoherence and einselection. The to-be-classical
object of interest �the system S or the apparatus A� is im-
mersed in the environment. What is now different—and this
is a dramatic departure from the usual view of what
matters—is the focus. Instead of analyzing either the state of
S per se, or even the fate of the correlations between S and
A, attention shifts to the information available to the ob-
server in fragments of E.

This shift of focus has been precipitated by the realization
�17–19� that observers only rarely �if ever� acquire informa-
tion by direct interaction with systems of interest: rather, we
use E as a communication channel. The message—the state
of the object of interest—is imprinted on E in multiple cop-
ies. However, the no-cloning theorem implies that arbitrary
unknown states cannot be “advertised” throughout the envi-
ronment in this fashion. Hence, as one can expect �and as our
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analysis indeed shows�, selection of a preferred observable is
a prerequisite for this redundant imprinting.

The basic intuition—the implication of the information-
theoretic redundancy of the record for the emergence of the
classical—was noted already some time ago �12,19,29�. It
was refined into a more precise measure of redundancy—
into R� we employed here—only recently �20�. Using this �
redundancy we have demonstrated—either under very spe-
cific assumptions of �20�, or in a still rather specific, but
somewhat more general setting of this paper—that the famil-
iar pointer observables are easiest to find indirectly, from the
records imprinted on the fragments of the environment.

The aim of this section is to examine assumptions that
went into our discussion and, by doing so, to explore the
range of validity of our conclusions. The results obtained in
Sec. V did not require any assumption about the physical
model, but only apply to the case of perfect correlations.
Thus, the model studied in Sec. VI is a convenient focus of
attention. To establish uniqueness of a set of commuting pre-
ferred observables that is easiest to infer from E we have
assumed that:

�1� the initial state is a pure product state;
�2� the system has no self-Hamiltonian;
�3� every environmental subsystem couples to the same

system observable;
�4� the environment has no Hamiltonian.
To find out which of these assumptions can be relaxed,

and the extent to which they are responsible for the conclu-
sions we have reached will eventually require investigation
of other, more realistic, or at least “differently oversimpli-
fied” models. For standard decoherence, a similarly idealized
model was put forward over two decades ago, but the inves-
tigation of various related and unrelated models of decoher-
ence and einselection is still an ongoing activity, often yield-
ing new insights. The same can be expected of quantum
Darwinism. Different models may also require different
mathematical tools. One such investigation—using von Neu-
mann entropy and the symmetric Eq. �10� for mutual
information—is currently under way �25� and points toward
compatible conclusions.4 All we can offer here is a brief �and
possibly premature� discussion of the role and importance of
various assumptions, including these listed above.

Assumption 1 is probably the most unrealistic: in practice
composite environments are rarely in a pure product state.
Luckily, perfect purity per se is not essential to rely on the
environment as a trustworthy witness. Having enough infor-

mation about E will, however—and in contrast to decoher-
ence and einselection—prove to be indispensable.

Indeed, it is often convenient to study decoherence as-
suming a very mixed state of the environment �i.e., thermal
equilibrium or even a perfect mixture� when deriving master
equations used to implement predictability sieve. Conse-
quences of different initial mixtures of E are, generally,
somewhat different time dependences, and minor changes in
the structure of the master equation �which often becomes
less Markovian and less tractable when the environment is
further away from a convincing thermal state�, but the key
qualitative conclusions that characterize decoherence and
einselection—the localized nature of the preferred states and
the fact that relaxation can be much slower than
decoherence—seem to be usually unaffected.

By contrast, the degree of ignorance about the fragments
of the environment plays an essential role in the study of the
environment as a witness. The reader may be surprised by
this. After all, the results of Secs. V and VI were derived by
an information-theoretic analysis of a rather general scenario,
so—given the assumptions—conclusions should be indepen-
dent of the initial state of E. In particular, redundancy—when
present—remains a highly selective criterion. However, and
this is the crux of the matter, the starting point of our
investigation—the assumption that fragments of the environ-
ment contain information about the system—depends
strongly on the initial state of E.

When the environment is initially mixed, it will “know
less” about the system. The change of the state of the envi-
ronment after it has interacted with the system provides the
evidence about the state of S. But when either all of E or
some subsystems of it are totally mixed, they cannot be al-
tered by the conditional dynamics that causes decoherence.
And even partial mixing will make it more difficult for the
environment to serve as a wittness. To see why, let the initial
state of the environment be an arbitrary nonentangled state:

�E = �
�

p��
Ek

���,Ek�
��,Ek� . �43�

In particular, it could be a product of mixed states �E=�E1

� �E2 � ¯ �EN, such as the thermal state of noninteracting
environmental subsystems. By linearity of the Schrödinger
equation, the joint state of S and a fragment F of E after an
interaction time t will be

�SF = �
�

p��
ij

�i� j
*�i�
j��

Ek

��i
�,Ek�
� j

�,Ek� � �ij
�,F̄ �44�

where ��i
�,Ek� and �ij

�,F̄ are defined as in Sec. VI A.
In the previous sections, we have studied the kinds of

correlations that arise given any of the components
�Ek

���,Ek� of this mixture. It follows from the convexity of
entropy �cf. Proposition 4� that the information contained in
this mixture will be strictly less than the average information
contained in the individual components of the mixture. As
we have noted above, mixing the state of the environmental
subsystems decreases their information storage capacity;
when the state of the environment is perfectly mixed, it will
simply be impossible to learn anything from it. Yet, the usual

4The two formulas for the mutual information, Eqs. �8� and �10�,
cease to coincide when the von Neumann entropy of the two sub-
systems and the relevant joint and conditional entropies are used on
their left hand sides. The difference between the symmetric and
asymmetric mutual information is the discord �10,19,35�. Discord is
a measure of the quantumness of the correlation. It can be used to
show that even separable correlated states of two systems need not
be classical. Discord is suppressed by decoherence. So, when a
small fraction of the environment is interrogated by the observer, its
correlations with S tend to be effectively classical. It follows
that—in that case—estimates of redundancy based on either the
mutual information defined by Eq. �8� or by Eq. �10� are essentially
identical.
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decoherence still leads to einselection—there will still be a
pointer basis �defined, e.g., through the predictability sieve�.

When the initial state of E is not completely mixed, it is
usually possible to extract from it some information about
the system. In fact, given the assumption of redundancy, the
qualitative conclusions of the previous section will still hold:
the information about any system observable available in
fragments of E is intrinsically limited by the information
about it obtained through a direct measurement of the maxi-
mally refined redundantly imprinted observable A; Eq. �36�
becomes the inequality ÎF�B�	 I�B :A�. Therefore, we again
anticipate the conclusion that only observables close to A
can get redundantly imprinted in E.

Mixed initial states of E will decrease channel capacity of
the environment. Moreover, modes of the environment that
can be imprinted with information about different aspects of
S will be in general mixed to a different degree. This may be
reflected in the selective coarse-graining with which the ob-
server perceives the system. This raises an interesting possi-
bility: observables that are selected by the predictability
sieve need not coincide with the �typically coarse-grained�
observables that are easiest to find out about from E. For
example, this may happen when the modes that dominate
decoherence �and hence einselection� are so mixed that they
cannot serve as a useful communication channel, and the
only modes that are sufficiently pure to be useful for this
purpose monitor some other observable. An observer will
then find out about that other coarse-grained observable, but
with the resolution limited by indeterminacy: after all,
pointer observable is still einselected by the environmental
monitoring. Presence or absence of this effect is related to
the assumption of the “typical environment fragment” we
have noted in �20�. In other words, when the fragments of E
that the observer can use to extract information about S con-
tain or reveal data in a selective manner, environment acts as
a witness with a selective memory �or a partial amnesia�.
Exactly how mixed can E be to be still useful as a witness is
of course the key question. We leave it as a subject for fur-
ther research.

When the initial state of the system is mixed, but the
environment is sufficiently pure and large so that significant
redundant imprinting can arise from their interaction, envi-
ronment can become a useful and trustworthy witness, and
our approach should go through essentially unimpeded.
Similarly, preexisting correlation with E need not undermine
our conclusions. In effect, it will typically mean that the
environment was gathering evidence about the system in the
past �although one can certainly imagine pathological preex-
isting correlations that get undone by the subsequent interac-
tion�.

To sum up, while the assumption of the initial product
state has simplified our analysis, it can be relaxed to some
extent without undermining our basic conclusions. What is
non-negotiable is the demand that the final state allows one
to discern evidence about S in the fragments of E. One can
already anticipate that this demand will also put a constraint
on the entanglement between the fragments of E, as we shall
note in the discussion of assumption 4 below.

Assumption 2 precludes non-trivial evolution of the sys-

tem. Relaxing it has been studied in the context of decoher-
ence and einselection, and—as we have done above—we
shall gain insight into its role in quantum Darwinism by
recounting the implications of evolution for einselection, and
analyzing their significance for the role of the environment
as a witness.

In the studies of einselection the relative strength of the
self-Hamiltonian HS and the interaction Hamiltonian HSE is
an important ingredient that decides the course and effect of
einselection. When the self-Hamiltonian is negligible or
when HS and HSE commute, the environment monitors static
states of the system—pointer states selected solely by the
interaction �4,12�. In a sense, environment contains a record
of a very uneventful history—things stay the same forever.

When the effect of HS is no longer negligible, these his-
tories become more interesting. One may enter, for example,
the “partial Zeno effect” regime where the evolution of the
state of the system induced by the self-Hamiltonian is im-
peded �but not completely suppressed� by the environmental
monitoring mediated by HSE �see, e.g., �8��. Models of such
situations have been analyzed using rather different approach
of quantum trajectories �36� that shares with quantum Dar-
winism the focus on the information gained indirectly from
E. There the environment is usually assumed to consist of
photons, and the system is often a two-level atom. Pointer
states still emerge and turn out to be the easiest states to infer
from a fraction of such E �37�. The basis ambiguity may
reappear only if the whole E could be captured. This ability
to rely on a fraction of E allows for the possibility of con-
sensus between multiple observers �38�.

As the coupling to the environment becomes weak the
problem may become more tractable again, especially in two
rather different limits. When the environment is slow, with
the high-frequency cutoff that is small compared to the level
spacing of the spectrum of HS, einselection enters its quan-
tum limit �39�. Energy eigenstates are imprinted on the en-
vironment more or less regardless of the specific form of the
coupling. Histories are again becoming rather uneventful, al-
though for reasons quite different from these we have men-
tioned above in the negligible HS case.

By contrast, when the environment is broadband, with all
the frequencies from very low to very high present, and the
system is �at least approximately� linear and coupled to E
through its position, coherent states are the most predictable,
and hence, pointer. Weak coupling does not preclude redun-
dancy of the records. In this underdamped limit one can re-
cover approximately reversible Liouvillian dynamics with
localized states �i.e., approximately reversible classical tra-
jectories that follow Newton’s laws emerge; see �9,10�, and
references therein�. When the system is linear �e.g., harmonic
oscillator� preferred pointer states turn out to be Gaussian
�17,24�, and one may anticipate that sequences of the most
redundant “environmental records” will correlate with clas-
sical trajectories.

The quick summary of different possibilities above is
meant to be suggestive rather than exhaustive, and is defi-
nitely not conclusive. What one would like to recover using
environment as a witness is the notion of objective histories
defined through sequences of time-ordered redundant
records. Such objective histories could consist of sequences
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of approximate instantaneous pointer states. They were con-
jectured to exist in the limit of very efficient and frequent
broadband monitoring by the environment in �10�. Histories
deduced from redundant records would be objective, and
may be only approximate. It will be interesting to investigate
their relation to consistent histories �40–44�, especially when
consistency is assured through the “strong decoherence” con-
dition introduced in �30� �see also �31�� that invokes exis-
tence of a perfect environmental record.

Assumption 3 assures that there is a preferred observable
of S that is recorded by E, and that it is singled out by the
interaction Hamiltonian. This is a strong assumption, but of-
ten a reasonably realistic one: typical couplings between the
systems �and, hence, between S and E� tend to depend on the
distance �i.e., relative position� between them. As a
consequence—as was already pointed out in the context of
einselection �7,12�—pointer states tend to be localized in po-
sition.

One can of course imagine situations where this is not the
case. For instance, there may be several physically distinct
environments, each attempting to monitor a different observ-
able of S. One would expect that a dominant coupling would
then impose its selection of the preferred observable, and the
effect of the others would be perceived as noise.

This last remark leads to interesting questions about the
correspondence between the approximate pointer observable
that is selected by the predictability sieve as a result of the
interaction of S and E, and the states of the system that are
easiest to infer for an observer who has access to a single
subsystem of the environment. Clearly, in full generality this
case is not covered by our idealized assumptions earlier in
the paper. For example, Gaussian pointer states are often
selected by the predictability sieve, and yet they are not or-
thogonal and form an overcomplete basis, so some of the
steps we have used in our proofs may not go through. Nev-
ertheless, one may expect that—as was the case with
decoherence—results that are exact for perfect pointer states
�that are left untouched by decoherence� are still approxi-
mately valid for approximate pointer states �that are least
touched by decoherence�. Given the role Gaussian states play
in the discussion of various models of decoherence, the ex-
tent to which Gaussian states coincide with the states that are
easiest to infer is of obvious interest, and a likely area of
future studies, but beyond the scope of this paper �see how-
ever �45��. Along the same line of thought, when the envi-
ronment fragments that are the most useful to the observer
interested in S are not a typical sample of the environments
responsible for decoherence, one may still guess that the
states of S that can be inferred from them will represent an
appropriately coarse-grained version of the pointer states.

Assumption 4 assures that the environment does not
evolve �and, therefore, does not complicate or even obliterate
the record it has made of S�. More careful study of the con-
sequences of relaxing this assumption can be found else-
where �46�. Here we offer only a brief discussion of the basic
possibilities.

One can distinguish three components of this require-
ment: fragments of the environment could evolve separately,
they could interact with each other, or could interact with
more distant second-order environments.

Let us first note that—in models where pointer observable
commutes with the system-environment interaction Hamil-
tonian �e.g., HSE=�Ek�EA � ZEk, Eq. �19�� self-Hamiltonians
of the individual fragments of E obviously cannot change the
fact that �HSE ,A�=0, so the selection of the pointer basis is
not affected by the dynamics of the environment. However,
even in this simple case the presence of such self-
Hamiltonians can influence the rate of acquisition of infor-
mation by E and, hence, redundancy �46�. We also note that
in more realistic cases when the system has a self-
Hamiltonian that does not commute with HSE the pointer
observable is approximate, and even its choice can be influ-
enced by how the rate of information acquisition by E com-
pares with the dynamical time scales in S.

The interaction between the subsystems of E may be a
significant complication. It will typically lead to entangle-
ment between the fragments of E, and could make their in-
dividual states mixed. Thus—as we have already pointed out
in discussion of assumption 1—even though the environment
as a whole may still contain redundant imprint of the state of
the system, the relevant global observables could become
effectively inaccessible to the observers who can sample E
only through local measurements on its fragments.

Last but not least, E could be immersed in its own envi-
ronment E�. Effect of this second-order environment will de-
pend on the nature of their interaction. It could of course
erase the records of S in E, but it is also conceivable that E�
could monitor the record-keeping observables of the frag-
ments of E, which would increase the redundancy �10�.

These are very interesting complications, very much wor-
thy of further study. We note, however, that human observers
tend to rely on photons for the vast majority of data about
systems of interest. And photons, in effect, satisfy our as-
sumption 4. This seems to us to be no accident.

It is clear from the above discussion that quantum Dar-
winism requires stronger assumptions than decoherence.
This is not surprising: it is easier to use any system �includ-
ing the environment� as a disposal, to get rid of unwanted
information, than as a communication channel. Furthermore,
existence of the pointer states is a necessary but not a suffi-
cient condition for their redundant imprinting on E. Never-
theless, even though quantum Darwinism relies on stronger
assumptions than einselection implemented, e.g., through the
predictability sieve, it is also clear from our discussion that
these more restrictive assumptions are met in the real world
often enough to employ environment as a reliable witness.

VIII. SUMMARY AND CONCLUSION

Observers use environment as a witness. This has obvious
and profound implications for the interpretation of quantum
theory. Nevertheless, it is not our intent here to go beyond
the comments we have made throughout and to delve into a
more extensive discussion of the implications of quantum
Darwinism for the interpretation of quantum theory. In part,
this is because some of the interpretational issues have been
noted elsewhere, on the occasion of discussions of the role of
redundancy in the existential interpretation �see
�10,17,18,21�, and references therein�. The basic idea—that

OLLIVIER, POULIN, AND ZUREK PHYSICAL REVIEW A 72, 042113 �2005�

042113-16



the classical domain can arise from within a quantum Uni-
verse, and that it consists of states that can be found out
without being destroyed, and, hence, in that operational
sense exist independently of the observer—is obviously very
much assisted by employing environment as a witness.

Quantum Darwinism uses the same model of the informa-
tion transfer that was introduced to study decoherence and
einselection, but asks a different question: instead of
focusing—as does decoherence—on how the information is
lost from the system, it analyzes how the information is
gained and stored in the environment. In decoherence, the
role of the environment is limited to hiding the underlying
quantumness �view especially emphasized in discussions of
quantum computation�. Einselection recognizes that this in-
formation loss is selective, and, thus, that the environment
has a capacity to single out preferred pointer states that are
best at surviving immersion in E. Moreover, they are chosen
in the process reminiscent of a measurement—E acts as an
apparatus that �pre�measures the pointer observable of the
system of interest.

This much was known. In particular, the monitoring role
of E was recognized early on �4�. Quantum Darwinism an-
swers to the next logical question: since the environment
interacts with the to-be-classical observable of the system of
interest as would an apparatus, can it be used as an appara-
tus? To address it we have had to develop a measure of the
objectivity of the records deposited in the environment. Re-
dundancy �briefly considered �29�, see also �12� in a similar
context as a measure of amplification� was refined �20� and
used to prove that—given reasonable assumptions—there is
a unique set of commuting observables that are easiest to
find out from fragments of E, and that these redundantly
recorded observables are indeed the familiar pointer observ-
ables.

As a consequence, observers monitoring fragments of the
environment will be able to reach compatible conclusions
about the value of redundantly imprinted observables of the
system, i.e., about the objective properties of the system. In
this operational sense, quantum Darwinism provides a satis-
fying explanation for the emergence of the objective classical
world we perceive from the underlying quantum substrate.

We have illustrated quantum Darwinism on a dynamical
model that is easy to analyze from an information-theoretic
perspective, and yet is inspired by a photon environment
scattering on an object: all the environmental subsystems
couple to the object with the same Hamiltonian and do not
interact with each other. This model enabled us to push our
analysis further, as we could explicitly determine the optimal
environmental measurements to learn about the properties of
the system. It also demonstrated that quantum Darwinism
tolerates reasonable departures from the “ideal” assumptions
used to derive our main results in Sec. V. In this respect, it
corroborates recent studies �10,20� and earlier conjectures
�19,29� that noted the role of redundancy in assuring resil-
ience of certain states—an essential feature of the classical
domain. Hence, redundancy is a robust and selective crite-
rion for determining objective properties of open quantum
systems.

While redundantly imprinted observables are dynamically
stable—as defined by einselection—the reverse is not neces-

sarily true: quantum Darwinism requires stronger assump-
tions, especially regarding structure, size, and the initial state
of E. For example, a single photon can be enough to deco-
here an object in superposition of two distinct positions.
However, it takes a macroscopic number of them to redun-
dantly broadcast the position of this object throughout the
environment. While the entropy production of the system—a
signature of decoherence—rapidly saturates, redundancy can
then continue to grow with time. This illustrates how the
increase of the redundancy of the record in the environment
captures the fact that the system is still continuously under
observation, and that information about the pointer observ-
able is getting amplified up to the macroscopic level. In this
sense, quantum Darwinism can be motivated using Bohr’s
original ideas �2� about the role of amplification in the tran-
sition from quantum to classical.
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APPENDIX

Definition 2 (trace distance). The trace distance between
two density operators � ,� is defined by D�� ,��=Tr��−��.
When � and � commute, the trace distance is equal to the L1
distance between the classical probability distributions de-
fined by their eigenvalues. Alternatively, the trace distance is
equal to 2 maxP Tr P��−�� where the maximum is taken
over positive operators P	 I.

Definition 3 (Euclidean distance). The Euclidean distance
between a pair of density operators � ,� is defined by
��−��2=	Tr���−��2�.

Proposition 1 (Cauchy-Schwartz inequality). D�� ,��
		d��−��2.

Proposition 2 Let pi=Tr�Ai�� and qi=Tr�Ai�� be the
probabilities of the outcomes of a measurement �Ai� for
states � and �, respectively. Then, D�p ,q�	D�� ,��.

Proposition 3 (Fanne’s inequality). Let pi and qi with
i=1,2 ,… ,d be two classical probability distributions
such that D�p ,q�	1/e. Then �H�p�−H�q��	D�p ,q�ln d
+�(D�p ,q�), with ��x�=−x ln x.

Proposition 4 (convexity of entropy). Let P�Xi �Y j� be a set
of conditional probability distribution for the random vari-
able X, and P�Y j� be the probability distribution for the ran-
dom variable Y. Then

�
j
�P�Y j��− �

i

P�Xi�Y j�ln P�Xi�Y j��� 	 − �
i

P�Xi�ln P�Xi�

�A1�

where P�Xi�=� jP�Xi �Y j�P�Y j�.
Proposition 5 (data-processing inequality). Suppose

X→Y →Z is a Markov chain, then H�X�� I�X :Y�� I�X :Z�.
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Lemma 5. For any matrix �=�ij�i� j
*�i�
j� � ��i

F�
� j
F��ij

F̄,
with �i�0, and such that

�1� 
i � j�=�ij;

�2� ��i
F� are linearly independent;

�3� ��ij
F̄�	�F̄ for i� j, and �ii

F̄=1 for all i;

�4� �
�i
F �� j

F��= ��ij
F�	�F for i� j,

there exists a matrix �=�i��i�2�i�
i� � ��i
F�
�i

F�, satisfying
�1� 
�i

F �� j
F�=�ij;

�2� ��−��2		2�dS−1��F+�F̄+O(��F�3/2+ ��F̄�2),
where dS is the number of coefficients �i.

Proof. The proof of this lemma relies on a careful analysis
of Gram-Schmidt orthonormalisation procedure applied to
the states ��i

F�.
We define the new set of orthogonal states ��i

F� by the
following equations:

��i
F� =

1

Ni
���i

F� − �
j�i


� j
F��i

F��� j
F�� , �A2�

where Ni is a normalization factor.
More precisely, we prove by induction on i that the fol-

lowing properties hold:

�
� j
F��i

F���
	2�F + O„��F�2

… , j � i ,

�1 −
i − 1

2
��F�2 + O„��F�3

… , j = i ,

	�F + O„��F�2
… , j � i .

�
�A3�

For i=1, the result is trivial, since ��1
F�= ��1

F�.
For i�1, we assume that Eq. �A3� holds for k� i. By

definition of Ni we have,

Ni
2 = 1 − �

k�i

�
�i
F��k

F��2 �A4�

�1 − �i − 1���F�2 + O„��F�3
… . �A5�

Moreover, with Eq. �A2� we also have

�
� j
F��i

F�� =
1

Ni
�
� j

F��i
F� − �

k�i


�k
F��i

F�
� j
F��k

F�� .

�1� When j� i we get

�
� j
F��i

F�� 	
1

Ni
��
� j

F��i
F�� + � �

k�i,k�j


�k
F��i

F�
� j
F��k

F��
+ �
� j

F��i
F�
� j

F�� j
F��� �A6�

	2�F + O„��F�2
… . �A7�

�2� For i= j,

�
�i
F��i

F�� = Ni �A8�

�1 −
i − 1

2
��F�2 + O„��F�3

… . �A9�

�3� Finally, in the case j� i, the contribution at order �F

comes from 
� j
F ��i

F� which gives

�
� j
F��i

F�� 	 �F + O„��F�2
… . �A10�

With this result, we can easily calculate an upper bound
on ��−��2:

Tr�� − ��2 = Tr �2 + Tr �2 − 2 Tr ��

= 2�
i

��i�4�1 − �
�i
F��i

F��2� + �
i�j

��i�2�� j�2��ij
F̄�2

	 2�dS − 1���F�2 + ��F̄�2 + O„��F�3
… . �A11�

Therefore we have ��−��2		2�dS−1���F�2+ ��F̄�2

+O(��F�3/2), concluding the proof. �
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