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Dipole interference is studied when atomic systems are coupled to classical electromagnetic fields. The
interaction between the dipoles and the classical fields induces a time-varying Aharonov-Casher phase. Aver-
aging over the phase generates a suppression of fringe visibility in the interference pattern. We show that, for
suitable experimental conditions, the loss of contrast for dipoles can be observable and almost as large as the
corresponding one for coherent electrons. We analyze different trajectories in order to show the dependence of
the decoherence factor with the velocity of the particles.
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I. INTRODUCTION

Interference effects are the most notable characteristic of
quantum mechanics. The double-slit experiment is often used
as the starting point to quantum description of Nature. There,
when the path of the interfering particles is measured, the
interference pattern disappears and the classical picture is
recovered. The interaction between the quantum system with
its environment �measuring apparatus� is responsible for the
process of decoherence, which is one of the main ingredients
in order to reach the quantum-to-classical transition.

The Aharonov-Bohm �AB� �1� interference experiment
can be a realistic probe for the predictions of decoherence.
This experiment starts by the preparation of two electron
wave packets �1�x�� and �2�x�� in a coherent superposition,
assuming each of the charged particles follows a well defined
classical path �C1 and C2, respectively�. The complete wave
function involves the presence of the environment, given a
state

��t = 0� = ��1�x�� + �2�x��� � �0�y�� , �1�

where �0�y�� represents the initial quantum state of the envi-
ronment �whose set of coordinates is denoted by y��. As time
passes, the electron’s coherent state entangles with the envi-
ronment, and the total wave function can be described as

��t� = �1�x�,t� � �1�y�,t� + �2�x�,t� � �2�y�,t� . �2�

Therefore, the two delocalized electron states �1 and �2 be-
come correlated with two different states of the environment.
The probability of finding a particle at a given position at
time t �for example when interference pattern is examined� is

Prob�x�,t� = ��1�x�,t��2 + ��2�x�,t��2

+ 2 Re��1�x�,t��2
*�x�,t� � d3y �1

*�y�,t��2�y�,t�� .

�3�

The overlap factor F=	d3y �1
*�y� , t��2�y� , t� is responsible

for two separate effects. Its phase generates a shift of the
interference fringes, and its absolute value is responsible for
the decay in the interference fringe contrast. Of course, in
absence of environment, the overlap factor is not present in
the interference term. When the two environmental states do
not overlap at all, the final state of the bath identifies the path
the electron followed. There is no uncertainty with respect to
the path. Decoherence appears as soon as the two interfering
partial waves shift the environment into states orthogonal to
each other. This suggests that the environment saves �in
some way� the information about the path the electron takes.

The loss of quantum coherence can alternatively be ex-
plained by the effect of the environment over the partial
waves, rather than how the waves affect the environment. As
has been noted, when a static potential V�x� is exerted on one
of the partial waves, this wave acquires a phase

� = −� V�x�t��dt , �4�

and therefore, the interference term appears multiplied by a
factor ei�. This is a possible agent of decoherence. The effect
can be directly related to the statistical character of �, in
particular in situations in which the potential is not static.
Even more, any source of stochastic noise would create a
decaying coefficient. For a general case, � is not totally de-
fined; i.e., it is described by means of a distribution function
P���. From this statistical point of view, the phase can be
written as


ei�� =� ei�P���d� . �5�

In this way, the uncertainty in the phase produces a de-
caying term that tends to eliminate the interference pattern.
This dephasing is due to the presence of a noisy environment
coupled to the system and can be also represented by the
Feynmann-Vernon influence functional formalism. It is easy
to prove that Eq. �5� is the influence functional generated
after integrating out the environmental degrees of freedom of
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an open quantum system. Therefore, in Ref. �2� was shown
the formal equivalence between the two ways of studying
dephasing:


ei�� = F =� d3y �1
*�y�,t��2�y�,t� . �6�

The overlap factor F encodes the information about the sta-
tistical nature of noise. Therefore, noise �classical or quan-
tum� makes F less than 1, and the idea is to quantify how
slightly it destroys the particle interference pattern.

In many cases, the interaction with the environment can-
not be switched off. Thus, for charged particles or neutral
atoms with dipole moment, the interaction with the electro-
magnetic field is crucial. This interaction induces a reduction
of fringe visibility. For example, vacuum fluctuations of elec-
tromagnetic fields have been considered as a decoherence
agent �3�. Double-slit-like experiments were studied in the
presence of conductors, which change the structure of
vacuum and modify predictions about decoherence effects.
The changes to the fringe visibility induced by the position
and relative orientation of the conductors are rather small.

Electron interference in mesoscopic devices irradiated by
external nonclassical microwaves was considered in Ref. �4�.
The effect of quantum noise on electron interference for sev-
eral types of microwaves has been analyzed, and it was
shown that entangled electromagnetic fields interacting with
electrons produce entangled photons �5�. Despite the quan-
tum nature of noise �vacuum fluctuations, for example�, clas-
sical noise is also present when considering time-dependent
fields, or some random variables that parametrize the envi-
ronment. The destruction of electron interference by external
classical and quantum noise has been studied in Ref. �6�.

In Ref. �7�, the overlap factor F was evaluated from a
different point of view. The authors studied the effect of
time-varying electromagnetic fields on electron coherence,
including the statistical origin of the AB phase �. However,
they considered � neither as coming from quantum fluctua-
tions nor from a time-dependent field. They included a ran-
dom variable t0, which was defined as the electron emission
time. This variable produces a fluctuating phase �, and an
average over it is needed in order to obtain the result of the
double-slit interference experiment. In this simple version of
decoherence, the role of a quantum environment is replaced
by a time-dependent external field that gives a time-varying
AB phase. The authors have considered the case of a linearly
polarized, monochromatic, electromagnetic wave, propagat-
ing in a direction orthogonal to the plane containing two
electron beams. The effect on the fringes seems to be suffi-
ciently large to be observable.

In the present article we follow the last idea. We evaluate
the overlap factor F for coherent neutral particles with per-
manent �electric and magnetic� dipoles that are affected by
time-varying external fields. We consider two different cases
with possible experimental interest. First, is the case of di-
poles interacting with a linearly polarized electromagnetic
plane wave. This will generalize results of Ref. �7� to the
case of Aharonov-Casher �AC� �8� case in atomic systems
�9�, wherein coherent dipoles follow a closed path around an

external field. Second, is the case of dipoles traveling
through a waveguide with rectangular section. As we will
discuss, not all these effects lead to an observable displace-
ment on the interference pattern related to the phase shift of
the wave function of the system. Dependence on the velocity
of the interfering particle is crucial. We will show different
configurations in which the decoherence factor depends on
the particle’s speed in a different way.

In principle, for neutral particles with the same mass and
velocity as the charged ones, one should expect the loss of
contrast for dipoles to be smaller than the analogous one in
experiments performed using charged particles. Although
this is basically true, the interaction between electromagnetic
fields and dipoles is also weaker, allowing one to increase the
intensity of external classical fields the same amount by
which the dipole effect is smaller, still neglecting the dipole
scattering in the external field. Therefore, for sufficiently
strong external fields, the effect on fringe visibility for di-
poles will be of comparable magnitude with respect to the
case of charged particles. In order to prove this, we will
evaluate the scattering cross section for dipoles in interaction
with both a plane wave and the fields inside a waveguide.

The article is organized as follows. In Sec. II we present
the evaluation of the phase shift and the decoherence factor
for coherent dipoles �electric and magnetic� in the presence
of a time-varying electromagnetic plane wave. Symmetric
and nonsymmetric trajectories are considered in order to ana-
lyze the dependence on the velocity of the interfering par-
ticles. We also include in this section some additional results
for charged particles. Section III shows the results when the
coherent trajectories are inside a waveguide. In Sec. IV we
estimate the decoherence factor for realistic values of the
different parameters, and compare the loss of contrast for
charged particles and dipoles. Section V contains our final
remarks. We also include an Appendix wherein we compute
the Thomson cross section for dipoles.

II. COHERENT DIPOLES AND A PLANE WAVE

The AB phase �1�, known to arise when two coherent
electrons traverse two different paths C1 and C2 in the pres-
ence of an electromagnetic field, is �c=�=1�

� = − e�
��

dx� A��x� , �7�

where ��=C1−C2 is a closed space-time path. If the elec-
tromagnetic field’s fluctuations happen in a time scale shorter
than the total time of the experiment, this shift of phase
results in a loss of contrast in the interference fringes. The
overlap factor �or decoherence factor� is then given by Eq.
�6� �2,7�. In that expression, angular brackets denote either
an ensemble of quantum noise or a time average over a ran-
dom variable.

The classical and quantum interaction of a dipole with an
arbitrary electromagnetic field have been described in detail
in Ref. �10�, where a unified and fully relativistic treatment
of this interaction has been presented. The Lorentz-invariant,
classical interaction Lagrangian is 1

2 P	�F	�, where P	� is the
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antisymmetric dipole tensor �3,10�. In the rest frame of the
particle, the electric �d� and magnetic �m� dipole moments
can be obtained from P0i=di and Pij =
ijkmk, respectively.

In the quantum case, the phase shift that two neutral par-
ticles with electric and magnetic dipole moments experience
due to a classical time-dependent electromagnetic field is
known as the Aharonov-Casher phase �8�, and is defined by

� = − �
��

a��x�dx�, �8�

where a��x�= �−m ·B−d ·E ,d�B−m�E� plays the role of
A� in the AB case, ��=C1−C2, and C1 and C2 are the two
paths followed by the particles that interfere.

In order to evaluate the integral in Eq. �8�, we consider
the case of a linearly polarized monochromatic wave of fre-
quency � propagating in the ŷ direction, with electric and
magnetic fields in the ẑ and x̂ directions, respectively. We
will also assume that the particles’ path is confined to the
x̂-ẑ plane �see Fig. 1�. We can write the plane wave as
E�x�=E0 sin�wt−ky�ẑ, B�x�=E0 sin�wt−ky�x̂, and compute
a�, which is given by

a��x� = �− dzEz − mxBx,myEz,dzBx − mxEz,− dyBx�

= E0�− dz − mx,my,dz − mx,− dy�sin��t − ky�

 ã� sin��t − ky� . �9�

Following Ref. �7�, we will assume that the phase � de-
pends on a random variable =�t0 given by the emission
time of the dipoles. It is the time t0 at which the center of a
localized wave packet is emitted. When the measuring time
takes longer than the flight time, we will observe a result that
is the temporal average over t0. Thus, t0 is a random variable
by which � has to be averaged. We can write the AC phase
� as

��t0� = − �
��

ã� sin��t − ky + �t0�dx�, �10�

before taking the time average, we rewrite the phase as

��t0� = A cos��t0� + B sin��t0� , �11�

where

A = − �
��

ã��x�sin��t − ky�dx�,

B = − �
��

ã� cos��t − ky�dx�. �12�

The average over the random phase �generating a classical
noise� produces a decoherence factor

F = 
ei��

= lim
T→�

1

2T
�

−T

T

dt0 exp�i�A cos��t0� + B sin��t0���

= J0��C�� , �13�

where J0 is the Bessel function. The modulus of complex
number C=A+ iB measures degree of decoherence. The
overlap factor F decreases from one to zero as �C� varies
between zero and the first zero of J0. For larger values of �C�,
the overlap factor oscillates with decreasing amplitude. For a
Gaussian P��� distribution with 
�2��1, we have, in the
limit �C��1, 
ei���1− 
�2�=1− �C�2 /2.

A characteristic feature of the usual AB and AC effects is
that the phase shift is independent of the velocity �11� of the
particle, and there is no force on the particle �12�. Moreover,
the phase shift depends only on the topology of the closed
space-time path ��. Of course, these properties are no
longer valid when the external field is time dependent be-
cause the particle does suffer a net force applied on it. Thus,
in order to analyze the dependence upon the trajectory, we
will evaluate Eq. �8� for different paths and will find that the
phase’s dependence on the velocity is strongly related to the
trajectory the particles follow.

A. Symmetric trajectories

In this subsection, we will estimate the phase acquired by
two neutral particles with electric and magnetic dipole mo-
ments when they follow symmetric trajectories as the ones
depicted in Fig. 1.

To begin with, we will consider the same trajectory used
by authors in Ref. �7� to analyze the AB phase factor be-
tween charged particles. To perform integration in Eq. �12�
along the trajectory of Fig. 1�a�, we must calculate

� = �
��

a��x�dx� = �
i=1

6 �
0

1

a�„�i
��u�…

d�i
�

du
du , �14�

where �i, with i=1¯6, parametrize the different segments
of the trajectory. The path of particle 1 �C1� is described by

�1�u� = �− T/2 − � + �u,− d − l + ul,0,u�� ,

�2�u� = �− T/2 + Tu,− d + 2du,0,�� ,

�3�u� = �T/2 + u�,d + ul,0,� − u��, for 0 � u � 1.

�15�

Meanwhile, the path of particle 2 �C2� is

FIG. 1. Paths C1 and C2 are shown for the �a� trajectory used in
Ref. �7� and �b� an elliptic one.
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�4�u� = �− T/2 − � + �u,− d − l + ul,0,− u�� ,

�5�u� = �− T/2 + Tu,− d + 2du,0,− �� ,

�6�u� = �T/2 + u�,d + ul,0,− � + u��, for 0 � u � 1.

�16�

Performing the integrations in Eq. �14� and using the defi-
nition given in Eq. �12�, we obtain Bd=0 and

�Cd�  �Ad� = 4E0dy� 2�

��
�sin���

2
�sin���T + ��

2
� , �17�

where 2� is the maximum distance between the particles, dy
is the electric dipole’s moment in the y direction, and T ,� are
characteristic times of the trajectory. The subindex d indi-
cates that these are the values of A, B, and C for dipoles.

For nonrelativistic particles, we expect ��,�T�1. There-
fore, in order to have an estimation for Cd we can replace the
sine functions by a typical value 1/�2. In order to make
explicit the dependence on the velocity, note that �=s /v,
where s is the length of the first and third segments of the
path defined by s=��2+ l2. Using this, we rewrite Eq. �17� as

�Cd� �
2

�
E0dy��

s
��v �

2

�
eE0��

s
��Lv . �18�

Here L is the characteristic length of an atom with electric
dipole d=eL �L�10−9 m�, and � is the wavelength of the
plane wave. The analogous result for charged particles is
given by �Ce���1/�2�eE0�2�� /s�v �7�. Assuming that the
charged and neutral particles have the same speed and tra-
jectory, for the same external field we obtain

�Cd� � �Ce��L

�
� . �19�

Even though Eq. �19� might be discouraging, the scatter-
ing cross section for neutral particles is much smaller than
for charged particles �see the Appendix�. This makes it pos-
sible to increase the intensity of the external field and, con-
sequently, the value of the decoherence factor at least some
orders of magnitude.

If the neutral particles follow an elliptic path �Fig. 1�b��,
the calculations proceed in a similar way. The trajectory is
parametrized by

�1�u� = �� sin�u�,�d + l�sin�u�,0,� cos�u��,

for − �/2 � u � �/2

�2�u� = �� sin�u�,�d + l�sin�u�,0,− � cos�u��,

for − �/2 � u � �/2, �20�

where � is the time of flight of the dipoles and �d+ l� is the
total length of the path. In this case, the quantity �Cellip

d � is
given by

�Cellip
d � = 2��E0dyJ1���� , �21�

with J1 the Bessel function of first order. Using the
asymptotic expansion of this function for ���1, we find

�Cellip
d � �

�2��E0dy

����1/2 = ���eE0L�v�

s�
�1/2

, �22�

where s� is the length traveled by the neutral particles at a
speed v and in a time �. It is important to note that while �Cd�
in Eq. �18� depends linearly on the velocity, for the elliptic
trajectory �Cellip

d � scales as �v.
It is interesting to check whether or not the same differ-

ence in behavior applies to the case of the AB phase for
charged particles. If the charged particles travel across the
paths shown in Fig. 1�b�, the quantity �Cellip

e � can be com-
puted from Eq. �7� and the parametrization from Eq. �20�.
The result is

�Cellip
e � = 2��eE0�J1���� , �23�

showing that the dependence on the velocity is similar for
both neutral and charged particles.

Finally, it is worth noting that, as both trajectories in Figs.
1�a� and 1�b� are symmetric with respect to the x̂�t̂� axis,
only the term proportional to A of Eq. �12� contributes to the
AC phase, and, consequently, to the decoherence factor. This
is due to the parity of the integrand with respect to x and t.

B. Asymmetric trajectory

In this subsection we will consider the case of dipole
wave packets traveling across the asymmetric trajectory de-
picted in Fig. 2. As we will see, in this case, not only do both
terms in Eq. �12� contribute to the AC phase, but also differ-
ent components of the dipole moments. Consequently, speed
dependence will be different from the case of symmetric tra-
jectories.

We write Casym
d =Aasym

d + iBasym
d , where each of these coef-

ficients is defined in Eq. �12�. The parametrization of the
asymmetric curve can be read from Eqs. �15� and �20�. After
performing the corresponding integrations, we obtain

Aasym
d = �dyE0�J1���� +

4E0dy�

��
sin���

2
�sin��

2
�T + ��� ,

FIG. 2. Paths C1 and C2 are shown for the asymmetric
trajectory.
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Basym
d = �dz + mx�

2E0

�
�sin���

2
�cos��

2
�T + ��� + sin��T

2
��

+
2myE0l

��
sin���

2
�cos��

2
�T + ���

+
4dE0my

�T
sin��T

2
� . �24�

The first term in the B coefficient is the most important in
the low velocity limit, because all other terms are O�1/����
or O�1/���, which are much less than unity. The quantity
�Casym

d � is then dominated by that contribution and can be
approximated by

�Casym
d � �

e

�
E0L� , �25�

being independent of the velocity.
For charged particles, the situation is very different. The

decoherence factor can be computed by integrating Eq. �7�
along the asymmetric trajectory of Fig. 2. We obtain
Casym

e =Aasym
e + iBasym

e with

Aasym
e = 2�eE0

�

�
J1���� +

4eE0�

�2�
sin���

2
�sin��

2
�T + ��� ,

Basym
e = 0. �26�

Therefore, we can approximate

�Casym
e � �

e
�2�

E0��v�3

s�
�1/2

, �27�

which depends on the velocity as for the case of the elliptic
path. What is worthy of note is the fact that while this result
does depend on the velocity of the electrons, the decoherence
factor for the dipoles does not.

III. COHERENT DIPOLES INSIDE A WAVEGUIDE

Now we consider the field generated inside a waveguide
�along the ŷ direction� with rectangular section. For the TE
mode, the electromagnetic fields inside the pipe are the real
part of

By = B0 cos�kxx�cos�kzz�exp�i�kyy − �t�� ,

Bx =
− ikykx

�2 B0 sin�kxx�cos�kzz�exp�i�kyy − �t�� ,

Bz =
− ikykz

�2 B0 cos�kxx�sin�kzz�exp�i�kyy − �t�� ,

Ex =
i�kz

�2 B0 cos�kxx�sin�kzz�exp�i�kyy − �t�� ,

Ez =
i�kx

�2 B0 sin�kxx�cos�kzz�exp�i�kyy − �t�� , �28�

where kx=m� /b, kz= l� /a �with m and l integers and a ,b
the dimensions of the pipe�, �=��l� /a�2+ �m� /b�2,

�k=��2+ky
2, and B0 is a complex number. We will write

B0 as B0= �B0�exp�i�t0�, where t0 is the particle emission
time, as was defined in the previous section.

Let us consider the trajectory depicted in Fig. 3. The par-
ticles are set together at one side of the pipe �xi� �at some
initial time t0�, released and meet again at the other side �xf�,
having gone through it along straight paths. As the fields
vanish outside the waveguide, the particles will interact with
the electromagnetic field only when traveling inside it. Bear-
ing in mind that Cguide

d =Aguide
d + iBguide

d , we obtain for this case

Aguide
d = 0,

Bguide
d = −

4

��T�2 − �m��2 �B0�
kz

�2 sin� l��

a
�

���T cos�m�

2
�sin��T

2
�

− m� cos��T

2
�sin�m�

2
���dx�T − mzkzT − 2dyky� ,

�29�

where 2d=b is the total distance traveled by the dipoles in-
side the pipe, b and a are the dimensions of the waveguide,
2� is again the maximum distance the dipoles are moved
apart, m , l are the modes of the waveguide, and T the time
the dipoles are traveling inside the pipe.

For the first mode of the waveguide �l=1,m=0�, this ex-
pression looks simpler:

CTE10

d = −
4

�T
�B0�

a

�
sin���

a
�sin��T

2
�

��dx�T − mzkyT − bdyky� . �30�

We can estimate the quantity �CTE1,0

d � in the same way we did
in the preceding section, yielding

FIG. 3. The particles interfere in the presence of a time-
dependent electromagnetic field. The particles follow the path C1

and C2 in the x-z plane as shown above for the waveguide.
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�CTE10

d � �
2�2

�
B0a sin���

a
�dx, �31�

where we have assumed that �d�� �m�. This result is indepen-
dent of the dipoles’ velocity once more. Performing the same
calculation with charged particles, the corresponding �CTE10

e �
factor reads

�CTE10

e � �
1

�2�3�1/2eB0a�v sin���

a
� . �32�

This result, opposite to the dipoles’ one, depends on the ve-
locity of the charged particles.

Considering the dipoles again, from Eq. �29� we can com-
pute the decoherence factor for an arbitrary TE mode of the
electromagnetic field inside the cavity, m�0 and l�0, as-
suming 2d=b. The result is

CTE
d � −

4B0

��T�2 − �m��2

kz

�2 sin� l��

a
�

���T cos�m�

2
�sin��T

2
� − m� cos��T

2
�sin�m�

2
��

��dx�T − mzkzT − bdyky�sin��t0� . �33�

It is easy to prove that the result is negligible in the case
of odd m and m���T. In any other case, we get

�CTE
d � � B0a�sin���

a
���dx

2 + � b

�T
dykz�2

−
2b

�T
dxdyky�1/2

,

�34�

which has the same magnitude than for the lowest TE10
mode equation �31�.

For the TM modes, the fields inside the pipe are

Bx =
i�kz

�2 E0 cos�kxx�cos�kzz�exp�i�kyy − �t�� ,

Bz =
− i�kx

�2 E0 sin�kzz�cos�kxx�exp�i�kyy − �t�� ,

Ex =
ikykx

�2 E0 cos�kxx�sin�kzz�exp�i�kyy − �t�� ,

Ey = E0 sin�kxx�sin�kzz�exp�i�kyy − �t�� ,

Ez =
ikykz

�2 E0 sin�kxx�cos�kzz�exp�i�kyy − �t�� , �35�

where E0= �E0�exp�i�t0�. After some algebra, it is possible to
show that

CTM
d =

− 4

��T�2 − �m��2 �E0�sin� l��

a
��kx��T cos�m�

2
�sin��T

2
� − m� cos��T

2
�sin�m�

2
���− dx

ky

�2T + mz
�

�2T + bdy
�

�2�
+ ��T cos��T

2
�sin�m�

2
� − m� cos�m�

2
�sin��T

2
���− dyT − bmz��sin��t0� . �36�

Using the same arguments as in the TE case, we can check
that there is also a contribution independent of the dipoles’
velocity, but this time proportional to mz. Therefore, as we
are assuming �m�� �d� all along this work, we conclude that
�CTM

d �� �CTE
d �.

It is worth noting that in the TM case, as there is no
component of the magnetic field along the guide axis, the AB
phase vanishes. Therefore, the effect for neutral particles is
the only one we expect.

IV. NUMERICAL ESTIMATIONS

When we compared the decoherence factors for charged
and neutral particles �see, for example, Eq. �19��, we had
assumed that the relevant parameters �velocity, maximum
separation� were the same in both cases. Even though it is a
valid thread of thought, it is not a realistic one. Therefore, in
this section we will estimate the loss of coherence in more
realistic situations.

In interference experiments with electrons, the wave
packets can be moved apart up to 100 	m �14�. A typical

nonrelativistic velocity is ve�0.1. This yields a relation
�T�10 for a field that has a wavelength of about 100 	m.
On the other hand, in atomic interferometry, two neutral par-
ticles can be separated up to 1mm �15,16�. Typical speeds are
of the order vd�10−5 �17�. We will assume the dimensions
of the pipe a�1 cm.

The energy density of the electromagnetic field is defined
as �wave=E0

2 /2 for a plane wave. The energy density for the
field inside a waveguide is �guide= �aB0�2 /�2. Considering the
typical values of � and a given above, we note that
a /��1 for dipoles, whereas a /��10 for electrons. As we
are using Lorentz Heaviside units with �=c=1, � is also the
energy flux in the electromagnetic wave. We will assume an
energy flux of 10 W/cm2, approximately.

With all these values, we can estimate the C factor for all
the cases presented in the previous sections. The results are
summarized in Table I. As we can see, all the results for
electrons are of order 1 or bigger, which means that the effect
is experimentally observable. Dipoles’ results are smaller,
but not as much as one would naively expect.
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In electron interference experiments, we conclude that the
best experimental setup would be either the asymmetric tra-
jectory or the elliptic path. In those configurations, for ad-
equate parameters of the trajectories it is in principle possible
to obtain a complete destruction of the interference pattern
�setting the value of �C� equal to a zero of the Bessel function
J0�. In an interference experiment with dipoles, the best ex-
perimental setup would be either the asymmetric trajectory
or the waveguide. In these cases, the effect is non-negligible
thanks to the fact that the C factor is independent of the
velocity. Moreover, as shown in the Appendix, one is al-
lowed to increase the intensity of the external field, since the
scattering cross section for dipoles is much lower than for
electrons, it being still possible to neglect the direct interac-
tion with the electromagnetic field.

V. FINAL REMARKS

We have estimated the loss of contrast produced when
interfering particles are shined by a classical electromagnetic
field. We considered both a monochromatic, linearly polar-
ized electromagnetic field, and electromagnetic fields inside
a waveguide. We considered different trajectories for both
charged particles and dipoles. Symmetric and asymmetric
paths have been used in order to illustrate the dependence of
the fluctuating phase upon the velocity. We have shown ex-
amples �asymmetric trajectories, waveguide� in which the
loss of contrast for dipoles is independent of the velocity in
the low velocity limit. This particular behavior does not
show up for charged particles. However, we have found that
the effect for electrons is in general larger than the one com-
puted in Ref. �7� for a particular symmetric trajectory.

We also estimated the backreaction effect of the fields
over the dipoles, evaluating the scattering cross section.
When the mean free path for dipoles is much larger than the
characteristic dimensions of their trajectories, the direct in-
teraction between dipoles and photons can be neglected. This
condition puts an upper bound over the external field inten-
sity. Given an external field, the decoherence for dipoles is
smaller than the one expected for electrons. However, as the
scattering cross section is also smaller, it is in principle pos-
sible to increase the intensity of the external fields in order to
partially compensate the difference, still within the upper
bound mentioned above.

Finally, we estimated the magnitude of the effect for val-
ues of the different parameters achievable in the laboratory.
In the case of electrons, for an adequate setup the interfer-
ence fringes can disappear totally. For dipoles, the indepen-

dence with the velocity makes the effect much more impor-
tant than naively expected, and could be observed for
sufficiently strong external fields.
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APPENDIX: SCATTERING CROSS SECTIONS

The loss of contrast computed in the previous sections
depends on the intensity of the classical electromagnetic
field. In the usual AB and AC effects, the force on the
charges and dipoles vanishes. However, in the time-
dependent case considered in this article, the dipoles have a
direct interaction with the electromagnetic field, which we
neglected. Therefore, the intensity of the electromagnetic
field is limited by the scattering cross section: the mean free
path for dipoles should be much larger than the characteristic
size of its trajectory.

In this section we will evaluate the scattering cross sec-
tion for both dipoles in interaction with a plane wave, and for
dipoles traveling inside the waveguide, and compare these
with the results for charged particles.

1. Plane wave

The force experienced by a nonrelativistic neutral atom
with arbitrary electric and magnetic dipole moments in the
presence of an electromagnetic field is �13�

F = ��d · E�R� + m · B�R�� + �t„d � B�R�… , �A1�

where R is the position of the center of mass of the atom.
For the plane wave of Sec. II, the force on the particle

reads

F = − kyE0 cos��t − kyy��dyẑ + mxŷ� . �A2�

If the atom’s center of mass is oscillating around the origin
of coordinates �y=0�, we can approximate the force it feels
as the force evaluated at y=0 for every time t. In the nonrel-
ativistic limit, the acceleration of the particle is ẍ=F /mA.

Writing the dipole moment as d=ex, we can compute d̈ from
the force, and use Larmor’s formula to know the angular

distribution of radiated power dP /d�= �1/4���d̈�2 sin2���,
where � is the angle between d̈ and n, a unit vector. The
scattering cross section, averaged in time, is therefore

�d =
8�

3

e2

mA
2 ky

2�dy
2 + mx

2� . �A3�

We can compare this result with Thomson’s scattering cross
section �e= �8� /3��e2 /me�2 for the case of a nonrelativistic
electron interacting with a plane wave. If we consider that
�dy�� �mx�, then

�d � �e�L

�
�2� me

mA
�2

, �A4�

where L is the dipole’s characteristic length and � is the
wavelength of the field. Thus, we can see that the mean free

TABLE I. Order of magnitude of the absolute value of the C
factor for all trajectories, for both dipoles and electrons.

Trajectories Electrons Dipoles

�C� 1 10−6

�Cellip� 10 10−3

�Casym� 10 10−1

�CTE1,0
� 1 10−1
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path for dipoles lmfp
d �1/�d is bigger than the corresponding

lmfp
e for electrons in a factor �� /L�2�mA/me�2.

Based on this simple observation, we conclude that the
suppression of fringe visibility in the experiment done with
coherent electrons or with coherent dipoles could have a
similar order of magnitude. Indeed, although for a given ex-
ternal field the suppression is bigger for electrons than for
dipoles, in the latter case it is possible to increase the inten-
sity of the external field to partially compensate the differ-
ence, still within the limit of negligible direct interaction.

2. Waveguide

For the case of a dipole interacting with the fields of the
TE mode inside a waveguide the force is written as

Fd =
kkz

�2 B0�dxkx sin�kxx�sin�kzz�sin�kyy − �t�

− dyky cos�kxx�sin�kzz�cos�kyy − �t�

− dzkz cos�kzz�cos�kxx�sin�kyy − �t��x̂

+
kkx

�2 B0�dxkx cos�kxx�cos�kzz�sin�kyy − �t�

+ dyky sin�kxx�cos�kzz�cos�kyy − �t�

− dzkz sin�kxx�sin�kzz�sin�kyy − �t��ẑ �A5�

Following the reasoning above for the case of the plane
wave, we obtain that the scattering cross section of the TE
mode is given by

�TE
d �

8�

3

e2dy
2

mA
2 kky =

8�

3

e4

mA
2 L2kky = �TE

e ky
2L2� me

mA
�2

,

�A6�

where �TE
e = �8� /3��e4 /me

2��k /ky� is the total cross section
for an electron inside the waveguide in the TE mode �for
simplicity we assumed that kx�kz, and a�b�. Therefore, we
obtain �TE

d ��TE
e , and lmfp

d,TE� lmfp
e,TE.

For the TM modes, an analogous calculation shows that
�TM

d ��TE
d .
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