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We show that the Kijowski distribution for time of arrivals in the entire real line is the limiting distribution
of the time-of-arrival distribution in a confining box as its length increases to infinity. The dynamics of the
confined time-of-arrival eigenfunctions is also numerically investigated and demonstrated that the eigenfunc-
tions evolve to have point supports at the arrival point at their respective eigenvalues in the limit of arbitrarily
large confining lengths, giving insight into the ideal physical content of the Kijowsky distribution.
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I. INTRODUCTION

The problem of accommodating time as a quantum dy-
namical observable has a long history and remains contro-
versial to this day �1–10�. The time of arrival �TOA� of a
quantum structureless particle at a point or a surface is one
aspect of this problematic treatment of time in quantum me-
chanics in need of clarification �4,5�. Recently significant
progress has been made, both at the operational and founda-
tional fronts for the quantum time-of-arrival problem. Most
notable at the operational level is the convergence of several
analyses of the problem to the axiomatic distribution of ar-
rival for freely moving particles due to Kijowski �6�. Kijows-
ki’s distribution was first obtained operationally �under some
limiting conditions� by Allcock �7� and later shown to be
arising from the quantization of the classical time of arrival
�8,11�, inspiring extension of the theory to the interacting
case �12–14� or multiparticle systems �15�. Most important
of these developments in understanding the physical content
of Kijowski distribution is the realization that, while axiom-
atic in nature, it can be obtained from an operational proce-
dure �16,17�, whose essence is to modify �filter� the initial
state to counterbalance the disturbance introduced by the ap-
paratus, in particular at low energies.

At the foundational level, it has been shown that the non-
self-adjointness of the free time-of-arrival operator, widely
regarded as due to the semiboundedness of the Hamiltonian
in accordance with Pauli’s theorem �1,9�, can in fact be lifted
by spatial confinement �9�. Thus the concept of confined
quantum time of arrival �CTOA� was introduced �10�. The
CTOA operators form a class of compact and self-adjoint
operators canonically conjugate with their respective Hamil-
tonians in a closed subspace of the system Hilbert space.
Being compact, the CTOA operators possess a discrete spec-
trum and a complete set of mutually orthogonal square inte-
grable eigenfunctions �21�. The eigenfunctions of the CTOA
operators are found to be states that evolve to unitarily �i.e.,
according to Schrodinger’s equation� arrive at the origin at
their respective eigenvalues—that is, the events of the cen-

troid of the position distribution being at the origin and its
width being minimum occur at the same instant of time.

Now we are confronted with the problem of relating the
already established results for the unconfined quantum par-
ticle to the confined one, in particular the question whether
the established Kijowski time-of-arrival distribution is ex-
tractable or not from the confined time-of-arrival operators.
Therefore in this paper we give meaning to the limit of the
discrete time-of-arrival distribution of the CTOA operators
defined on succesively larger segments, proving that this
limit is Kijowski’s distribution. We begin by a short review
of the properties of the confined and unconfined time-of-
arrival operators; this is followed by numerical indications of
the relation between these two cases, numerical indications
that are strengthened by the analytical proof of the following
statement: The time-of-arrival operator on the full real line is
the limit for l tending to infinity of the time-of-arrival opera-
tors defined for free motion in a segment of length 2l. The
dynamics of the CTOA eigenfunctions are then numerically
investigated in the limit of arbitrarilly large confining
lengths. We end by summarizing and providing conclusions.

II. THE QUANTUM FREE TIME-OF-ARRIVAL
OPERATOR

From a heuristic perspective, it is quite natural to assume
that the quantum TOA may be associated with the quantiza-
tion of the corresponding classical expression. That is, if a
classical free particle, of mass � in one dimension at initial
location q with momentum p, will arrive, say, at the origin at
the time T�q , p�=−�qp−1, then the quantum TOA distribu-
tion must be derivable from a quantization of T�q , p�, such as
the symmetrized

T = −
1

2
��qp−1 + p−1q� , �1�

where p and q are the momentum and position operators.
Formally the time-of-arrival operator T is canonically conju-
gate to the free Hamiltonian, H= �2��−1p2, i.e., �H ,T�= i�.
Equation �1� has been separately studied when the motion of
the free particle takes place in the entire real line and when it*Electronic address: eric.galapon@up.edu.ph
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is restricted to a segment of the real line. These studies led to
some seemingly contradictory descriptions, in that the time-
of-arrival operator is not self-adjoint for the full real line,
while there is an infinite family of self-adjoint operators
playing the corresponding role for the segment. Furthermore,
for the full line case there is a well-defined property of time
covariance which is lacking in the confined case.

A. The TOA operator in Hp=L2
„−� ,�…

In momentum representation, Eq. �1� formally assumes
the form

T =
i��

2
� 1

p2 −
2

p

�

�p
� .

Under a sensible choice of domain �18�, T is a densely de-
fined operator, and unbounded in HpªL2�R ,dp�. It is, how-
ever, not self-adjoint, and admits no self-adjoint extension. It
is in fact a maximally symmetric operator �18�. According to
the well-established theory for this kind of operator, there
exists a decomposition of unity given by the following de-
generate weak �or nonsquare integrable� eigenfunctions:

�̃�
�t��p� = ���p�� �p

2���
�1/2

eip2t/2m�.

This is a family of functions parametrized by the eigenvalue
t and a discrete parameter �, which can be either +1 or −1,
and gives the sign of the half-line on which the function
presents its support in momentum space. It is straightforward

to prove completeness, i.e., ���−�
� dt�̃�

�t��p���̃�
�t��p�=��p− p��,

and nonorthogonality,

	
−�

�

dp�̃��
�t���p��̃�

�t��p� =
1

2
�������t − t�� +

i

�
P

1

t − t�
� .

The physical content of the eigenfunctions is better exam-
ined in coordinate representation �11�. Normalized wave
packets with the form of quasieigenstates of T peaked at a
given eigenvalue, but with a time width 	T, have sharp
space-time behavior. Their average position travels with con-
stant velocity to arrive at the origin at the nominal arrival
time of the packet, in which the packet also attains its mini-
mum spatial width. The passage of probability density from
one side of the origin to the other is in summary as sharp as
desired by taking 	T→0 �11�. As we shall see later, the

unitary evolution of a �generalized� state 
�̃�
�t�� leads to a

distribution with point support at the origin at the instant
corresponding to the eigenvalue t, thus lending support to its
interpretation as a time-of-arrival eigenstate.

Using completeness, we can now write the probability
density for measured values of the T operator,


�0
�t� = �	

0

�

dp� p

2�m�
�1/2

e−ip2t/2m��0�p��2

+ �	
−�

0

dp� − p

2�m�
�1/2

e−ip2t/2m��0�p��2

,

which is, in fact, Kijowski’s probability density �6�.

An essential property of the distribution of arrivals in Ki-
jowski’s axiomatic approach is covariance under transforma-
tions generated by the Hamiltonian. It is evident that this
property of covariance is indeed held by the distribution
above. Physically, it means that the probability of arriving at
t for a given state is equal to the probability of arriving at
t−� for the same state, once evolved a time �. This is the
reflection on the probability density of the canonical commu-
tation relation between H and T.

B. The TOA operator in Hl=L2
†−l , l‡

In �10� the naive definition in Eq. �1� T for a free particle
in a segment of length 2l is supplemented by adequate
boundary conditions, leading to properly self-adjoint opera-
tors. Physically, the choice of time-of-arrival operator with
spatial confinement of the particle in the interval �−l , l� is
dictated by the condition that the evolution of the system is
generated by a purely kinetic self-adjoint Hamiltonian, i.e.,
H= �2��−1p2, where p is a self-adjoint momentum operator.
This requirement demands that the momentum operator p be
one of the set p�=−i��q ,�� /2�, with p� having the do-
main consisting of absolutely continuous functions ��q� in
Hl= �−l , l� with square integrable first derivatives, which fur-
ther satisfy the boundary condition ��−l�=e−2i���l�. Since T
depends on the momentum operator, T is also required to be
the corresponding element of the set of operators T��.

In coordinate representation, T� becomes the Fredholm
integral operator �T����q�=�−l

l T��q ,q����q��dq�, for all ��q�
in H, where the kernel is given by

T��0�q,q�� = − �
�q + q��
4� sin �

�ei�H�q − q�� + e−i�H�q� − q�� ,

�2�

T�=0�q,q�� =
�

4i�
�q + q��sgn�q − q�� −

�

4i�l
�q2 − q�2� ,

�3�

in which H is Heaviside’s step function and sgn is the sign
function.

With this representation, one can show that H� and T�

form a canonical pair in a closed subspace of Hl—a non-
dense subspace—for every �. Moreover, the kernel T��q ,q��
of T� is square integrable, i.e., �−l

l �−l
l 
T��q ,q��
2dqdq���.

This means that T� is compact, and, as a consequence, that it
has a complete set of �square integrable� eigenfunctions and
its spectrum is discrete. This, it should be stressed, is a radi-
cally different situation from that in the full line, where the
operator has a continuous spectrum and is not self-adjoint.

In what follows, we will need only the spectral properties
for the periodic confined quantum time-of-arrival operators
�that is to say, �=0�. The operator T0 commutes with the
parity operator. Furthermore, it changes sign under time in-
version, which entails that its spectrum is symmetric about 0.
This suggests classifying its eigenfunctions in even and odd
subspaces �which will be denoted by the subscripts e and o,
respectively�, and, within each of those subspaces, by a dis-

GALAPON et al. PHYSICAL REVIEW A 72, 042107 �2005�

042107-2



crete index n and the sign of the eigenvalue �indicated as a
superscript�. In this manner, and as computed elsewhere �10�,
the odd eigenfunctions are

�n,o
± �q� = Anqf±� snq2

l2 � �4�

with

f±��� = e�i��1/4�J−1/4��� � iJ3/4���� , �5�

while the even ones are given by

�n,e
± �q� = Bng±� rnq2

l2 � �6�

with

g±��� = e�i��3/4�J−3/4��� � iJ1/4���� +
e�irnJ1/4�rn�

rn
1/4 . �7�

An and Bn are the normalization constants, while sn and rn are
the solutions of the secular equations for the operator,
namely the positive roots of J−3/4�r�+ 2

3J5/4�r�+1/rJ1/4�r�=0
for the even case and of J−1/4�s�=0 for the odd case. The
eigenvalues are determined by

�n
± = ±

�l2

4�n�
, �8�

where �n stands for either rn or sn.
It has been demonstrated in �10� that a CTOA eigenfunc-

tion is a state that evolves unitarily—that is according to
Schrodinger’s equation—to being concentrated around the
origin at its eigenvalue along a classical trajectory, i.e., a
state in which the events of the centroid of the position dis-
tribution being at the origin and its width being minimum
occur at the same instant of time equal to the eigenvalue.

III. RECOVERING KIJOWSKI’S DISTRIBUTION FROM
THE CTOA OPERATORS

A. Numerical examples

We have thus seen that the time-of-arrival operators for
confined and unconfined free motion have radically different
properties, and it is not immediate how Kijowski’s distribu-
tion follows from the spectral properties of the CTOA opera-
tors. In this section we show that indeed Kijowski’s distribu-
tion is extractable from the discrete time-of-arrival
distribution defined by the CTOA operator. But before doing
so we first provide further justification from numerical re-
sults.

One basic difference between the two cases being exam-
ined is that the spectrum is continuous for the full line,
whereas it is discrete for the segment. As a consequence, the
same can be predicated of the probability distributions for
times of arrivals. Therefore in order to compare like with
like, it is convenient to use the accumulated probability of
having arrived at the origin before a given instant for both
cases.

Also in order to perform sensible comparisons we shall
consider initial states with compact support on the real line,

which can also be defined for all segments which would
include that compact support. In this manner the probability
of having arrived at the origin before instant t can be com-
puted for the same function both for the segment and the
line.

In the case of the segment, the probability of having ar-
rived at the origin before instant t for the initial state �0 is
calculated according to the standard quantum mechanical
prescription,

F�0
�t� = �

��,st


���,s
�0�
2, �9�

where ��,s and ��,s are the eigenfunctions and eigenvalues of
T�. This distribution is in turn investigated for increasing l
and compared with the accumulated probability for Kijows-
ki’s distribution,

F�0

K �t� = 	
−�

t


K��,�0�d� , �10�

where 
K�� ,�0� is the Kijowsky time-of-arrival density.
As the length of the segment l increases, the discrete ei-

genvalues of the corresponding time-of-arrival operators be-
come denser, and we take advantage of this property to have
another representation for comparison with Kijowski’s distri-
bution; namely plotting Kijowski’s time-of-arrival density
together with a discrete derivative of the probability of hav-
ing arrived at the origin before a given instant, in the case of
the segment, discrete derivative that can be understood as a
time-of-arrival density. This allows us an easier recognition
of some features that would otherwise be obscured in the
accumulated probability.

Figures 1–3 show the accumulated probability for the dis-
crete case and for the Kijowski distribution, together with
their corresponding time-of-arrival densities. In Fig. 1 we
depict a simple situation for an initial Gaussian state, with a
good match between the distributions for both the full line
and the segment. Figure 2 corresponds to an initial state that
presents the backflow effect �19�, that is, that at some in-
stants the quantum probability flux can become negative
even if all the components of the state are of positive mo-
mentum. In the situation depicted in Fig. 2, therefore, we can
discriminate whether the discrete distribution associated with
the segment approaches Kijowski’s distribution or, rather, the
flux, which is also related to the density of arrivals. The
result, as can be ascertained from the inset in Fig. 2, is that
Kijowksi’s distribution is the one selected in the limit of
large l. Figure 3 is a depiction of accumulated probabilities
for different values of l, clearly showing convergence to Ki-
jowski’s accumulated probabilities; similarly with the dis-
crete derivatives.

All together, these numerical results suggest strongly that
the l→� limit of the time-of-arrival operators for the seg-
ment of length 2l tend to the time-of-arrival operator on the
real line, in some sense.

B. The limit for large l

A first hint into the relationship between the confined and
unconfined TAO operators is provided by the kernel of the
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later in position representation. In q representation, the T
operator takes on the form of the integral operator

�T���q� = 	
−�

�

�q
T
q����q��dq�, �11�

where the kernel is given by

�q
T
q�� =
�

4i�
�q + q��sgn�q − q�� . �12�

Clearly this is the l→� formal limit of the kernel T0�q ,q��.
It is also the limit as �→0 of kernels T��q ,q��, and, since
the large l limit washes out the effect of the boundary con-
ditions, �i.e., the wave functions must necessarilly vanish at
infinity� this implies that the kernels match up in the large l
limit. For this reason, it will be sufficient for us to consider
the periodic confined time of arrivals in the limit of arbi-
trarily large confinement lengths.

1. Kijowski distribution in position representation

In what follows we will need the position representation
of the degenerate eigenfunctions of T. In q representation,
the eigenfunctions assume the form

�t
±�q� =

1
�2��

	
0

�

e±iqp/�� p

2��
�1/2

eip2t/2��dp , �13�

where the integration is understood in the distributional
sense. Even and odd combinations of these are likewise
eigenfunctions with the same eigenvalue t,

�t
e/o�q� =

1
�2

��t
+�q� ± �t

−�q�� . �14�

The full explicit expression for �t
e/o�q� is obtained by direct

substitution, leading to

FIG. 1. The top figure shows the accumulated probability of
arrival vs time at the origin for a Gaussian wave packet with mean
momentum �P�=100, full width at half maximum �x=0.05, and
initial expected value �X�=−1 �all the quantities in atomic units�.
The dots correspond to confined motion with l=10, and the solid
line to the full line. In the lower figure we depict the corresponding
probability densities �with the same notation�, defined as explained
in the text.

FIG. 2. Accumulated probability of arrival �upper figure� vs
time at the origin for two Gaussian wave packets with mean mo-
mentum �P1�=200 and �P2�=100 with maximum interference at the
origin, e.g., �X1�=−1 and �X2�=−0.5. The full width at half maxi-
mum is �x=0.05 for both Gaussians. The dots correspond to con-
fined motion with l=10, while the solid line corresponds to the full
line. For completeness the dotted line depicts the quantum probabil-
ity flux at the origin, integrated up to the relevant instant. The inset
shows the zone of maximal discrepancy between integrated flux and
accumulated Kijowski’s probability, where the accumulated prob-
ability for confined motion matches Kijowski’s. In the lower figure
we show the corresponding probability densities �with the same
notation� defined as explained in the text, as well as the quantum
probability flux at the origin: in this situation there is a backflow
effect �19�.
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�t
e/o�q� = ei��1±2��/8�1

4
� 2

�t
� �

�t
�1/4

exp�− i
�q2

4�t
�

� �D1/2�− ei��/4���

�t
q� ± D1/2�ei��/4���

�t
q�� ,

�15�

where D� is the parabolic cylinder function, and the even and
odd case correspond to positive and negative sign, respec-
tively.

In momentum representation it is known that these eigen-
states form a resolution of the identity. It thus follows, owing
from the unitarity of the Fourier transform, that the same
happens in the position representation Hilbert space, L2�R�,
i.e., ���−�

� dt�t
��q���t

��q�=��q−q��, with � standing for e
and o. They are likewise nonorthogonal.

Because of the invariance of Kijowski’s distribution under
parity, it can be split in even and odd components of the
wave function. In terms of �t

e/o�q�, it then assumes the form


�0
�t� = 
�0

e �t� + 
�0

o �t� �16�

where


�0

e/o�t� = �	
−�

�

�t
e/o�q��0�q�dq�2

. �17�

In the following section, we will show that 
�0

e/o�t�, and,
hence, Kijowski’s distribution itself, can be obtained from
the accumulated probability of arrival F�0

�l��t� in the limit l

→�.
We will do so by a proper identification of the limit of the

eigenfunctions of the confined quantum time of arrivals for l
approaching infinity as the eigenfunctions given by Eqs.
�15�. To this end we will need the position representation of
the eigenvalue problem for T, which is explicitly given in
momentum representation in the form

i��

2

1

p2�t�p� − i��
1

p

d�t�p�
dp

= t�t�p� . �18�

Multiplying both sides of the equation by p2 and then Fourier
transforming the resulting expression leads to the position
representation of the above eigenvalue equation

d2�t�q�
dq2 +

�iq

t�

d�t�q�
dq

+
3�i

2t�
�t�q� = 0, �19�

where �t�q�=1/�2���−�
� exp�i /�qp��t�p�dp. Straightfor-

ward substitution of �t
e/0�q� in the differential equation

shows that they are linearly independent solutions of Eq.
�19�.

2. F�0

„l…
„t… for large l

As we have pointed out above, both in the case of the full
real line and in that of the segment the Hamiltonian and the
operators T and T0 are invariant under parity. It follows that,
if we rewrite an initial function in terms of an even and an
odd component, their separate distributions for times of ar-
rival sum to the distribution for the total function, with no
interference term being required. It is thus useful to separate
the analysis in the even and odd sectors. That is, we need to
examine whether the distributions F�0

�l�e/o�t� �which are the
separate contributions to the probability of having arrived at
the origin prior to instant t of the even and odd components
of the initial state �0� do indeed tend to �−�

t dt�
�0

e/o�t��, re-
spectively, as l approaches infinity.

First let us consider the contributions from the odd eigen-
functions for the accumulated probability. This is given by

F�0

�l�o�t� = �
�n

±
t

1

l3J3/4
2 �sn�sn

1/2�	
−l

l

qe±isnq2/l2�sn
q2

l2 �1/4

��J−1/4�sn
q2

l2 � ± iJ3/4�sn
q2

l2 ���0�q�dq�2

,

�20�

where the sum includes only contributions from eigenfunc-
tions with eigenvalues smaller than t , l is large enough such

FIG. 3. The upper figure shows the accumulated probability of
arrival at the origin vs time for two Gaussian wave packets with
mean momentum �P1�=5 and �P2�=1.5 with �X1�=−1 and �X2�=
−0.5. The full width at half maximum is �x=0.05 for both Gauss-
ians. The distinct lines correspond to different values of l: l=3, long
dashed line; l=5, dotted-dashed line, and l=15, circles. The solid
line corresponds to Kijowski’s distribution. In the lower figure we
show the corresponding probability densities �with the same nota-
tion�, as defined in the text.
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that the interval �−l , l� contains the support of �0�q�, and we
have used the explicit value of the normalization factor An.

As our numerical computations demonstrate, for increas-
ing l the dominant eigenfunctions contributing in the calcu-
lation of the accumulated probability come from large values
of n. But as n increases the eigenvalues of the dominant
contributors become denser. Therefore for every time t and
large l there exists a corresponding n�l , t� such that 
t

−�n�l,t� �that is, the difference between the eigenvalue closest
to 
t
—for that value of l—and 
t
� tends to 0 as l tends to
infinity. For any given � then we can write the corresponding
sn as �l2 /4��, with the adequate sign, in the inner integrand.

As for the normalization factor, it is clearly the case that
sn tends to infinity, in which limit we can use the asymptotic
properties of Bessel functions and their zeroes to write
l3J3/4�sn�2sn

1/2 in the form 2l3 /�sn
1/2 or, alternatively,

�4l2 /����
�
 /�. Finally, since the spacing between the roots
of J−1/4 tends to � as n tends to infinity, we have the result
that the spacing between successive values of �n �with either
sign� is 4���2 / ��l2�, whence it follows that the sum ��n

±t

can be substituted by the integral �l2�−�
t d� /4���2.

Putting together all these asymptotic expressions, we see
that Eq. �20� becomes

F�0

�l�o�t� →
2�

�
	

−�

t

d�� �

4��
�5/2�	

−�

�

qei�q2/4��� �

4��
q2�1/4

��J−1/4� �

4��
q2� + iJ3/4� �

4��
q2���0�q�dq�2

.

�21�

Differentiating this with respect to time yields the corre-
sponding probability density


�0

odd�t� =
2�

�
� �

4�t
�5/2�	

−�

�

qei�q2/4t�� �

4t�
q2�1/4

��J−1/4� �

4t�
q2� + iJ3/4� �

4t�
q2���0�q�dq�2

,

�22�

from which we extract the limit of the odd eigenfunctions as
l approaches infinity. The limit is

�t
odd�q� =�2�

�
� �

4�t
�5/4

q� �

4t�
q2�1/4

exp�− i
�q2

4t�
�

� �J−1/4� �

4t�
q2� − iJ3/4� �

4t�
q2�� . �23�

The relationship between Eqs. �15� and �23� is not immedi-
ate; but their relationship can be established by substituting
�t

odd�q� back in Eq. �15�, and finding that it is a solution to
the differential equation, meaning it is an eigenfunction of
the time-of-arrival operator in the entire real line with the
eigenvalue t. Since �t

odd�q� is odd, then it must differ at most
with �t

−�q� by a constant factor. Expanding �t
odd�q� and �t

−�q�
about q=0, we find that they differ only up to the irrelevant

phase factor e−i�/4. Then we must have 
�0

odd�t�=
�0

− �t� in the
limit of infinite l.

The same procedure can be carried out for the contribu-
tion of the even eigenfunctions, albeit with more cumber-
some algebra, and the corresponding conclusion is derived.
As a consequence, we have proved that the l→� limit of the
discrete probability distribution for times of arrival for a spa-
tially confined particle is indeed Kijowski’s probability dis-
tribution.

It might be thought that our proof is lacking in that above
we assumed that the initial state has compact support, while
Kijowski’s distribution must also be defined for other nor-
malizable functions. However, our analysis can be extended
to initial states with tails extending to infinity. Let ��q� be
such a state. There always exists a sequence of states with
compact supports, �n�q�, n=1,2 , . . ., such that �n�q�→��q�.
We can, say, pick �1�q� and apply our above analysis to this
initial state. Once we get the limit of infinite l, we follow it
with the limit in n. The resulting limit is going to be Kijows-
ki’s distribution because of the continuity of the inner prod-
uct.

IV. THE DYNAMICS OF THE CTOA EIGENFUNCTIONS
IN THE LIMIT OF INFINITE l

We have shown above that the Kijowski distribution is the
limit of the discrete distribution for arbitrarily large l; but
what physical insight can we get from this realization? Re-
call that one of the surrounding issues against an ideal quan-
tum time-of-arrival distribution is the fact that a quantum
particle loses the localized property of its corresponding clas-
sical particle entity. Classically the concept of time-of-arrival
is well-defined because a classical particle has a well defined
trajectory. This is contrary to the fact that no such trajectory
can be ascribed to the quantum particle—it has no definite
position and momentum.

Now the theory of confined quantum time of arrivals
demonstrates that the quantum time-of-arrival problem, at
the ideal level, i.e., at the level where measuring instruments
play no explicit role, can be rephrased to finding states that
unitarily arrive at a given point at a definite time—states in
which the events of the centroid being at the origin and the
position distribution width being minimum occur at the same
instant of time. The QTOA problem phrased in this way is
well-defined because quantum states have well-defined tra-
jectories according to the Schrodinger equation. All these
give us insight to the ideal physical content of the Kijowski
distribution. Let us see how.

Let us consider some fixed time �, and for any given
length l of spatial confinement, we can find an n such that the
eigenvalue �n is closest to �. Now consider a sequence of
monotonically increasing l’s, l1 , l2 , l3 , . . .., with l1� l2� l3
�¯. Then there will be an n1 corresponding to l1 such that
�n1

is closest to �; and an n2 corresponding to l2 such that �n2
is closest to �; and so on. For arbitrarily large lengths, we
should have �n1

��n2
� ¯ ��, so that in the limit of infinite

lengths they converge to �.
We know that the eigenfunctions �n1

,�n2
, . . .. will obtain

their minimum variances at their respective eigenvalues
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�n1
,�n2

, . . .. How do the variances compare for the different
�n’s? Equivalently, what is the behavior of the variance with
respect to �n at the eigenvalue �n as l approaches infinity? In
this case the variance increases with l. This is not surprising
because the �n’s would be thrown out of the Hilbert space
for infinite l, i.e., they acquire infinite variances.

However, if we substitute the width at half maximum
�WHM� of the probability density 
�n�q ,�n�
2 at the eigen-
value �n for the variance, we find that WHM decreases with
increasing l. Figure 4 demonstrates this. What is even more
important is that the density 
�n�q ,�n�
2 at the eigenvalue �n

tends, as l increases indefinitely, to a function with point
support at the origin. Figure 5 demonstrates this. These re-
sults imply that the CTOA eigenfunctions in the limit of
infinite l �which are already outside of the Hilbert space�
evolve to “collapse” at the origin at their respective eigen-
values. This allows us to interpret Kijowski’s distribution as
the ideal time-of-arrival distribution of collapsing states at
the origin.

V. DISCUSSION

From a purely technical point of view, we have shown
that Kijowski’s �continuum� time-of-arrival distribution for
free, unconfined quantum particles can be obtained as the
limit of the �discrete� distribution that results from quantiz-
ing the time of arrival in a finite box, taking into account the
eigenvalue spacing in the transition from sums to integrals.
Note that the TOA operator is not self-adjoint in the uncon-
fined case, but it is self-adjoint in the box. There are several
possible readings of this fact. We will point out some of
them, with the aim of opening a public discussion on the
fundamental issues involved, rather than to settle final an-
swers and exhaustive explanations.

For those following a traditional, von Neumann’s formu-
lation of quantum mechanics, the connection with a self-
adjoint operator may be satisfactory since, within this frame-
work, all observables must be associated with self-adjoint
operators. One of the customary roles of self-adjointness is to
assure the orthogonality of eigenfunctions so that, according
to the projection postulate, repeated measurements would
give the same result. It turns out however, that this idealiza-
tion is not applicable to many observables and/or measure-
ment operations. In particular, improper eigenfunctions for
observables with continuum spectrum �such as momentum,
energy, or position on the line� are not normalizable, and thus
the collapse and repeated measurement idea cannot be ap-
plied literally, even in principle, but only approximately. It
seems then that, as long as some ideal probability distribu-
tion may be computed unambiguously, there is no fundamen-
tal need to have a self-adjoint operator in these cases. Indeed,
if one adopts the point of view that observables are best
formulated in terms of POVMs �3,8�, self-adjointness is not
essential to describe observables. The eigenfunction orthogo-
nality may, however, be seen anyway as a desirable, simpli-
fying property, whereby a part �component� of the initial
state is responsible for a given outcome �eigenvalue� and not
for any other. What the present paper shows is that the time-
of-arrival eigenfunctions in the unbounded case differ, appart
from a normalization factor, only outside the large box or far
from the arrival point at the origin. The nonorthogonality in
the continuum is thus caused by the distant eigenfunction
behavior with negligible overlap with the initial wave packet,
and is thus physically irrelevant for computing the distribu-
tion.

Another problematic matter is the interpretation of the
discrete nature of the time-of-arrival eigenvalues in the box.
A discretization of time variables should not be surprising.
For any system with discrete energies or eigenmodes the
corresponding time periods are also discrete. In the same
vein, the TOA operator considered involves the discretized
momentum operator in the denominator and therefore dis-
crete eigenvalues. The problem thus is not in accepting the
possibility of a discretization but in determining its opera-
tional meaning. “Measurements,” and “observables” are fre-
quently highly idealized in quantum mechanics, to the point
that all explicit reference to an apparatus could disappear.
This is useful, but may also leave us without important
physical references for its operational interpretation.
Whereas an operational interpretation exists for Kijowski

FIG. 4. Width at half maximum �WHM� of the evolved odd and
even eigenfunctions �upper and lower lines� at the corresponding
eigenvalues closest to t=0.01 vs length l.

FIG. 5. Probability density 
�n���
2 vs position at the corre-
sponding closest eigenvalue �n to t=0.01, for the even �upper fig-
ure� and odd �lower figure� eigenfunctions. The different lines are
associated with l=1 �thick solid line�, l=2 �dashed line�, l=3 �long-
dashed line�, l=4 �dotted-dashedline�, and l=5 �thin solid line�.
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distribution in the continuum, a direct operational interpreta-
tion of the discrete times of the confined case is still missing
and is one of the challenges for future research. In any case,
the discrete-continuum smooth transition found here may be
a useful tool to generate new theories of, say, first time of
arrival with interacting potentials, that can be later translated
to the continuum and operationally interpreted or compared
with existing operational proposals �20�.
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