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Joint, or simultaneous, measurements of noncommuting observables are possible within quantum mechan-
ics, if one accepts an increase in the variances of the jointly measured observables. In this paper, we discuss
joint measurements of a spin-1 /2 particle along any two directions. Starting from an operational locality
principle, it is shown how to obtain a bound on how sharp the joint measurement can be. We give a direct
interpretation of this bound in terms of an uncertainty relation.
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I. INTRODUCTION

Quantum mechanics places restrictions on how sharply
two noncommuting observables can be measured jointly. A
joint measurement means that by performing one measure-
ment on a single quantum system, we are able to produce a
result for each of the two observables. This could, just to
take an example, be useful when trying to eavesdrop on two
parties, who are communicating using quantum cryptogra-
phy. Let us assume that the protocol used is Bennett-Brassard
1984 �BB84� �1�, where two different photon polarization
bases are used to represent the data sent. A polarized system
is of course equivalent to a spin-1 /2 quantum system. In the
first basis, horizontal polarization means “0” and vertical po-
larization means “1.” The second basis is oriented at 45° to
the first. You are trying to measure whether a “0” or “1” is
sent, but you do not know what basis the sender is using for
each photon. In this situation, you might try to measure po-
larization along both directions at the same time, so that,
when the sender announces which basis was used, you can
pick the right result. It turns out, of course, that an eaves-
dropper making quantum-mechanical joint measurements of
polarization along two nonorthogonal directions, will not ob-
tain perfect information about the polarization, even after the
bases have been announced. Nevertheless, the example illus-
trates that it may be interesting to consider joint measure-
ments in quantum mechanics, and that it is important to un-
derstand the limitations placed on such measurements.

One way to achieve a joint measurement of two observ-
ables would simply be to measure one of the observables,
and to guess a result for the other observable. This is not
usually the best way to perform the joint measurement. It is
also possible to make more balanced joint measurements,
where the “element of guessing” is distributed more evenly
between the observables. The variances for jointly measured
observables, as constructed by considering the same joint
measurement performed many times on an ensemble of
identical systems, have to be larger than if one would make
sharp measurements of the observables alone. Quantum-
mechanical joint measurements have been considered, for
example, in seminal papers by Arthurs and Kelly �2� and
Arthurs and Goodman �3� and are reviewed in Ref. �4�.

In this paper, we will consider joint measurements of a
noncommuting pair of components of polarization, or spin-

1 /2, along any two directions. A bound on the sharpness for
such a measurement can be derived using the formalism of
generalized measurements or probability operator measure
�POM� �or positive operator-valued measure �POVM�� mea-
surements �5�. Here, we will show how to obtain the same
bound without any explicit description of the measurement
operators. We use only the assumption that a joint probability
distribution exists, together with a requirement for opera-
tional locality. By operational locality, we mean that if two
quantum systems are space-like separated, then what is done
to one of the systems locally cannot affect the reduced den-
sity matrix of the other system �6�. This could also be re-
ferred to as a requirement that no �superluminal� signaling
can take place. Furthermore, a joint probability distribution
for the measured components clearly must exist for a joint
measurement, whether the measurement is quantum or clas-
sical. These two assumptions, operational locality and the
existence of a joint probability distribution, are enough to
obtain the measurement bound.

We also show how the bound on the joint measurement
may be written as an uncertainty relation for the increases in
the measured variances. In this form, it is clearly seen how
the polarization or spin measurement bound fits in with the
general result for joint measurements as stated by Arthurs
and Goodman �3�. The general result holds for any two ob-
servables, but the bound is not always tight for any measured
state. The uncertainty relation for two jointly measured spin
observables, on the other hand, can always be saturated with
a suitable measurement, for any measured state.

The paper is organized as follows. In Sec. II, we introduce
the joint spin measurement and derive a bound on its sharp-
ness using a locality argument. In order to illustrate the con-
cept of a joint spin measurement, we present an example of a
possible realization in Sec. III along with the relevant mea-
surement operators in Sec. IV. In Sec. V, the bound is shown
to be equivalent to a bound on the product of the increases in
the variances of the jointly measured observables. Finally a
discussion and conclusions are offered.

II. JOINT MEASUREMENTS OF SPIN

Let us suppose that we measure the spin of a S=1/2
particle jointly along two directions, given by the unit vec-
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tors a and a�. At the moment, we do not need to think about
how to achieve the joint measurement. If measured sepa-

rately, the relevant observables are given by Â=a · �̂ and

Â�=a� · �̂. The question now arises what requirement to
place on the joint measurement, in order for it to be a “good”
measurement of both observables. A frequently made choice
is the joint unbiasedness condition employed, e.g., by
Arthurs and Goodman �3�. In line with this condition, we
choose to require that the constructed expectation values of
the jointly measured observables must be proportional to the
expectation values of the separately measured observables.
This condition must hold for any measured quantum state
with the same constants of proportionality, called � and ��.
Using this fact, the variances of the jointly measured observ-
ables may be written as

��AJ�2 = AJ
2 − AJ

2 = 1 − �2�Â�2,

��A�J�2 = AJ�
2 − A�J

2 = 1 − ��2�Â��2, �1�

where we denote the values obtained in the joint measure-
ment by AJ and A�J. An overbar denotes an average, taken
for the state we are measuring. We choose not to use the
notation �·� used for quantum-mechanical averages at this
point, since we have defined neither observables nor opera-
tors for the joint measurement. AJ and A�J are results ob-
tained in the measurement, not operators. In Eq. �1�, we have
also used the fact that the measurement result, ±1, always
equals +1 when squared. In general, the joint measurement

of Â and Â� results in an increase in their variances as com-
pared to separate measurements, and this forces ��� and ����
to be smaller than 1. The precise upper bound on ��� and ����
stems from the fact that a joint probability distribution must
exist for AJ and A�J, for any valid quantum state. The bound
will depend on the directions of a and a�. It has previously
been derived by considering all possible generalized mea-
surement operators describing the joint measurement �5�. In
the following, we present a less technical derivation using
the principle of operational locality. This requires no further
assumptions about the joint measurement itself, other than
the definitions made above.

We now proceed to derive a bound on the joint measure-
ment. Consider two spin-1 /2 particles prepared in the singlet
state

��−� =
1
�2

�� + �1�− �2 − �− �1� + �2� . �2�

Two observers have access to one quantum system each. By
operational locality, we mean that no operation done on one
of the systems can affect the reduced density matrix of the
other system. The local operation can be a measurement, or
any other operation. Local operations on one system thus
cannot be detected on the other. Measurement results on the
two subsystems may be correlated, but the correlations can-
not be used for signaling �6�. It necessarily follows that the
communication scheme we now will describe must fail. On
quantum system 2, observer 2 will make a measurement of
spin either along b or along b�. This yields the results ±1

with equal probabilities. On quantum system 1, observer 1
will then make a joint measurement of spin along two direc-
tions, a and a�. Consider the situation when b is parallel to
a+a� and b� is parallel to a−a�. Intuitively, if observer 2
chooses to measure along b, observer 1 should be likely to
obtain the same result for both a and a�, “++” or “−−,” and
different results, “+−” or “−+,” if observer 2 measures along
b�. If so, this would provide a means for instantaneous com-
munication between the two observers. But because of op-
erational locality, the probabilities for the results observer 1
obtains cannot depend on any action taken by observer 2.
Observer 1 cannot tell whether observer 2 measured b · �̂2 or
b� · �̂2, and the communication scheme has to fail. This will
provide a bound on how accurately observer 1 can perform
the joint measurement.

Let us denote the measurement results by AJ ,A�J ,B, and
B�; these are all ±1. Because of the operational locality prin-
ciple, the probabilities for observer 1 to obtain the same re-
sult for spin along both a and a� cannot depend on whether
observer 2 measured along b or along b�. Nevertheless, sup-
pose first that observer 2 has measured spin along b. The
probability that observer 1 obtains AJ=A�J can then be writ-
ten

p�AJ = A�J� = p�AJ = A�J = B� + p�AJ = A�J = − B� . �3�

The probabilities on the right-hand side, for the triples
AJ ,A�J ,B and AJ ,A�J ,B�, must exist. These probabilities are
greater than or equal to zero and hence

p�AJ = A�J = B� + p�AJ = A�J = − B�

� �p�AJ = A�J = B� − p�AJ = A�J = − B�� . �4�

We can use the correlation functions

E�A,B� = p�A = B� − p�A = − B� = AB �5�

to write

p�AJ = A�J = B� − p�AJ = A�J = − B�

=
1

2
�E�AJ,B� + E�A�J,B�� , �6�

finally giving us

p�AJ = A�J� �
1

2
�E�AJ,B� + E�A�J,B�� . �7�

In a similar way, if we assume that observer 2 has measured
spin along b�, we can derive

p�AJ = − A�J� �
1

2
�E�AJ,B�� − E�A�J,B��� . �8�

The probabilities on the left-hand sides of these two inequali-
ties are independent of whether observer 2 measured spin
along b or b�. Adding the two inequalities, and noting that
p�AJ=A�J�+ p�AJ=−A�J�=1, we obtain

�E�AJ,B� + E�A�J,B�� + �E�AJ,B�� − E�A�J,B��� � 2. �9�

This inequality bears great resemblance to a Clauser-Horne-
Shimony-Holt �CHSH� Bell inequality �7,8�. In the context
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of Bell inequalities, it has been shown that the existence of
“hidden variables” reproducing the correct probability distri-
butions is equivalent to the condition that joint probabilities
exist for all triples �9�. Quantum-mechanical violations of
Bell inequalities mean that either hidden variables cannot
exist, or quantum mechanics has to be nonlocal. In the
present case, on the other hand, the inequality �9� must be
satisfied for joint measurements in quantum mechanics. This
is because joint probability distributions must necessarily ex-
ist for jointly measured observables, whether the measure-
ment is quantum mechanical or not, and so Bell’s inequality
must be valid for a joint measurement �10�. This argument,
however, does not tell us why the Bell inequality actually
will give a tight condition in our particular case of joint
measurement. In principle, the condition that a joint prob-
ability distribution is compatible with a quantum-mechanical
joint measurement, is stronger than the condition that it
should merely exist as a classical probability distribution. As
an example, the joint probability distribution p++=1, p+−
= p−+= p−−=0 is possible classically, but is not attainable as a
quantum-mechanical probability distribution for a joint mea-
surement of two noncommuting observables.

Inequality �9� places restrictions on the correlations be-
tween observables of the two quantum systems. We would
like to obtain a quantum-mechanical bound on the joint mea-

surement of Â and Â�, involving only observer 1 and quan-
tum system 1. If spin is measured only along a on quantum
system 1, and along b on quantum system 2, the quantum-
mechanical correlation function is given by

E�A,B� = ��−�a · �̂1b · �̂2��−� = − a · b . �10�

Since joint measurements reduce expectation values by fac-
tors � and �� for any state, we must have

E�AJ,B� = ���−�a · �̂1b · �̂2��−� = − �a · b , �11�

and similarly for E�A�J ,B� ,E�AJ ,B�� and E�A�J ,B��. Using
this in Eq. �9� gives

�− ��a + ��a�� · b� + �− ��a − ��a�� · b�� � 2. �12�

This must be valid for any choice of b and b�. The left-hand
side is maximized when b is chosen parallel to �a+��a� and
b� parallel to �a−��a�, giving

��a + ��a�� + ��a − ��a�� � 2. �13�

This condition, linking � ,�� ,a, and a�, is the same as ob-
tained in Ref. �5�. This inequality has a simple geometrical
meaning as illustrated in Fig. 1: the sum of the lengths of the
diagonals in a parallellogram with �a and ��a� as its sides
must be less than 2. Unless the unit vectors a and a� are
parallel, this forces both ��� and ���� to be strictly less than 1.
The smaller ��� and ���� are, the more smeared the jointly
measured observables are, since this increases their variances
according to Eqs. �1�. In Ref. �12�, a situation corresponding
to a and a� being orthogonal to each other arises.

The derivation in Ref. �5� was made by explicitly consid-
ering the possible generalized measurement operators de-
scribing the joint measurement, whereas the present deriva-
tion is based on the assumption that joint probability

distributions exist for the two measured spin components,
and on the principle of operational locality. The locality prin-
ciple is used in much the same way as the energy conserva-
tion principle may be used to solve physical problems. It is
not the only way to arrive at the conclusion, but may sim-
plify calculations considerably. In this case, the advantage is
that the description of the joint measurement can be left
open, and the derivation is not tied to any particular model of
joint quantum measurements.

An interesting connection to Cirel’son’s inequality �11�
can also be made. Cirel’son showed that quantum systems
will obey the less stringent bound

�E�A,B� + E�A�,B�� + �E�A,B�� − E�A�,B��� � 2�2.

�14�

Translated into a bound on a measurement on system 1, this
would give

��a + ��a�� + ��a − ��a�� � 2�2. �15�

This condition does not restrict ��� and ���� to be smaller
than 1. The reason for this is clear. If we do not require to
make a joint measurement, sharp measurements of each ob-
servable are possible. Cirel’son’s inequality, which is satis-
fied by correlations in a quantum system, does not lead to
any restriction on the sharpness of the measurement.

III. AN EXAMPLE

Let us now consider how to realize a joint measurement

of Â and Â�, satisfying the bound �13�. Our fundamental
requirement is that the joint measurement, performed on a
single spin-1 /2 system, gives us four possible results, ++ ,
+−,−+, or −−. There are many ways to achieve this, but we
will look at one particular method. Suppose that we perform
a measurement of one of the two spin components c · �̂ and
c� · �̂, with probabilities p and 1− p, respectively, obtaining a
result C or C�. We then try to associate this with a joint
measurement of a · �̂ and a� · �̂ in the following way. If we
choose to measure along c, and obtain C= +1, then we say
that the result is AJ=A�J= +1, and if C=−1, then we say that
AJ=A�J=−1. In a related way, in Ref. �12�, the marginal
distributions of a four-outcome measurement are used to
construct unsharp measurements along certain directions. In-
tuitively, direction c should lie perhaps not exactly halfway,

FIG. 1. For a joint measurement of spin along both a and a� to
be possible, the sum of the diagonals in a parallellogram with �a
and ��a� as its sides must be less than 2. Unless a and a� are
parallel, this forces both ��� and ���� to be strictly less than 1.
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but somewhere between a and a�, as in Fig. 2.
If we measure along c�, then, if C�= +1, we say that the

result is AJ= +1 and A�J=−1, and if C�=−1, then we say that
AJ=−1 and A�J= +1. Direction c� will lie somewhere be-
tween a and −a�. One way to choose whether to measure
along c or c�, especially if we are measuring the polarization
of a photon, would be to use a beam splitter with the required
splitting ratio, and then to measure along c in one output
beam and along c� in the other, as in Fig. 3. Such a setup has
been considered for measurement along two orthogonal po-
larization directions in Refs. �13–15�. The probabilistic
choice between c and c� can, however, equally well be made
entirely classically.

It is not self-evident that this measurement procedure is
able to saturate the bound �13�, but we will see that it does.
In the following, we will see how to choose p ,c, and c�. Our

constructed joint measurement will have the averages

AJ = p�c · �̂� + �1 − p��c� · �̂� ,

A�J = p�c · �̂� − �1 − p��c� · �̂� . �16�

We require the joint measurement to satisfy

AJ = ��a · �̂�

A�J = ���a� · �̂� . �17�

For this to be true for all possible states we must have

c =
1

2p
��a + ��a�� ,

c� =
1

2�1 − p�
��a − ��a�� . �18�

Since c and c� are required to be unit vectors, it follows that

p =
1

2
��a + ��a�� ,

1 − p =
1

2
��a − ��a�� . �19�

Eliminating p gives

��a + ��a�� + ��a − ��a�� = 2, �20�

which means that our joint measurement reaches the equality
in Eq. �13�. It is therefore an optimal joint measurement.

We can also make a connection with the previous section,
where we were considering a singlet state. Looking more
closely at the derivation leading to condition �13�, particu-
larly at the step in Eq. �4�, one sees that the bound is satisfied
if and only if one of the probabilities p�AJ=A�J=B� and
p�AJ=A�J=−B�, and also one of the probabilities p�AJ=
−A�J=B�� and p�AJ=−A�J=−B�� are equal to zero. Suppose
we have a singlet state of two spin-1 /2 particles and choose
to perform the joint measurement on one of the particles by
measuring spin either along c or along c�. On the other par-
ticle, we measure either b or b�. If now both b and c are
chosen parallel to �a+��a�, and b� and c� parallel to �a
−��a�, measurement results will be correlated in the follow-
ing way. Obtaining C= +1 means that AJ=BJ= +1; this is
also perfectly correlated with obtaining B= +1. Therefore the
probability p�AJ=A�J=−B� will be zero. If instead we choose
b and c antiparallel to each other, p�AJ=A�J=B� would be
zero instead. Similarly, one finds that either p�AJ=−A�J

=B�� or p�AJ=A�J=−B�� will be zero. The joint measure-
ment we have considered will therefore satisfy the bound
�13�.

We have just seen that one way to realize the joint mea-
surement of a · �̂ and a� · �̂ is to measure spin either along
�a+��a�, with probability p= 1

2 ��a+��a��, or along �a
−��a�, with probability 1− p= 1

2 ��a−��a��. This is only one
of �infinitely� many ways to realize the joint measurement.
Another possibility is to start with the quantum system we

FIG. 2. We are proposing to make a joint measurement of spin
along directions a and a� by making a measurement along either
direction c or direction c�. Direction c will lie somewhere between
a and a�. Direction c� will lie somewhere between a and −a�. In
this picture, orthogonal spin states �+a� and �−a� correspond to op-
posite directions a and −a, and similarly for the other directions. If
we want to think in terms of photon polarization, the orthogonal
polarization states �H� and �V� will also be represented by opposite
vectors in the picture. The vectors a ,a�, etc., are the Bloch vectors
for the corresponding polarization states.

FIG. 3. One way to realize a measurement of polarization either
along one direction or along another, would be to use a nonpolar-
izing beam splitter �BS� with a suitable splitting ratio, and to mea-
sure polarization along the first direction in one arm, and along the
second direction in the other arm. The wave plates WP1 and WP2
rotate the polarization in the beams in a suitable way so that the
polarization measurements may be done using polarizing beam
splitters PBS, which separate horizontal and vertical polarization.
The detectors are not shown in the picture. With this setup, there are
four possible measurement outcomes, even for a single photon.
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want to measure, and then couple this quantum system, in a
suitable way, to an auxiliary system in a known state. This is
then followed by measurements of spin for both systems,
along suitable directions. A third approach would be to clone
the original quantum system and then to measure one observ-
able on each of the clones. Perfect cloning is not possible,
and any attempt will result in extra noise in the joint mea-
surement. Any realization of a joint measurement must sat-
isfy the bound we have derived. A universal cloner, for ex-
ample, will take a state �=1/2�1+m · �̂� to two identical
copies with ��=1/2�1+	m · �̂�, where 	�2/3, and 	=2/3
for an optimal universal cloner �16�. If we measure one ob-
servable on each clone, we will obtain �=��=	�2/3 for
any directions a and a�. Therefore the joint measurement
using universal cloning is not optimal. Even when a and a�
are orthogonal, and condition �13� is as strict as it can be, it
gives �=���1/�2 if � and �� are equal, and 2/3
1/�2.
The reason why universal cloning does not result in an opti-
mal joint measurement is probably that the universal cloner
clones any state equally well. In our case, it would be better
to clone the basis states �± �a and �± �b, and states close to
these, as well as possible. We will return to this topic else-
where.

IV. GENERALIZED MEASUREMENT OPERATORS

In this section, we will look at the generalized measure-
ment operators of the joint spin measurement. The measure-
ment operators obtained here will describe any realization of
our joint quantum measurement. No previous knowledge of
generalized measurements will be required to follow our
treatment, only basic quantum mechanics.

A von Neumann measurement is a projection onto the
eigenstates of the measured observable. When measuring the
spin observable a · �̂, the projectors onto the eigenstates are
given by

�±
a =

1

2
�1 ± a · �̂� . �21�

Joint measurements of noncommuting observables cannot di-
rectly be described as a projection onto eigenstates in this
way, because the observables do not share eigenstates. How-
ever, they can be described as generalized measurements,
so-called POM �probability operator measure� or POVM
�positive operator-valued measure� strategies �17,18�. Gener-
alized measurements allow us to describe any measurement
that can be performed within the limits of quantum mechan-
ics. In fact, due to imperfect detectors, noise, etc., any ex-
perimentally realized measurement is usually a generalized
measurement rather than a projective measurement.

First we will describe the realization of joint measurement
which was discussed in the previous section. In analogy with
Eq. �21�, a measurement along c with a probability p can be
associated with the measurement operators

�±
c =

p

2
�1 ± c · �̂� , �22�

and similarly for a measurement of c� with the probability
1− p. Using this fact, we find that the joint measurement in

Sec. III, with four results, is described by the four measure-
ment operators

�++
aa� =

1

4
��a + ��a��1 +

1

4
��a + ��a�� · �̂ ,

�−−
aa� =

1

4
��a + ��a��1 −

1

4
��a + ��a�� · �̂ ,

�+−
aa� =

1

4
��a − ��a��1 +

1

4
��a − ��a�� · �̂ ,

�−+
aa� =

1

4
��a − ��a��1 −

1

4
��a − ��a�� · �̂ , �23�

where we have used expressions �18� and �19� for p ,1
− p ,c, and c�. The measurement operators �i for a general-
ized measurement do not have to be pure state projectors, but
they do have to obey certain conditions. In analogy with
projective measurements, the probability pi to obtain result i
is given by Tr	�i�
 for any measured state �. Because prob-
abilities have to be non-negative, all eigenvalues of �i have
to be greater than or equal to zero. Also, the measurement
operators have to sum up to the identity operator, �i�i=1,
corresponding to the fact that the sum of the probabilities pi
is equal to 1. It is easy to check that the measurement opera-
tors �23� satisfy these conditions.

We can form the marginal measurement operators

�+
a = �++

aa� + �+−
aa� =

1

2
�1 + �a · �̂� ,

�−
a = �−+

aa� + �−−
aa� =

1

2
�1 − �a · �̂� �24�

describing the unsharp measurement of a · �̂, when measured

jointly with a� · �̂. The measurement operators �±
a� are ob-

tained in an analoguous way. The amount of smearing de-
pends on ���; the smaller it is, the more smeared the observ-
able is. A sharp measurement of a · �̂ has ���=1, giving the
measurement operators in Eq. �21�.

The measurement operators in Eq. �23� describe the opti-
mal joint measurement. A more general choice of measure-
ment operators, describing a joint measurement which does
not have to be optimal �5�, is

�++
aa� =

1

4
�1 + �a · ��a��1 +

1

4
��a + ��a�� · �̂ ,

�−−
aa� =

1

4
�1 + �a · ��a��1 −

1

4
��a + ��a�� · �̂ ,

�+−
aa� =

1

4
�1 − �a · ��a��1 +

1

4
��a − ��a�� · �̂ ,
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�−+
aa� =

1

4
�1 − �a · ��a��1 −

1

4
��a − ��a�� · �̂ . �25�

It is easy to verify that these measurement operators also
give the marginal measurement operators given in Eq. �24�.
For the operators �25� to describe a valid measurement, their
eigenvalues have to be greater than or equal to zero. This
means that the length of the vector �a+��a� has to be
smaller than or equal to 1+�a ·��a�, and similarly for �a
−��a� and 1−�a ·��a�. This condition turns out to be
equivalent to the bound �13�, which any joint measurement
has to satisfy. When equality holds in condition �13�, the
operators in Eq. �25� become identical to those in Eq. �23�.

V. UNCERTAINTY RELATION

The variances of the jointly measured observables will
exceed those found when the observables are measured sepa-
rately. As we now will show, the bound �13� on the sharpness
of the joint measurement can be directly related to an uncer-
tainty relation for the jointly measured observables.

Squaring expression �13�, and noting that ��a±��a��2
=�2+��2±2���a ·a�, we obtain

��a + ��a����a − ��a�� � 2 − �2 − ��2. �26�

Squaring this expression once more, and canceling terms on
both sides, we obtain

�2 + ��2 − �2��2�a · a��2 � 1. �27�

This expression is already a useful way of expressing the
bound on � and ��. Denoting a ·a� by cos �, we may also
write it in a product form,

�1 − �2��1 − ��2�
�2��2 � sin2� . �28�

The uncertainty in the joint measurement arises from two
sources, the intrinsic uncertainty in the quantum observables,
and the fact that they are measured jointly. The variance in
the joint measurement, squared and multiplied with �−2, can
be written

�2AJ/�
2 = �1 − �2�Â�2�/�2 = �1 − �2�/�2 + 1 − �Â�2,

�29�

and similarly for �2A�J. Here 1− �Â�2 is the “bare” variance

of Â, when measured on its own, and similarly for Â�. The
quantities �1−�2� /�2 and �1−��2� /��2 are seen to be con-
tributions coming purely from the fact that the measurement
is a joint measurement. A lower bound on their product is
given by Eq. �28�, which is now understood to be an uncer-
tainty relation giving a lower bound on the uncertainty asso-

ciated purely with the fact that Â and Â� are quantum ob-
servables which are measured jointly. This bound is tight,
meaning that there is always a measurement such that equal-
ity can be reached, and holds only for spin-1 /2 particles.
Furthermore, it does not depend on the measured state at all,
only on the measured quantum observables. This is in con-
trast to the Heisenberg-Schrödinger-Robertson uncertainty

relation �19–21� for the variances for the separately mea-
sured observables. For spin-1 /2 particles, this gives a bound
which is dependent on the measured state, and depending on
the state, the resulting uncertainty bound may not be tight.
The Heisenberg-Schrödinger-Robertson uncertainty relation
for the product of the “bare” variances is

�2A�2A� = �1 − �Â�2��1 − �Â��2� �
1

4
���Â,Â����2

= ���a  a�� · �̂��2 = sin2���a� · �̂��2, �30�

where a� is perpendicular to both a and a�. Using this to-
gether with Eq. �28�, it is possible to obtain a bound on the
total uncertainty product for the joint measurement as

�2AJ�
2A�J

�2��2 � sin2��1 + ��a� · �̂���2. �31�

This relation is valid only for joint spin measurements, and is
stronger than the uncertainty relation for the variances of any
two jointly measured observables derived by Arthurs and
Goodman �3�, which is

�2AJ�
2A�J/��2��2� � ���Â,Â����2 = 4 sin2���a� · �̂��2.

�32�

This raises the question whether it is possible, in analogy
with Eq. �31�, to derive a tighter bound on joint measure-
ments, which would hold in general and not only for spin
measurements.

In deriving both joint measurement uncertainty relations
above, we used the Heisenberg-Schrödinger-Robertson un-
certainty relation, which is not always tight. Schrödinger
�21� showed that a tighter uncertainty relation can be ob-
tained,

�2A�2A� = �1 − �Â�2��1 − �Â��2�

�
1

4
���Â,Â����2 +

1

4
��ÂÂ� + Â�Â� − 2�Â��Â���2,

�33�

where the second term is a covariance term. If relation �33� is
used instead of relation �30�, one obtains a tighter bound on
the joint measurement as well. The resulting expression for
spin measurements, however, is not as nice and simple as Eq.
�31�.

Once again we can make a connection to Cirel’son’s in-
equality. Translating condition �15�, which arose from the
Cirel’son inequality, into a product bound, gives

�2 − �2��2 − ��2�
�2��2 � sin2� . �34�

As it should, this condition is immediately seen to place no
restriction that ��� and ���� has to be less than 1. Interestingly
enough, Cirel’son’s inequality can also be derived by consid-
ering uncertainty relations for suitably chosen different ob-
servables �22�.
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VI. DISCUSSION AND CONCLUSIONS

We have shown how the bound on the sharpness of a joint
spin measurement may be obtained using a locality argu-
ment. Apart from operational locality, the derivation only
requires the existence of a joint probability distribution for
the two measured spin components for a single spin-1 /2 par-
ticle. This distribution must necessarily exist for any joint
measurement, whether quantum mechanical or not. The re-
sulting measurement bound, in the form of Eq. �9�, very
much resembles a CHSH Bell inequality. This inequality
must be satisfied by the correlation functions for the joint
quantum measurement �10�. Our derivation can also be un-
derstood as making a connection between the CHSH Bell
inequality and the bound on joint spin measurements. It has
in fact been shown that the Bell inequalities follow from the
existence of a joint probability distribution of all triples of
observables occurring in the Bell inequality, producing the
correct marginal probability distributions, and also con-
versely, that if the Bell inequalities hold, then such a joint
probability distribution exists �9�. Ekert has also shown that
Bell’s theorem can be used to test for eavesdropping in quan-
tum cryptography �23�, the security of which relies on the
impossibility of performing ideal joint measurements.

In this paper we have used the principle of operational
locality much like a physical law, in the same fashion as
energy conservation may be used for shorter and more el-
egant solutions of physical problems. The derivation of the
bound on joint spin measurements is not an isolated ex-
ample. In an earlier paper, we demonstrated how to derive a
bound on how well two nonorthogonal states may be distin-
guished from each other using a locality argument �24�. An-
other example is the bound on symmetric cloning �25�. It is
interesting to ask exactly how much of the framework of
quantum mechanics follows from the assumption of opera-
tional locality. It seems that, in order to obtain quantum me-
chanics, other assumptions must be added as well. For ex-
ample, complete positivity does not appear to follow from
the assumption of operational locality, but must be added as
an axiom on its own �26�. To appreciate this, consider two
separated, possibly entangled physical systems. Partially
transposing the density matrix of one of the systems is
known to not to be a completely positive operation �18�.
Nevertheless, the partial transpose does not in any way alter
the reduced density matrix of the other system, and so must
be considered to satisfy the principle of operational locality.

An example of a realization of the joint measurement was
also given. It turns out that by measuring spin along one or
the other of two well chosen directions c and c�, an optimal
joint measurement along a and a� can be realized. One point

should perhaps be clarified. Suppose that we add another arm
to our setup so that it looks like a setup used to test Bell’s
inequality �27�. In the first arm, a measurement along either
c or c� is made, in the second arm, along either b or b�. Now,
if we use the measurement results along c and c� to construct
a joint measurement along a and a�, then the Bell-like con-
dition for the joint measurement, given in Eq. �9� involving
the a ,a� ,b, and b� directions, will be satisfied. However, if
we use the measurement results to construct correlation func-
tions for the b ,b� ,c, and c� directions, and quantum mechan-
ics is valid, our results may violate a different Bell inequality
involving the b ,b� ,c, and c� directions. In the realization of
the quantum joint measurement it does not matter if we use a
beam splitter or an active “classical” switch to make the
choice between c and c�. However, in an experiment de-
signed to test local realism, there is a difference between
actively deciding which direction to measure along and let-
ting the beam splitter determine the observable to be mea-
sured. The crucial point is that the choice should not depend
on any hidden variables.

We have also discussed uncertainty relations for joint
measurements of spin. The joint measurement bound can be
rewritten as a bound on the product of the necessary in-
creases in the variances. In contrast with the familiar
Heisenberg-Schrödinger-Robertson uncertainty relation, our
bound is tight, and independent of the measured state. This
means that, for any given quantum state, there always is a
measurement which will saturate the bound. The increase in
uncertainty, resulting from the fact that we perform a joint
measurement of spin along two directions, does not depend
on the measured state. The bound derived here holds only for
joint measurements of spin 1/2. This raises the question
whether it is possible to derive similar tight bounds for joint
measurements of observables other than spin 1/2 �28�. Also,
one could consider joint measurements of more than two
observables, such as spin along any three linearly indepen-
dent directions. This could give rise to uncertainty-relation-
like conditions for more than two jointly measured observ-
ables. The question of uncertainty relations for more than
two observables was raised by Robertson, who gave a bound
for the product of the variances for an even number of ob-
servables �29�.
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