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The semiclassical propagation of spin-coherent states is considered in complex phase space. For two time-
independent systems, we find the appropriate classical trajectories and show that their combined contributions
are able to describe quantum interference with great accuracy. Not only the modulus but also the phase of the
quantum propagator, both dynamical and geometric terms combined, are accurately reproduced.
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I. INTRODUCTION

The coherent state path integral for spin systems and its
semiclassical approximation have appeared simultaneously
�1,2�, and since then they have been intensively studied. So-
lari �3�, and independently Kochetov �4,5�, have shown the
existence of an initially unexpected term that is sometimes
called the Solari-Kochetov “extra phase,” even though it is
usually not a phase. Some important applications of spin
path integral were in the study of spin tunneling in the semi-
classical limit �6–8�, even though initially some considered
the method to be inaccurate �9�. Stone et al. �10� and also
Vieira and Sacramento �11� have derived the spin-coherent
state semiclassical propagator in detail, paying particular at-
tention to the Solari-Kochetov correction. This correction is
related to the difference between the average value of the
Hamiltonian in coherent states and its Weyl symbol �12�, and
has a counterpart in the canonical case �5,13�, which has a
flat phase space. The semiclassical description of tunneling
was reconsidered recently, using the instanton method
�14,15�.

Recently, a semiclassical quantization condition for one-
dimensional spin systems was derived �16�, including the
first quantum corrections, in the spirit of the Bohr-
Sommerfeld formalism. The same quantization condition
was reobtained in �17�, where the authors also presented a
semiclassical expression for the Husimi functions of station-
ary states. Semiclassical theories for spin-orbit coupling in
connection with trace formulas have appeared �18� and re-
cently received renewed attention �19�.

It is interesting to note that the coherent state spin
path integral is a natural setting for the investigation of
geometric phases �20,21�, a topic that has not only a
fundamental importance in the mathematical structure of
quantum theory �22� but also as an ingredient in the
implementation of some quantum information protocols �23�.
The semiclassical approximation to the spin propagator
K�zi , z̄ f ,T�= �zf�e−iHT/��zi� may sometimes lead to an expres-
sion of the geometric phase in terms only of classical
quantities.

In this work, we present a concrete application of the
semiclassical spin propagator. In general, the calculation in-
volves a classical trajectory (z�t� , z̄�t�) that starts at z=zi and
ends at z̄=zf

* after a time T. Under these too stringent condi-
tions, the only way to find a classical trajectory is by allow-

ing the variable z̄�t� to be different from the complex conju-
gate of z�t� �which is denoted by z*�t��. We must therefore
find a trajectory in C2 that satisfies the boundary conditions
z�0�=zi and z̄�T�=zf

*. This is known as the root-search prob-
lem. Similar calculations have already appeared for the ca-
nonical coherent states �24�, even in chaotic cases �25�, but
so far no numerical example for a spin system has been
presented.

The article is divided as follows. In the next section, the
semiclassical theory of the spin-coherent states propagator is
briefly reviewed. The geometric phase and the tangent matrix
associated with classical trajectories are also presented. In

Sec. III, we study the simple system Ĥ=�2�Jz
2, which al-

ready has nontrivial properties. In Sec. IV, the less symmetri-

cal Hamiltonian Ĥ=�2��Jz
2+�Jx

2� is considered, and in Sec.
V we present the conclusions.

II. THE SEMICLASSICAL PROPAGATOR

Let �z� denote non-normalized spin-coherent states, de-
fined by

�z� = exp�zJ+	�− j� = 

m=−j

j �2j

m
�1/2

zj+m�m� , �1�

where the states �m� are the usual spin basis, and let

K�zi, z̄ f,T� = �zf�e−iĤT/��zi� �2�

be the quantum propagator, where Ĥ is the spin Hamiltonian
and T is the time. It has been shown that, in the semiclassical
limit j→�, �=1/ j→0, this can be approximated by �10,11�

Ksc�zi, z̄ f,T� = 

c.t.

� i

�

eiB/�j

2j

�2S

�zi�z̄ f
�1/2

exp
 i

�
�� , �3�

where the sum is over different classical trajectories. The
exponent is the classical action S plus an extra term, the
Solari-Kochetov �SK� correction,

� = S + ISK = S + �
0

T

A�t�dt . �4�

It is well known that this semiclassical approximation is ex-
act if the Hamiltonian belongs to the su�2� algebra
�4,5,10,11�.
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The function A is given by

A =
�

�z̄

1

4g�z, z̄�
�H

�z
+

�

�z

1

4g�z, z̄�
�H

�z̄
, �5�

where H�z , z̄�= �z�Ĥ�z� / �z �z� plays the role of the classical
Hamiltonian and the metric factor is

g�z, z̄� =
�2

�z�z̄
ln�z�z� =

2j

�1 + zz̄�2 . �6�

The classical action is given by

S = �
0

T �i�j
z̄ ż − ż̄z

1 + z̄z
− H�z, z̄��dt + B , �7�

where B=−i�j ln��1+ z̄ fz�T���1+ z̄�0�zi�	 is a boundary term
that takes into account the fact that in general z̄ is not the
complex conjugate of z.

The integrals in Eqs. �4� and �7� are to be calculated along
classical trajectories satisfying the Hamilton equations of
motion

ż̄ =
i

�

1

g�z, z̄�
�H

�z
, ż = −

i

�

1

g�z, z̄�
�H

�z̄
, �8�

with boundary conditions

z�0� = zi, z̄�T� = zf
*. �9�

Notice that, in general,

z�T� � zf, z̄�0� � zi
*. �10�

Since z̄�t��z*�t�, the Hamiltonian H�z , z̄�, the action, and the
SK correction will in general all be complex numbers. There-
fore, the term exp�i�−1��zi , z̄ f ,T�	 is usually not just a phase.

If the propagator is written as a modulus times a phase,
K�zi , z̄ f ,T�= �K�ei�, it is well known that � contains not just
the dynamical term, −i�0

THdt, but also the geometric �or
Berry� phase �g, which depends only on the geometry of the
path traced by the state in the Hilbert space �20,22�. This was
shown by Berry in the context of Hamiltonians depending on
slowly varying cyclic parameters, and later generalized in
many different ways, in particular to parameter-independent,
nonadiabatic, and noncyclic evolutions such as the one con-
sidered here �21�. From Eq. �3� we see that in the semiclas-
sical limit the total phase will result from the interference of
many classical trajectories, and that each one of them has an
individual phase which is the sum of a dynamical term plus
a geometric term given by

�p +
1

�
Re
B + �

0

T �i�j
z̄ z̄ − ż̄z

1 + z̄z
+ A�t��dt� , �11�

where �p is a phase coming from the prefactor.

If we set zf =zi in the simplest case Ĥ=��Jz, we
have z�t�=e−i�tzi and z̄�t�=ei��t−T�zi

*, and there is only
one classical trajectory. The stability matrix element Mz̄ z̄
�see below� in this case is simply ei�T. For the very particular
time T=2� /� it happens that z̄�t�=z*�t� and thus B is
purely imaginary. If we use stereographic coordinates

z=ei� tan�� /2�, then it is easy to see that, since A and �p

both vanish, the geometric phase reduces to the well known

result �=2�j�1−cos ��. Generically, i.e., if Ĥ=��Jz but T is
not a multiple of the period, or for more general Hamilto-
nians, the fact that z̄�t��z*�t� will introduce additional con-
tributions coming from A, �p, and B, even for cyclic evolu-
tions. Besides, more than one classical trajectory will be
necessary, as we will see in the next sections.

In the study of semiclassical spin tunneling, the relevant
classical trajectories are instantons with the remarkable prop-
erty that z̄�0�=zi

* and z�T�=zf �14�. This happens because the
initial and final points of the instanton minimize the average
value of the Hamiltonian, and in that case the calculation is
greatly simplified, leading to analytical results. However, as
noted in �15�, a more realistic description of the system re-
quires the addition of higher-order terms to the Hamiltonian
that destroy this simple property and make it necessary to
consider the more generic trajectories we have discussed
�which have been called “boundary jump instantons” in
�15��.

Note that the action �7�, with the necessary boundary
term, leads to the following Hamilton-Jacobi relations:

i

�

�S

�z̄ f

=
2jz�t�

1 + z̄ fz�t�
,

i

�

�S

�zi
=

2jz̄�0�
1 + z̄�0�zi

, �12�

�S

�t
= − H . �13�

Note also that if the Hamiltonian is O�j�, then S is O�j�, but
the SK correction is O�1�, and therefore it can be considered
small in the semiclassical limit.

The prefactor is related to the tangent matrix, or stability
matrix, as follows. Small variations in the boundary points
	zi and 	z̄ f induce variations 	z�T� and 	z̄�0�. Taking deriva-
tives of the Hamilton-Jacobi relations �12�, it is possible to
write

��1 + z̄ fz�T��−2	z�T�
�1 + ziz̄�0��−2	z̄�0�

� = �Azz Azz̄

Az̄z Az̄ z̄
��	zi

	z̄ f
� , �14�

where all matrix elements can be written in terms of second
derivatives of the action �see �13� for an analogous calcula-
tion with canonical coherent states�. On the other hand, the
tangent matrix of a given trajectory (z�t� , z̄�t�) is defined as
the linear application that takes a small initial displacement
to a final displacement,

�	z�T�
	z̄ f

� = �Mzz Mzz̄

Mz̄z Mz̄ z̄
�� 	zi

	z̄�0�
� . �15�

Manipulating Eq. �14�, one can show that the element Mz̄ z̄ is
related to the prefactor in Eq. �3� according to

i

�

�2S

�zi�z̄ f

=
2j

�1 + ziz̄�0��2

1

Mz̄ z̄
. �16�

Since the tangent matrix may be numerically integrated to-
gether with the coordinates, this expression is very conve-
nient in practice. The phase �p may then be followed dy-

MARCEL NOVAES PHYSICAL REVIEW A 72, 042102 �2005�

042102-2



namically, imposing that K=1��p=0� for T=0.
In practice, one must find all values of z̄�0� for which

z̄�T�=zf
*. Notice that these initial values are implicit func-

tions of the time T, and as such they trace out curves, or
“branches,” in the z̄�0� plane. There will in general exist
more than one branch for each value of T, and one must add
all contributions coherently. Note, however, that the contri-
bution of a branch may display an erroneous increase and
need to be removed for a certain region of the parameter T,
because of a phenomenon that is common in asymptotic ex-
pansions known as Stokes’ phenomenon �26–29�. A discus-
sion of this problem in the context of the one-dimensional
semiclassical propagator may be found in �30�. Stokes’ phe-
nomenon will not be relevant to the present work.

From Eq. �16�, it is clear that the semiclassical approxi-
mation fails in the vicinity of points for which Mz̄ z̄�T�=0,
which are called phase-space caustics �25,30,31�. Semiclas-
sical uniform approximations that are valid near caustics
have been obtained for the canonical coherent state propaga-
tor using a conjugate of the Bargmann representation in �32�,
and a similar calculation is in principle possible for the spin
propagator, but here we shall not be concerned with the ef-
fect of caustics.

III. FIRST EXAMPLE, Ĥ=�2�Jz
2

We consider a simple Hamiltonian,

H = �2�Jz
2 �17�

�the constant � has the appropriate units�, and we shall be
interested only in the diagonal propagator

K�zi,T� = �zi�e−iHT/��zi� , �18�

whose squared modulus, after proper normalization, corre-
sponds to the return probability as a function of time. This is
given by

K�zi,T� = 

m=−j

j

��m�zi��2e−im2��T, �19�

which for integer j is periodic with period Tr=2� /��. In the
semiclassical limit, the term that contributes the most to this
sum �see Eq. �1�� is m0= j��zi�2−1� / ��zi�2+1�. If we linearize
the exponent in the vicinity of this term, we have

K�zi,
� � ��m0�zi��2e−im0
2



n

e−2im0n
, �20�

where we have introduced a scaled time


 = ��T . �21�

Notice that expression �20� has a different time scale, 
c
=� /m0. The quantities Tr and Tc=
c /�� are usually called
revival time and classical time �33�.

Let us turn to the semiclassical approximation, which has
been analyzed in some previous works �5,10,11�. The classi-
cal Hamiltonian is

H = �2�j� j −
1

2
�� zz̄ − 1

zz̄ + 1
�2

+
�2�j

2
. �22�

The classical equations of motion, ż=−i���z and ż̄= i���z̄
�here a dot denotes derivative with respect to t�, together
with the boundary conditions z�0�=zi and z̄�T�=zi

*, have the
simple solutions

z�t� = e−i���tz�0�, z̄�t� = ei���tz̄�0� . �23�

Notice that

� =
2�

j
� zz̄ − 1

zz̄ + 1
� �24�

is a constant of the motion, where �= j�j−1/2�. Calculating
it at the initial and final points, we have the consistency
condition

� =
2�

j
� e−i�
�zi�2 − 1

e−i�
�zi�2 + 1
� , �25�

which in general has an infinite number of solutions. We
come back to that later. Notice also that for z�0�=zi and
z̄�0�=zi

* the motion is periodic with period 2� /���, which
in the semiclassical limit becomes Tc.

The action can be easily found to be

S

�
= − 2ij ln�1 + e−i�
�zi�2� + 
� j� +

j2�2

4�
−

j

2
� , �26�

and the Solari-Kochetov term is also available,

A = �2�� j� + �

2j
−

j�2

8�
� . �27�

To find the prefactor, we consider small variations 	zi and
	z̄�0�. The final value of z̄ will be changed according to

z̄�
� + 	z̄�
� = ei��+	��
�z̄�0� + 	z̄�0�� � z̄�
� + Mz̄ z̄	z̄�0� ,

�28�

which leads to

Mz̄ z̄ = ei�
�1 +
4�

j

i
ziz̄�0�
�1 + ziz̄�0��2� . �29�

There are two different phase-space caustics, which
can be found by equating Mz̄ z̄=0. They are located, as
functions of the scaled time, along the curves
z̄±�0�=−zi

−1�1+ i
±�2i
−
2�. We shall not be concerned here
with the effect of caustics.

The problem now is to find the values of z̄�0� for which
z̄�T�=zi

*. These points form curves in the plane z̄�0� that we
call branches and denote z̄
�0�, since they are parametrized
by the time. We note again that even for a fixed time there
may exist many branches. The method used for finding them
was the following: for a fixed value of time, 
0, a regular grid
is placed on the z̄�0� plane, and each point is taken as an
initial condition. Those points for which z̄�
0� is close to zi

*

are then used as initial guesses for a root-finding procedure.
For 
=
0±	
, the previously obtained solutions serve as ini-
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tial guesses, and no grid is used. This way the branches may
be obtained rapidly and exhaustively. Of course the point
z̄�0�=zi

* is a solution for 
=0, and thus it must be contained
in one of the branches.

As an example, let us consider zi=0.5 and a very semi-
classical regime, j=50 �which gives �=0.02�. For the time
interval of five classical periods, we have found six different
branches. The squared modulus of each of their normalized
contributions is shown in Fig. 1�a�, with different line styles.
We see that each peak in the return probability is due to a
different branch. The appearance of the classical time scale

c, which comes from m0=−30, is very clear. For 
�0, the
branch depicted by the solid line is in the vicinity of the
point zi

*, and as 
 approaches the integer multiples of 
c, each
one of the other branches approaches this point, generating a
peak in the return probability. The behavior of the different
branches can be seen in Fig. 2. After the third peak, the
contributions start to overlap, and therefore we must add
them coherently to get interference effects. When this is
done, the result is as shown in Fig. 1�b�. The exact calcula-
tion is easy to perform, and it is indistinguishable from the
semiclassical one at this scale. Even the fast oscillations for


2.5
c are reproduced.

When the value of zi corresponds to a point along the
equator of the Bloch sphere, i.e., when �zi�=1, the calculation

may be simplified. In that case, there exists a very particular
classical trajectory: the one for which z�t�=zi and z̄�t�=zi

*. In
this case it is easy to see that �=0 and there is no movement.
Let us call this the static trajectory. Each different value of
z̄
�0� determines a certain �, and the final expression for the
normalized propagator is

Ksc�zi,
� = 

�
�1 −

i


4�j
��2j2 − 4�2��−1/2

� cos2j��


2
�exp
 i
j

2
��2

2j
+

�

j2 − 1�� , �30�

where we have used Eq. �24� and the fact that zz̄ is a constant
in time. It is easy to see that each term in this sum �as well as
Eq. �25�� is even in �, and therefore that trajectories must
come in pairs. The net effect is that we may search only for
�’s with a positive real part, and once a certain trajectory is
found its contribution must be doubled, except for the static
one, which gives

�Kst�zi,
��2 = �1 + 
2� j −
1

2
�2�−1/2

. �31�

For short times, we may approximate

�Kst�zi,
��2 � 1 −

2

2
� j −

1

2
�2

, �32�

and comparing this with the exact short-time return probabil-
ity

�K�zi,
��2 � 1 − ��H2� − �H�2�T2/�2 = 1 −

2

2
j� j −

1

2
� ,

�33�

�where � �= �zi� �zi��, we see that in the semiclassical limit the
short-time regime is well described by the static trajectory
alone.

FIG. 1. The normalized propagator as a function of scaled time

=��T �in units of the classical period 
c� for zi=0.5 and j=50. In
�a� we see the separate contributions of six branches �each peak is
due to a different branch�. When they are added coherently we get
�b�, which is indistinguishable from the exact result, including the
fast oscillations.

FIG. 2. The different branches in the z̄�0�=x+ iy plane contrib-
uting to the semiclassical return probability, for the same param-
eters as in the previous figure �quantities are dimensionless�. These
curves as parametrized by the time, and each one of them passes
through the point �0.5, 0� at a different instant. Only the vicinity of
this point is shown, for the sake of visibility.
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As a concrete example, we have considered zi=1 and
j=10, so that higher-order quantum effects may become
more visible. In this case, 11 branches were found that con-
tributed to the final result. Their separate contributions to the
normalized propagator can be seen in Fig. 3�a� as functions
of time �in units of the revival time 
r�. Because of the even
parity in �, each one of them was considered twice, except
for the static one. When we add them coherently, we get the
solid line in Fig. 3�b�, which is to be compared with the
exact result, the dashed line. We see that the latter is repro-
duced with an extraordinary accuracy, including the quantum
revival.

We do not show the branches in the z̄�0� plane, but their
behavior is quite simple. The static branch lies in the point
z̄�0�=1 for all times. For short times, all other branches are
at the vicinity of −1, but their contribution to the propagator
is negligible. As time passes, they move away from this point
and toward 1. The most important thing to note is that all
branches have appreciable contributions at the period 
=2�,
so the phase of the propagator is determined by their coher-
ent superposition and has no simple expression.

Concerning the phase in Eq. �30�, notice that it can be
written as i
��2−1� /4 because � / j2−1 is actually equal to
−1/2j. Since 
 is of order �, the second term vanishes in the
semiclassical limit, but the first one remains because
�2� j2. However, we have observed numerically that the

factor e−i
/4, which is common to all branches �and thus has
no relevance to the modulus�, destroys the correspondence
with the exact result. Once this term is removed, which is
equivalent to the semiclassically acceptable approximation

� = j�j − 1/2� � j2, �34�

the agreement is excellent, as we can see from Fig. 4, where
the real part of the normalized propagator is shown �the
imaginary part is also very accurate�. This approximation
must not be done in the prefactor, where we have used
�= j�j−1/2�.

We therefore conclude that expression �3� is able to repro-
duce both modulus and total phase, dynamical and geometric
terms combined, of the quantum propagator with great accu-
racy in the semiclassical limit. It involves a coherent sum
over classical trajectories, and thus it is not possible to ex-
tract the geometric phase from it in a closed form. As noted
in the previous section, the geometric phase will be given by
Eq. �11� only in the simplest cases, when a single classical
trajectory is involved. Even then it will in general be differ-

ent from the simple formula �0
Tijdt�z̄ z̄−zż̄� / �1+zz̄�.

Stone et al. have analyzed the case Ĥ=Jz
2 in detail �10�.

They have shown the formal equivalence of the semiclassical
and exact �non-normalized� propagators up to order j0, and
also that for �zi�=1 the result for a massive particle con-
strained to move on a ring is recovered as j→�. However, in
�10� no numerical calculation has been done, and the fact
that replacing � by j2 in the phase improves the result was
not noticed.

IV. SECOND EXAMPLE, Ĥ=�2�†Jz
2+�Jx

2
‡

As a second example, we choose the less symmetrical

Hamiltonian Ĥ=�2��Jz
2+�Jx

2�, which has been considered in
�6,11�. We have chosen the irrational value �=�, in order to
avoid too much simplicity. The exact calculation of the re-
turn probability can be done by direct diagonalization of the
Hamiltonian in the Jz basis. The initial state was taken as a
complex number out of the equator, zi=1+ i. For very large

FIG. 3. The normalized propagator as a function of scaled time
�in units of 
r� for zi=1 and j=10. In �a� we see the separate con-
tributions of 11 branches �all of them except one must be counted
twice, see text�. When they are added coherently we get the solid
line in �b�. The dashed line is the exact result.

FIG. 4. The semiclassical �solid� and the exact �dashed� calcu-
lations of the real part of the normalized propagator, for zi=1 and
j=10. The imaginary part is also reproduced with great accuracy.
Therefore the total phase, dynamical plus geometrical terms, can be
recovered from the semiclassical expressions.
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values of j, the return probability is very similar to what we
see in Fig. 1�b�, but for more moderate values it is much less
regular.

In Fig. 5�a�, we see the separate contribution of six
branches, each of which has only one peak. This time
the classical trajectories, the tangent matrix, the action,
and the SK correction all had to be determined through a
numerical integration, using the Runge-Kutta method.
The coherent superposition of the individual contributions is
the solid line in Fig. 5�b�, and the dashed line is the exact
result. Even though the dynamics does not show any period-
icity or regularity in the considered time interval, the semi-
classical approximation works very well. Notice that we
have used the same scaled time as in the previous example,

=��T.

The phase of the propagator is again recovered with great
precision, as we see in Fig. 6, where the real part of both the
semiclassical and the exact calculations is shown �again the
imaginary part is reproduced with the same accuracy�. This
time no approximation of the kind �34� was made to the
phase, which was obtained numerically.

V. CONCLUSIONS

A numerical evaluation of the semiclassical spin-coherent
state propagator has been presented. We have considered

two different systems as examples, namely the quantum
rotorĤ=�2�Jz

2 and the less symmetrical Hamiltonian
Ĥ=�2��Jz

2+�Jx
2�. In the first case, the exact calculation of

the return probability is very simple, and is reproduced by
the semiclassical one with excellent precision for j=50. For
the smaller value j=10, the accuracy of the approximation is
still remarkable.

We have made the numerical observation that a factor
−i��T /4 must be removed from the semiclassical phase in
order to reproduce the exact quantum phase for the rotor
�the modulus is not affected�. We have no rigorous explana-
tion for this fact, except that this term vanishes in the
semiclassical limit and that its removal corresponds to the
replacement j�j−1/2�→ j2. Since phases are defined modulo
2�, we believe this limit must be considered with great
care. Since no such adjustment had to be made for the
second Hamiltonian studied, we conclude that geometric
phases are adequately reproduced by semiclassical calcula-
tions. However, they generally do not have a simple closed
formula, but result from the interference of many classical
paths.

The most important difficulty in the implementation of the
semiclassical spin propagator in practice is finding the rel-
evant classical trajectories, i.e., those values of z̄�0� for
which the boundary condition at time T is satisfied,
z̄�T�=zf

*. We have done this by first propagating for a time T
a grid in the z̄�0� plane, thus finding initial rough estimates
for the relevant points. These were then used to feed a root-
finding procedure. The whole process is rather artisanal and
hard to automatize, making it almost impossible to tackle
problems in which a large number of trajectories is neces-
sary. The same kind of difficulty is found in the case of
canonical coherent states.

Another problem, which we have not considered, is the
existence of caustics, initial conditions for which the prefac-

tor diverges at time T. We have seen that for Ĥ=�2�Jz
2 there

are two such points, but they did not have any influence in
the cases we have analyzed. For systems with higher nonlin-
earities, it is reasonable to expect a larger number of caustics,
which could also hinder the practical application of the semi-
classical approximation. In �32�, the authors have developed

FIG. 5. The normalized propagator as a function of scaled time
�in arbitrary units� for zi=1+ i and j=10 in the second example. In
�a� we see the separate contributions of six branches. When they are
added coherently we get the solid line in �b�. The dashed line is the
exact result.

FIG. 6. The semiclassical �solid� and the exact �dashed� calcu-
lations of the real part of the normalized propagator, in the same
situation as the previous figure. Once again the phase is accurately
reproduced.

MARCEL NOVAES PHYSICAL REVIEW A 72, 042102 �2005�

042102-6



an approach to treat the vicinity of caustics in the canonical
coherent states propagator, which makes use of a certain dual
of the Bargmann representation. This could in principle be
generalized to the spin case.

The main virtue of the semiclassical propagator is its
weak dependence on the dimension of the representation,
2j+1. If this is too large, a direct diagonalization of the
Hamiltonian may become impracticable, while the difficulty
with the semiclassical method is basically the same. There-

fore, an excellent approximation to the exact result, at least
for short times, would be easily available.
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