
g factor of an electron or muon bound by an arbitrary central potential

S. G. Karshenboim,1,2,* R. N. Lee,3,† and A. I. Milstein3,‡

1D. I. Mendeleev Institute for Metrology (VNIIM), St. Petersburg 198005, Russia
2Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
3Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

�Received 7 June 2005; published 3 October 2005�

We consider the g factor of a spin-1 /2 particle �electron or muon� bound by an arbitrary central field. We
present an approach that allows one to express the relativistic g factor in terms of the binding energy. We derive
the general expression for the correction to the g factor caused by a deviation of the central potential from the
Coulomb one. As the application of this method, we consider the corrections to the g factor due to the finite
nuclear size, including vacuum polarization radiative correction. The effect of the anomalous magnetic moment
is also taken into account.

DOI: 10.1103/PhysRevA.72.042101 PACS number�s�: 12.20.Ds

I. INTRODUCTION

The study of the energy levels of the atomic electron
�muon� has a long history. Various relativistic and radiative
corrections have been obtained in analytic or semianalytic
form, taking into account a deviation of the potential from
the Coulomb one. Recently interest in an accurate theory of
the g factor increased. An accurate theoretical approach
needs to take into account relativistic and radiative correc-
tions. Here we consider a case when such corrections corre-
spond to some modification of a central potential. Such a
problem is actual because of the Uehling potential, which is
responsible for a dominant QED correction in muonic atoms,
finite-nuclear-size effects, and some others. The results are
presented in a fully relativistic approach, i.e., exact in Z� for
the Coulomb interaction and its modifications.

The methods of calculation of energy levels have been
successfully developed over the decades. The energy levels
can be calculated with high accuracy by solving certain
equations analytically or numerically, or using the perturba-
tion theory with respect to the corresponding correction to
the Hamiltonian. Calculation of the g factor is a more com-
plicated problem. In the traditional approach to the calcula-
tion of the correction to the g factor within perturbation
theory �see, e.g., �1��, one considers both the magnetic field
and �V as a perturbation, while at the calculation of the
correction to the energy levels it is necessary to consider
only �V as a perturbation. The numerical approaches are also
not easy to apply because they usually are much more accu-
rate in determination of the energy than the wave function.
However, it is the latter that is needed to calculate the g
factor.

In this paper, we develop a framework that allows one to
express the g factor of a Dirac particle bound in arbitrary
central potential via the binding energy. Within this approach
it is easy to obtain new corrections to the g factor using

numerous results obtained for the corrections to the energy
levels. For a small deviation of this potential from the Cou-
lomb one, we derive the general expression for the first cor-
rection to the g factor due to this deviation. The results are
valid both for muonic and electronic atoms.

II. GENERAL RELATIONS

In the weak homogenous magnetic field B, the correction
to energy levels of a Dirac particle bound by a central poten-
tial reads

�E = e� d3r�̄�r��� · A���r� =
eB · �J�

2m
g , �1�

where

A =
1

2
�B � r� . �2�

The relativistic units in which �=c=1 are applied throughout
the paper; the charge of the bound particle is −e ,e is a charge
of a proton, e2=�=1/137 is the fine structure constant.

Writing the Dirac wave function ��r� in the form

��r� = � f1�r��

if2�r��̃
	 , �3�

where � is the spherical spinor �2� with the angular momen-

tum J and orbital momentum L , �̃=−�� ·n��, we obtain for
the g factor of a bound Dirac particle

g =
2m	

j�j + 1� � drr3f1�r�f2�r� , �4�

	= j+1/2 for l
 j and 	=−�j+1/2� for l� j. The integral in
the right-hand side of Eq. �4� can be presented as follows
�see, e.g., �3��

� drr3f1f2 = −
1

4m

1 − 2	� drr2�f1

2 − f2
2�� . �5�

This formula is valid for the Dirac equation with any cen-
tral potential. Equation �4� has been known for a while �see,
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e.g., �3��, but, to the best of our knowledge, it was never
applied to a non-Coulomb problems.

Using the identity

� drr2�f1
2 − f2

2� = ��0� , �6�

we have

g = −
	�1 − 2	��0��

2j�j + 1�
. �7�

Assuming that the potential V�r� is independent of the
mass of the bound particle, we find

��0� = � �H

�m
 =

�E

�m
, �8�

where H is the Dirac Hamiltonian H=�0�� ·p�+�0m+V�r�.
Thus we arrive at an equation that expresses the g factor

of the state via its binding energy,

g = −
	

2j�j + 1�
1 − 2	
�E

�m
� . �9�

This equation can be used even in the case when a potential
substantially differs from the Coulomb one, as for heavy
muonic atoms. In many cases, Eq. �9� essentially simplifies
calculation of the corrections to the g factor of a Dirac par-
ticle. In particular, it can be applied to such problems as the
finite-nuclear-size effect and vacuum polarization.

The equation �9� becomes essentially simpler if the poten-
tial is close to the Coulomb one, and the deviation �V�r�
=V�r�−VC�r� can be treated as a perturbation. For the pure
Coulomb case, when �EC/�m=EC/m, we immediately ob-
tain the well-known result �see, e.g., �4,5��

�gC = −
	

2j�j + 1�
1 − 2	
� + nr

N
� , �10�

where

N = ��� + nr�2 + �Z��2, � = �	2 − �Z��2,

and nr is the radial quantum number. The correction to the
energy is

�E =� d3r�+�r��V�r���r� . �11�

As follows from the dimensional reasons, the wave function
in the Coulomb field can be presented in the form ��r�
=m3/2�̃�mr�, where �̃ is dimensionless. Passing to the vari-
able =mr, we find

�E =� d3�̃+���V�/m��̃�� . �12�

Taking the derivative over m and returning to the variable r,
we obtain

��E

�m
= −

1

m
� d3r�+�r�r

��V�r�
�r

��r� , �13�

and

�g = −
	

2j�j + 1�
1 +
2	

m
�r

��V�r�
�r

� . �14�

Equations �9� and �14� are the basis of our approach.

III. ANOMALOUS MAGNETIC MOMENT

It may be interesting to generalize our results to the case
of a particle with a nonvanishing anomalous magnetic mo-
ment. In particular, it is necessary for antiprotonic atoms.
The anomalous magnetic moment of the antiproton is big
because of the complicated internal structure of the particle.
Therefore, it makes sense to consider the modification of
Eqs. �9� and �14� due to the anomalous magnetic moment
separately from the radiative corrections.

As known, the modified Dirac Hamiltonian for a particle
with the anomalous magnetic moment in an arbitrary elec-
tromagnetic field is of the form �see, e.g., �2��

H = �0�� · �p + eA�� + �0m − eA0 +
i�a

2
�0���F��, �15�

where ���= �1/2���� ,���, �a is the dimensional anomalous
magnetic moment and F�� is the tensor of the electromag-
netic field; we are reminded that the charge of the bound
particle is �−e�.

As follows from Eq. �15�, the correction to the energy of
a bound particle in the homogenous magnetic field �2� is of
the form �cf. Eq. �1��,

�E =� d3r�̄�r��e�� · A� − �a�� · B����r� , �16�

where � j = �i /2�� jkl�kl is the spin operator. The wave func-
tion ��r� is an eigenfunction of the Hamiltonian �15� with
−eA0�r�=V�r� and Ai=0. Since the potential A0�r� is spheri-
cally symmetric, the wave function still has the form �3�, and
the result for the g factor reads �cf. Eq. �4��,

g =
2m

j�j + 1��	� drr3f1f2 −
�a

2e

� drr2�f1

2 − f2
2� − 2	�� .

�17�

The radial wave functions f1 and f2 satisfy the system of
equations �cf. �2��,

f2� + �E − V − m�f1 + �1 − 	

r
−

�a

e
V�	 f2 = 0,

f1� − �E − V + m�f2 + �1 + 	

r
+

�a

e
V�	 f1 = 0. �18�

Then we multiply the first equation by r3f2 and the second
one by r3f1, sum up the results, and take the integral over r.

KARSHENBOIM, LEE, AND MILSTEIN PHYSICAL REVIEW A 72, 042101 �2005�

042101-2



Integrating by parts the terms with the derivatives, we arrive
at the following relation �cf. �5��:

� drr3f1f2 = −
1

4m

1 − 2	� drr2�f1

2 − f2
2�

−
2�a

e
� drr3V��f1

2 − f2
2�� . �19�

Using this formula and Eqs. �6� and �8�, we present the result
for the g factor in the form

g =
1

2j�j + 1��− 	�1 + 2a� + �2	2 + a�
�E

�m

− a
	

m
� drr3V��f1

2 − f2
2�� , �20�

where a=−2m�a /e is the dimensionless anomalous mag-
netic moment �for a free particle g=2�1+a��. This result is
obtained for an arbitrary potential A0 and is exact in the
parameter a. We emphasize that the radial wave functions f1
and f2 and the binding energy E depend on the anomalous
magnetic moment because of the equations �18�.

In the nonrelativistic approximation, Eq. �20� turns into

g =
1

2j�j + 1���1 − 2	��a − 	� − �2	2 + 2	a + a�

�
1

2m
� drr3V�fnr

2 � , �21�

where fnr is the radial part of the nonrelativistic wave func-
tion. This formula is valid even if a�1.

It is interesting also to consider an expansion of the g
factor �20� in the parameter a for arbitrary field strength
�when the nonrelativistic approximation is not valid�. The
linear in this parameter term reads

�ga =
a

2j�j + 1��− 2	 +
�E

�m
−

2	2

m

�

�m
� drr2V�f1f2

−
	

m
� drr3V��f1

2 − f2
2�� . �22�

Here we used the formula for the linear in �a correction to
the energy,

�Ea =
2�a

e
� drr2V�f1f2, �23�

and took into account that ��a /�m=0. Let us consider Eq.
�22� for the pure Coulomb potential. Strictly speaking, the
equations �18� have no sense for a pure Coulomb field be-
cause of the terms �1/r2, which lead to the phenomenon of
falling to the center. It is a consequence of the pointlike
source of the field and is absent if finite nuclear size is taken
into account. However, for large quantum numbers that are
mostly interesting for the experiments, the correction due to

the finite nuclear size does not change essentially the result
obtained from Eq. �22� for a pure Coulomb field. Using the
radial matrix element from Ref. �5�, we obtain

�ga =
a

2j�j + 1��− 2	 +
� + nr

N
−

	�Z��2

N2

−
4	2�Z��4�2	�� + nr� − N�

��4�2 − 1�N4 � , �24�

where N and � are defined after Eq. �10�. We see that the
correction to the g factor due to the anomalous magnetic
moment has essentially more complicated dependence on
quantum numbers than the leading term �10�.

IV. FINITE-NUCLEAR-SIZE EFFECT

As an illustration of efficiency of our method, let us con-
sider a finite-nuclear-size correction to the bound-electron g
factor. For a 1s state, this problem was solved analitically in
Ref. �6� in the nonrelativistic approximation �Z��1�, and
numerically in Ref. �7� for an arbitrary value of the param-
eter Z�. In Ref. �8�, the result was obtained analytically in
the next-to-leading approximation in the parameter Z�, and
for arbitrary states. The result of Ref. �8� allows one to de-
scribe well the correction to the g factor up to Z=20. On the
other hand, in Ref. �9� the approximate formulas for the
finite-nuclear-size correction to the energy levels, Efns, were
obtained, which give the result with a relative error of about
0.2% up to Z=100.

Efns�ns1/2� = m
�Z��2

10n
�1 + �Z��2fns1/2

��2Z�mR/n�2�,

Efns�np1/2� = m
�Z��4�n2 − 1�

40n3 �1 + �Z��2fnp1/2
��2Z�mR/n�2�,

�25�

where n is the principal quantum number, n=1,2 , . . .; R
�r0 is some effective radius �for details see Ref. �9��; and
coefficients f i= f i�Z�� are

f1s1/2
�Z�� = 1.380 − 0.162�Z�� + 1.612�Z��2,

f2s1/2
�Z�� = 1.508 + 0.215�Z�� + 1.332�Z��2,

f2p1/2
�Z�� = 1.615 + 4.319�Z�� − 9.152�Z��2 + 11.87�Z��3.

�26�

Using Eq. �9� and Eq. �25�, we obtain

�gfns =
	2

j�j + 1�
�Efns

�m
=

	2�2� + 1�
j�j + 1�

Efns

m
. �27�

Moreover, using our method we can calculate the radiative
correction to �gfns for the s1/2 state and the p1/2 state �and
arbitrary nr� of electrons in a hydrogenlike atom coming
from the effect of vacuum polarization. For these states, the
finite-nuclear-size effect is the most significant. The radiative
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correction �Efns to the energy Efns was considered in detail in
Ref. �10�. The correction due to the vacuum polarization
�Efns

VP can be represented in the form

�Efns
VP = Efns�

VP, �28�

where Efns was obtained in Ref. �9�, and the explicit analyti-
cal form of �VP for the s1/2 state and the p1/2 state is derived
in Ref. �10�. Equation �28� with Efns from Ref. �9� and �VP

from Ref. �10� provides the high accuracy of �Efns
VP up to Z

=100. However, the correction �VP was calculated in �10� for
the mass of the bound particle m being equal to the mass M
of the particle in the fermion loop. Therefore, in order to use
Eq. �9� we should know the explicit dependence of �VP on
m /M �we can set M =m only after the differentiation over
m�. The corresponding expression for �VP can be easily ob-
tained following the derivation of in �10�. For Z��1, the
main contribution to �VP is given by the logarithmically en-
hanced term

�VP �
2��Z��2

3��1
ln2�mR� , �29�

where �1=�1− �Z��2, and R is the nuclear radius. We em-
phasize that the coefficient in front of the logarithm was
obtained in �10� exactly in Z� but not in the perturbation
theory. Note that the parameter Z� should also satisfy the
condition 1−Z��1/ ln2�mR�, which is fulfilled for all exist-
ing atoms. This term is the same for the s1/2 and p1/2 states
and comes from the distances 1/m ,1 /M �r�R. Therefore,
it contains only the logarithmic dependence on the mass of
the bound particle, in contrast to the powerlike dependence
of Efns. Within the logarithmic accuracy, we have

�

�m
�Efns

VP � �VP �

�m
Efns = �2�1 + 1�

�Efns
VP

m
. �30�

Thus, for Z��1, we obtain

�gfns
VP =

4

3
�2�1 + 1�

�Efns
VP

m
. �31�

For Z��1 the dependence of �VP on m /M is more compli-
cated and will be considered elsewhere.

V. CONCLUSION

We present an effective approach to obtain various correc-
tions to the bound particle g factor using the corresponding
corrections to the energy levels. It should be noted that this
method is appropriate for the perturbations of potentiallike
type. There are also corrections to the g factor that cannot be
derived via this approach. The leading part of the nonpoten-
tial contribution is due to the virtual Delbrück scattering and
it was calculated in Ref. �11�. On the other hand, there are
corrections to the energy levels coming from the mass opera-
tor and vertex, which are not of potentiallike type. Thus they
cannot be directly transformed to the corresponding correc-
tions to the g factor.

As other applications of our method, we can suggest the
Uehling potential contribution to the g factor of bound elec-
trons and muons. In muonic atoms it is one of the dominant
effects, while in electronic hydrogenlike atoms the accuracy
is essentially higher �see, e.g., �12��.

For muonic atoms, the Uehling-potential correction to the
energy levels was calculated in the nonrelativistic approxi-
mation for certain levels in �13�. The exact result in Z� was
obtained in �1� for the ground state of hydrogenlike atoms
and agrees with Eq. �9�. The methods developed there can be
easily applied to arbitrary levels and thus, using Eq. �9�, one
can find the correction to the g factor due to the Uehling
potential.

Using the known corrections to the energy levels coming
from the high-order terms of vacuum polarization, we can
obtain the corresponding contribution to the g factor. One
correction comes from the Wichmann-Kroll potential �which
accounts for the higher-order in Z� terms in the induced
charge density�, see �14�. Others are the second-order correc-
tion with respect to the Uehling potential, and the first-order
correction with respect to the radiative correction to the Ue-
hling potential �of the order of ��.
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