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In the unitary regime, fermions interact strongly via two-body potentials that exhibit a zero range and a
�negative� infinite scattering length. The energy density is proportional to the energy density of the free Fermi
gas with a proportionality constant �. The author uses a simple density functional parametrized by an effective
mass and the universal constant �, and employs Kohn-Sham density-functional theory to obtain the parameters
from fit to one exactly solvable two-body problem. This yields �=0.42 and a rather large effective mass. The
form of the density functional is checked by similar Kohn-Sham calculations for the exactly solvable Calogero
model.
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Ultracold atomic Fermi gases have received considerable
experimental and theoretical interest since the achievement
of Fermi degeneracy by DeMarco and Jin �1�. One of the
most interesting features is the ability to tune the interparticle
interaction itself via a Feshbach resonance, and to study the
system as it evolves from the BCS regime with weakly at-
tractive interaction toward the point where the interaction is
strong enough to form diatomic molecules, and the system
may undergo Bose-Einstein condensation �BEC�. Very re-
cently, the BEC-BCS crossover has been the subject of nu-
merous experimental �2� and theoretical studies �3,4�.

The dividing point of this BCS-BEC crossover defines the
unitary regime and is of particular interest �5–8�. Here, the
two-body system exhibits a bound state at zero energy, and
the two-body scattering length diverges. For dilute systems,
the interparticle distance is much larger than the range of the
interaction and much smaller than the scattering length.
Thus, the interparticle distance is the only relevant length
scale, and the energy must be proportional to that of a free
Fermi gas,

E�N� = �ETF�N� , �1�

the dimensionless proportionality constant being denoted as
�. Here, E�N� is the energy of the fully paired N-fermion
system while ETF�N� is the Thomas-Fermi energy of N non-
interacting spin-1

2 fermions. The constant � is universal, as it
describes the physics of any dilute Fermi gas in the unitary
regime. Approximately, it also describes systems close to the
unitary regime, and can also be applied to dilute neutron
gases as the two-neutron system also exhibits a scattering
length that is much larger than the range of the nucleon-
nucleon interaction. The exact determination of the universal
constant � is thus an important task.

Recently, this constant was reliably determined through
Monte Carlo simulations as ��0.44±0.01 by Carlson et al.
�6� and as �=0.42±0.01 by Astrakharchik et al. �7�. So far,
simpler approaches have failed to agree on the value of �,
and they deviate considerably from the Monte Carlo results.
Heiselberg �8� obtained �=0.326, while Baker �9� found �
=0.326 and �=0.568 from different Padé approximations to

Fermi gas expansions. Engelbrecht et al. �10� obtained
�=0.59 in a calculation based on BCS theory.

It is the purpose of this paper to present a simple calcu-
lation that determines the universal constant �. It is based on
Kohn-Sham density-functional theory �DFT� with a two-
parameter density functional that is fit to one analytically
known result. The resulting value ��0.42 is close to recent
Monte Carlo results. This paper is organized as follows. Its
first part deals with DFT for the Fermi systems in the unitary
regime. The density functional has a particularly simple and
constrained form in the unitary regime. The second part tests
and validates the density functional through calculations for
the exactly solvable Calogero model.

Carlson et al. �6� performed quantum Monte Carlo simu-
lations for systems of N fermions in the unitary regime, with
the number of fermions N ranging from N=10 to approxi-
mately N�40. They found in particular that the relation �1�
holds with very good accuracy for all even-number systems.
This is a remarkable finding, since exact quantum-
mechanical energies usually differ from the corresponding
Thomas-Fermi energies due to finite-size effects and shell
effects, both of which are apparently very small for fermions
in the unitary regime. This suggests that the density func-
tional from Thomas-Fermi theory

ETF��� = ���2/m�c�5/3 �2�

with c= 3
10�3�2�2/3 is a good approximation of the exact den-

sity functional, and that corrections might easily be ac-
counted for via full-fledged Kohn-Sham DFT.

As a starting point, we thus consider Thomas-Fermi
theory of harmonically trapped fermions in the unitary re-
gime. The density functional is

ETF
HO��� = ETF��� + �m/2��2r2� . �3�

This functional is minimized under the condition that the
density is normalized to N particles. This yields the Thomas-
Fermi density
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�TF�r� = �3�2�−1�2/�l2�3/2��3N�1/3�1/2 − �r/2l�2�3/2, �4�

where l= �� /m��1/2 is the oscillator length of the harmonic
trap. For the Thomas-Fermi energy, one inserts the density
�4� into the functional �3� and integrates over space. This
yields

ETF = 4−1�3N�4/3�1/2�� . �5�

For the two-fermion system, the exact quantum-
mechanical result for the energy is �11�

Eex = 2�� . �6�

Let us assume that the relation �1� also holds for harmoni-
cally trapped systems. Thus, we might equate Eq. �6� with
Eq. �5� for N=2, and solve for the universal constant �. This
yields �=64/68/3�0.54. Note that this simple result deviates
only about 20% from the Monte Carlo results �6,7�. This is
quite encouraging and motivates us to compute a more accu-
rate estimate for � via Kohn-Sham DFT.

In Kohn-Sham DFT �12�, the ground-state density and
energy of an interacting N-fermion system is obtained from
varying the �generally nonlocal and unknown� density func-
tional. Unfortunately, there is no simple recipe that permits
one to construct the density functional. For dilute systems
with sufficiently small range and positive scattering length, a
systematic and constructive approach has been given by
Puglia et al. �13�. For electronic systems, one usually follows
an empirical approach and parametrizes the density func-
tional in terms of local densities and their gradients, and fits
the considerable number of parameters to experimental data
and theoretical results for infinite systems. This elaborate and
cumbersome approach has been successfully implemented in
recent decades in quantum chemistry �see, e.g., Ref. �14� and
references therein�, and a similar approach is also pursued in
nuclear structure �15�. Note that DFT has also been success-
fully applied to study the BCS-BEC crossover. In their study,
Kim and Zubarev �4� employed a density functional that was
fit to known results in the regime of very small scattering
length and to the Monte Carlo results for the unitary regime,
and employed a Padé approximation for intermediate values
of the scattering length.

Fortunately, the empirical approach is much simpler for
the unitary regime. In what follows, we consider small even-
number systems with an equal number of fermions in the two
spin states. As the interaction does not introduce any new
length scale into the system, a local density functional can
only contain density terms proportional to �5/3�2 /m and gra-
dients of the form �−�2k−2�/3��2k���2 /m, with integer k�0.
Here, we allow only for the density-dependent term and in-
corporate gradient terms through an effective mass. The an-
satz for the density functional thus becomes

E��� =
�2

m � m

2meff
�
j=1

N

��� j�r���2 + 	� −
m

meff

c�5/3� . �7�

The density is given as �=� j=1
N �� j�r���2. The universal con-

stant � and the effective mass meff are parameters that will be
determined below. The effective mass is, in principle,
N-dependent, but we suppress this dependency here. Note

that this density functional has two important properties:
First, its Thomas-Fermi limit is given in Eq. �2� and is thus
proportional to the density functional of the free Fermi gas.
Second, nonlocalities of the density are introduced through
the effective mass. Note that more elaborate approaches for
superfluid systems also introduce pairing densities �16� in the
density functional in order to approximate the �unknown�
nonlocal functional for superfluid systems. The quality of the
results presented below, however, suggests that this is not
necessary for the purpose of this study.

For a determination of the parameters � and meff, we con-
sider the problem of two spin-1

2 fermions inside a harmonic
trap that interact via a zero-range interaction with infinite
scattering length. The ground state of the two-fermion sys-
tem is a spin singlet, and the relative coordinate wave func-
tion has been given by Busch et al. �11�,

	ex�r� = �2�
3�−1/2�
/r�e−�r/
�2/2. �8�

Here, 
=�2l is given in terms of the oscillator length l. The
wave function diverges like 1/r for small distances due to
the infinite scattering length; in practice, this divergence
could be cut off by any nonzero range of the interaction
potential �see, e.g., the discussion in Ref. �6��, and it does not
cause any problems in the normalization of the wave func-
tion. Recall that the ground-state energy �6� of the two-
fermion system is considerably lower than for noninteracting
fermions. Employing the relative wave function �8� and the
Gaussian ground state for the center-of-mass coordinate, one
arrives at the density

�ex�r� =
4

�3/2l3

l

r
e−2�r/l�2


0

r

dxex2
. �9�

A plot of this density is shown in Fig. 1 as a full line, and can
be compared to the noninteracting case �dotted line�.

One adds the term �m /2��2r2��r�� of the harmonic con-
finement to the density functional �7� and employs Kohn-
Sham theory to compute the density for given sets of param-
eters � and meff. The best agreement with the exact density
�9� and exact energy �6� is obtained for �=0.42 and m /meff
=0.69. The resulting density is plotted as the long-dashed

FIG. 1. �Color online� Density of the harmonically trapped two-
fermion system. Exact result �full line� compared to Kohn-Sham
results from three different density functionals �dashed lines and
dashed-dotted line�, and the noninteracting system �dotted line�.
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line in Fig. 1 and exhibits only small deviations from the
exact density. The energy deviates about 0.1% from its exact
value �6�. Note that the DFT value of the universal constant
is very close to the Monte Carlo results �6,7�.

Let us estimate the robustness and stability of the DFT
results. For this purpose, we consider the following two
cases. First, the value of the universal constant is fixed to the
Monte Carlo result �=0.44 by Carlson et al. �6�. One obtains
the effective mass m /meff=0.52 from the best fit to the exact
density and energy. The resulting density is shown as the
short-dashed line in Fig. 1, and the energy deviates less than
1% from the exact result. Second, the effective mass is set to
m /meff=1, and one obtains �=0.40 from the fit of the density
functional. The resulting density is depicted as the dashed-
dotted line in Fig. 1, while the energy again deviates less
than 1% from the exact result. These results show that DFT
yields quite robust results for the universal constant �, and
systematically improves upon the naive Thomas-Fermi re-
sult. This suggests that the good agreement of the best value
�=0.42 with the Monte Carlo results is not merely accidental
but due to the quality of the density functional. Note that the
approach �9� also predicts a relatively large effective mass.

One might even take this approach a step further and ob-
tain a simple analytical estimate for the universal constant �.
Due to the relatively large value of the effective mass, the
prefactor of the density-dependent term in the density func-
tional �7� becomes rather small, and one might neglect it by
simply setting m /meff=�. In the presence of the confining
harmonic potential, the Kohn-Sham equation is then identi-
cal to the Schrödinger equation of a three-dimensional har-
monic oscillator where the kinetic energy is modified by a
factor �. The analytical result for the ground-state energy of
the two-fermion system is then E=3���1/2, and comparison
with the exact result �6� yields �= 4

9 . Note that the resulting
density is very close to the short-dashed line in Fig. 1 �la-
beled as �=0.44, m /meff=0.52�.

In the unitary regime, the rather simple density functional
�7� does yield much improved and reliable results compared
to Thomas-Fermi theory. To further test the form of this den-
sity functional, we consider another interacting N-body sys-
tem whose density functional is also proportional to that of a
free Fermi gas. The Calogero model �17� with Hamiltonian

H =
�2

m
�
j=1

N �−
1

2

�2

�xj
2 + �

j�i

�

2
	�

2
− 1


�xi − xj�2 +
1

2

m2�2

�2 xj
2�

is exactly solvable in one dimension. Here, �
1 is a dimen-
sionless coupling constant. The exact ground-state energy of
this Hamiltonian is

Eex = ���N/2 + �N�N − 1�/4� . �10�

Let us focus on the two-body interaction. The inverse
square potential does not introduce any new length scale into
the Hamiltonian as it scales as the kinetic energy. Thus, the
interparticle distance is the only length scale, and the
density-dependent energy must be proportional to the one-
dimensional Fermi gas, the proportionality constant being
denoted as �2. Thus, ETF���=�2��2 /6���2 /m��3. In this re-

spect, the Calogero model is similar to the Fermi gas in the
unitary regime. This approach leads directly to the Thomas-
Fermi theory for the Calogero model �18�.

The constant �2 can be determined from Thomas-Fermi
theory once we add the confining harmonic potential and
thereby make contact with exactly known results. Thus, the
density functional becomes

E��� = ETF��� + �m/2��2x2� , �11�

and it is minimized by the normalized density

�TF = ���l�−1�2N� − �r/l�2�1/2. �12�

Here, l= �� /m��1/2 again denotes the oscillator length. The
Thomas-Fermi density �12� is Wigner’s semicircle, and
agrees with the standard approach �19�.

One inserts the density �12� into the functional �11� and
integrates. The resulting Thomas-Fermi energy is

ETF = ���N2/2, �13�

and comparison with the exact result �10� fixes �=� /2. Note
that the Thomas-Fermi energy �13� differs from the exact
result �10� by considerable finite-size corrections, and this is
a difference from the Fermi gas in the unitary regime.

Let us apply Kohn-Sham DFT to the Calogero model. The
ansatz for the density functional is in full analogy to the one
for the Fermi gas in the unitary regime,

E��� =
�2

m � m

2meff
�
j=1

N

��x� j�x��2 +
�2

6
	�2 −

m

meff

�3�

+ �m/2��2x2��x� . �14�

Here the effective mass meff is the only fit parameter, and the
term due to the harmonic confinement is already included.

One determines the effective mass by solving the Kohn-
Sham equation for the density functional �14� and compares
the resulting density with exact results. Note that the exact
density of the Calogero model is only known for a few val-
ues of the coupling constant �, though the many-body
ground state of this model is known for decades. For �=1,
�=2, and �=4, the density is related to the eigenvalue dis-

FIG. 2. �Color online� Densities of the Calogero model for �
=4 for different numbers of particles N. Full line: density-functional
theory; long-dashed line: long-dashed line: exact density; short-
dashed line: Thomas-Fermi theory.
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tribution of the orthogonal, unitary, and symplectic Gaussian
random matrix ensemble, respectively. Analytical expres-
sions are given in Ref. �20�. We focus on the case �=4, and
determine the effective mass by fit. From calculations for
particle numbers N=2, 4, 16, and 32, one obtains approxi-
mately m /meff�6.3+8.0/N2. Thus, the effective mass is
considerably smaller than the mass. Figure 2 shows that the
Kohn-Sham densities are close to the exact results. The
Thomas-Fermi result is also shown for comparison. Note that
only a relatively small effective mass reproduces the density
oscillations. Note also that the deviation of the DFT energies
from the exact result is about half as large as the error of the
corresponding Thomas-Fermi energies. This shows that the
simple density functional �14� yields significantly improved
energies and densities.

In summary, this paper used density-functional theory to
compute the universal constant of the Fermi gas in the uni-
tary regime. This approach is based on the observation that

the Thomas-Fermi energy is a reasonable first-order approxi-
mation to the quantum-mechanical results, and on the con-
straints that the unitary regime imposes on the form of the
density functional. The estimate �=0.42 results from a best
fit to the density and energy of the harmonically trapped
two-fermion system, and is in good agreement with much
more elaborate Monte Carlo studies. The result is stable with
respect to variations of the density functional, and favors a
sufficiently large effective mass. The particular form of the
density functional could also be tested in applications to the
Calogero model.
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