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In this paper, we give a characterization of all the unitary transformations that can be synthesized in a given
time for a two-qubit system in the presence of general time varying coupling tensor. This characterization helps
to compute the minimum time and the shortest pulse sequence for generating a general two-qubit transforma-
tion under nonstationary interactions. The methods presented here can be applied in design of time optimal
pulse sequences for transferring coherence and polarization between coupled spins with time varying couplings
as in solid-state NMR under magic angle spinning.
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An important question in quantum information science is
to determine the minimum time required to perform a quan-
tum computation using a set of physical resources. Since
two-qubit gates are the building blocks of quantum informa-
tion processing, it is of fundamental interest to find the mini-
mal time required to implement a unitary operation on a
two-qubit system using the interaction Hamiltonian Hd, and
the local unitary operations on the two qubits. This problem
was studied in �1�, where it was shown that any two qubit
unitary propogator UF can be expressed as

UF = U2��
k=1

4

Vk exp�− iHdtk�Vk
†�U1, �1�

where U1,U2,Vk are local unitary transformations and the ef-
fective Hamiltonians VkHdVk

† all mutually commute. Under
the assumption that the synthesis of local unitaries takes ar-
bitrarily small time, the minimum time to produce a desired
UF is the smallest value of �k=1

4 tk in Eq. �1� �1�. This char-
acterization of time optimal trajectories is used in �2� to ex-
plicitly compute an elegant expression for the minimal time
for synthesis of arbitrary unitary transformation of two qu-
bits. Alternate proofs for time optimality have been presented
in �3,4�. There is now a considerable literature on the subject;
see for example �2–10�, and references therein.

All these investigations assume that the interaction
Hamiltonian, Hd, is fixed. In this paper, we consider the gen-
eral problem when Hd varies with time. For example, in
solid-state NMR �11�, the interaction between the spins is
varying with time during magic angle spinning when the
sample is rotated around an axis making an angle of �M
=tan−1�	2� with the static magnetic field B0. As a result the
dipolar couplings between nuclear spins that have an orien-
tational dependence of the form 3 cos2���−1 averages out � �
is the angle of internuclear axis with the static magnetic
field�, leading to better resolved NMR spectrum �11�. An
important problem in multidimensional solid-state NMR ex-
periments is to find the radio-frequency pulse sequence that
recouples desired spins whose interactions are being
modulated in time by magic angle spinning. Finding short

pulse sequences that transfer polarization or coherence be-
tween coupled nuclear spins under time varying interactions
is of interest in solid-state NMR. In this paper, we give a
complete characterization of all the unitary transformations
that can be synthesized in a given time for a two-qubit sys-
tem in presence of a general time varying coupling tensor,
assuming that the local unitary transformation on two qubits
can be performed arbitrarily fast �on a time scale governed
by the strength of couplings�. From the perspective of quan-
tum control theory, this problem is equivalent to characteriz-
ing the reachable set of the Schrodinger equation

U̇�t� = − i
Hd�t� + �
j=1

m

v j�t�Hj�U�t� , �2�

where U�SU�4� and Hd�t� is the interaction Hamiltonian
that is internal to the system and � j=1

m v j�t�Hj is the part of the
Hamiltonian that can be externally changed, and generates
the local unitary operations. We assume the control param-
eters v j are a priori not bounded.

Before stating the main result, we review some back-
ground material.

For an element x= �x1 ,… ,xk�T of Rk we denote by x↓

= �x1
↓ ,… ,xk

↓�T a permutation of x so that xi
↓�xj

↓ if i� j, where
1� i, j�k.

Definition 1 (majorization). A vector x�Rk is majorized
by a vector y�RK �denoted x�y�, if

�
j=1

k

xj
↓ � �

j=1

k

yj
↓ �3�

for k=1,… ,D−1, and the inequality holds with equality
when k=D.

Proposition 1. x�y if and only if x lies in the convex hull
of y and all its permutations Piy, where Pi are permutation
matrices.

Proposition 2 (Schur, Horn) �12,13�. For an element �
= ��1 ,… ,�n�T, let D� be a diagonal matrix with ��1 ,… ,�n�
as its diagonal entries, let a= �a1 ,… ,an�T be the diagonal
entries of matrix A=KTD�K, where K�SO�n�. Then a��.
Conversely for any vector a��, there exists a K�SO�n�,
such that �a1 ,… ,an�T are the diagonal entries of A=KTD�K.
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Following �2,10,14�, for an element x= �x1 ,x2 ,x3�T of R3,
we introduce the vector x̂= ��x1� , �x2� , �x3��T, and define the
s-order version xs of x by setting x1

s = x̂1
↓, x2

s = x̂2
↓, x3

s

=sgn�x1x2x3�x̂3
↓.

Definition 2 �2,10,14�. The vector x�R3 is s majorized
by y�R3� denoted x�sy� if

x1
s � y1

s ,

x1
s + x2

s + x3
s � y1

s + y2
s + y3

s ,

x1
s + x2

s − x3
s � y1

s + y2
s − y3

s , �4�

An arbitrary two-qubit Hamiltonian can be parametrized

Hd�t� = I � �a��t� · �� � + �b��t� · �� � � I + �
i,j

Mij�t��i � � j , �5�

where i, j� x ,y ,z� and a� ��ax ,ay ,az�, b� ��bx ,by ,bz� are
real 3-vectors, M is a 3�3 real matrix, and �� = ��x ,�y ,�z� is
the vector of Pauli operators. Let Hd��t� be the nonlocal part
of Hd�t�, i.e.,

Hd��t� = �
i,j

Mij�t��i � � j .

Since we assume that the local unitaries can be generated in
arbitrarily small time, all the unitaries transformations that
can be synthesized in a given time under Hd�t� can also be
synthesized under Hd��t� and vice versa �1�. We therefore
consider Hd�t� and Hd��t� are interchangeable resources under
fast local unitaries. From now on we assume Hd�t� has only
nonlocal terms.

Proposition 3 (Canonical Decomposition) �1,15�. Any
two-qubit nonlocal Hamiltonian H can be written in the form

H = �A � B�†��1
H�x � �x + �2

H�y � �y + �3
H�z � �z��A � B�

�6�

and any two-qubit unitary U�SU�4� may be written in the
form

U = �A1 � B1�e−i��1
U�x��x+�2

U�y��y+�3
UZ�Z��A2 � B2� . �7�

Here A, A1, A2, B, B1, B2 are single-qubit unitaries, and

�1
H � �2

H � ��3
H� ,

�

4
� �1

U � �2
U � ��3

U� . �8�

We call �1
H�x � �x+�2

H�y � �y +�3
H�z � �z and

e−i��1
U

�x��x+�2
U

�y��y+�3
U

�z��z� the canonical form of H and U,

respectively, and ��H and ��U the canonical parameters of H

and U, respectively. For a 3-vector 	� , we denote

H	� = 	1�x � �x + 	2�y � �y + 	3�z � �z,

U	� = e−i�	1�x��x+	2�y��y+	3�z��z�.

The magic basis is a vector space basis for two-qubit pure
states

�00� + �11�
	2

; i
�00� − �11�

	2
;

i
�01� + �10�

	2
;

�01� − �10�
	2

. �9�

The basis change from the standard basis
�00� , �01� , �10� , �11�� to the magic basis is given by Q−1,
where

Q =
1
	2�

1 0 0 i

0 i 1 0

0 i − 1 0

1 0 0 − i
� .

For elements U�SU�4� the map U→Q−1UQ reflects the
isomorphism between SU�2� � SU�2� and SO�4� �16,17�.
When expressed in the magic basis, the canonical form
Hamiltonian and unitaries are diagonal. In magic basis, the
canonical decomposition takes the form Hd=KTDHK, U
=RDUS, where K, R, and S are real orthogonal matrices, and
DH, DU are diagonal matrices. The diagonal elements of DH
and DU are easily written in the terms of the canonical form
parameters �i, i� H ,U�. Define


1
i = �1

i + �2
i − �3

i , 
2
i = �1

i − �2
i + �3

i ,


3
i = − �1

i + �2
i + �3

i , 
4
i = − �1

i − �2
i − �3

i . �10�

The diagonal elements of DH are �
1
H ,
2

H ,
3
H ,
4

H� and the

diagonal elements of DU are �e−i
1
U

,e−i
2
U

,e−i
3
U

,e−i
4
U
�. Under

choice of magic basis, Hd is real symmetric and
�
1

H ,
2
H ,
3

H ,
4
H� are its eigenvalues. Equation �8� together

with Eq. �10� implies that


1
i � 
2

i � 
3
i � 
4

i .

Proposition 4 �3�. Let �� and 	� be two real s ordered

3-vectors, let �� and �� be the four vectors related to �� and 	� ,

respectively, via �10�, then �� ��� if �� �s	
� .

The proof follows from the definitions.
The main result of this paper is as follows:

Theorem 1. Let ��H�t� be the canonical parameters of

Hd�t� in �2� and ���T�=�0
T�H�t�dt, where the integration is

performed for each entry of the vector. All the unitary opera-
tors that can be generated within time T with Hd�t� and fast
local unitaries are given by the set

R�T� = K1U	�K2�K1,K2 � SU�2� � SU�2�,	� �s�
��T�� .

Remark 1. We prove this theorem by using the choice of
magic basis. In this basis, −iHj� are skew-symmetric matri-
ces and generate the group SO �4�. The interaction Hamil-
tonian Hd can be expressed as Hd=KTD��K, where K
�SO�4� and D�� is a diagonal matrix with the diagonal entry

�� related to ��H via �10�. Let � �T�=�0
T�� �t�dt, then in the

magic basis

R�T� = Re−iD	
�S�R,S � SO�4�, 	� � � �T�� .

Proof. Under the choice of magic basis, we can write
U�t�=R�t�A�t�S�t�, where R�t�, S�t��SO�4� and A�t� is the
diagonal matrix. Assumption of fast local unitaries implies
we can generate SO �4� instantly, so it suffices to prove all

we can generate for the A part is e−iD	
� , 	� �� �T�.
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Assume U�t�=R�t�A�t�S�t� is a trajectory of Eq. �2�, then
A�t�=RT�t�U�t�ST�t� and

Ȧ�t� = ṘT�t�U�t�ST�t� + RT�t�U̇�t�ST�t� + RT�t�U�t�ṠT�t� .

Let ṘT�t�=r�t�RT�t� and ṠT�t�=ST�t�s�t�, substituting for

U̇�t�, we get

RT�t�U̇�t�ST�t� = RT�t�
− iHd�t� − i�
i=1

m

v j�t�Hj�
�R�t��RT�t�U�t�ST�t�� .

Using Hd�t�=KT�t�D��K�t� we get

RT�t�U̇�t�ST�t� = RT�t�
− iKT�t�D��K�t� − i�
i=1

m

v j�t�Hj�
�R�t��A�t�� .

Let P�t�=K�t�R�t� and denote h�t�=RT�t��−i�i=1
m v j�t�Hj�R�t�.

The equation for the evolution of A�t� then takes the form

Ȧ�t� = r�t�A�t� + �PT�t�D���t�P�t��A�t� + h�t�A�t� + A�t�s�t� .

�11�

Notice that r�t�, s�t�, and h�t� are in so�4� �skew-symmetric
matrices of dimension 4� and hence their diagonal entries are
all zero. When multiplied by a diagonal matrix A�t�, the di-
agonal entries remain zero. Therefore in the evolution equa-
tion of A�t�, these terms can be discarded. We get

Ȧ�t� = D−i�� �t�A�t� , �12�

where �� �t� is the diagonal entries of PT�t�D�� �t�P�t�. Since we
can generate elements of SO�4� in arbitrarily small time,
R�t�, and hence P�t�, can take the value of any element in
SO�4� and from proposition �2�, �� �t� can take any element of

the set �� �t� ��� �t���� �t��.
From Eq. �12�, we get A�T�=e−iD	

� , where 	� =�0
T�� �t�dt,

�� �t���� �t�. We first prove 	� �� �T�, and then show that 	�

can take on the values of any vector majorized by � �T�.

�
j=1

k

 j
↓�T� = �

j=1

k �
0

T

� j
↓�t�dt , �13�

�
j=1

k

	 j
↓ = �

j=1

k �
0

T

���j��t�dt , �14�

where � is some permutation and k=1, 2, 3, 4. On subtract-
ing Eq. �14� from Eq. �13�, we get

�
j=1

k

 j
↓�T� − �

j=1

k

	 j
↓ = �

0

T

�
j=1

k

� j
↓�t� − �

j=1

k

���j��t�dt . �15�

Since ��t����t�, � j=1
k � j

↓�t�−� j=1
k ���j��t��0, and from Eq.

�15�, � j=1
k  j

↓�T�−� j=1
k 	 j

↓�0. Obviously when k=4, both

terms equal 0, the equality holds, so 	� �� �T�.
We now prove 	� can take on the values of all the vectors

majorized by � �T�, which is the convex hull of � �T� and all

its permutations. If we take R�t�=KT�t�, then 	� =� �T�. It is

also easy to see 	� can take all the permutations of � �T�, so

we just need to prove that the vectors 	� can reach are a
convex set. Let �� �0,1�,

	� 1 = �
0

T

�� 1�t�dt , �16�

	� 2 = �
0

T

�� 2�t�dt , �17�

then

�	� 1 + �1 − ��	� 1 = �
0

T

��� 1�t� + �1 − ���� 2�t�dt , �18�

but ��� 1�t�+ �1−���� 2�t���� �t�, so �	� 1+ �1−��	� 1 can also be
achieved. Q.E.D.

Given these theorems, we can compute the minimum time
needed to generate any unitary operator U in SU�4� with
Hd�t� and fast local unitaries.

Theorem 2. Using the Hamiltonian Hd�t� and fast local
unitaries, a two-qubit gate U can be generated within time T
if and only if there exists a vector n� = �n1 ,n2 ,n3� of integers,

such that 	� n� =��U+ �� /2�n� satisfies

	� n��s�
0

T

��Hd�t�dt ,

where ��U and ��Hd�t� are the canonical parameters of U and
Hd�t�, respectively. The minimum time required to simulate
U is given by the minimum value of T�0 such that either

	� �0,0,0��s�
0

T

��Hd�t�dt , �19�

or

	� �−1,0,0��s�
0

T

��Hd�t�dt , �20�

holds.
The proof follows the treatment in �2�.
Proof. Recall that all commutators �� j � � j ,�k � �k�

vanish, and that exp�−i�� /2�� j � � j�=−i� j � � j is a local

gate. This implies that ��U+ �� /2�n� represents all vectors
compatible with the gate U. It is straightforward to check
from Eq. �4� that for any two vectors x� and y�, with compo-
nents x1�x2� �x3�, y1�y2� �y3�, if y1�3x1, then x��sy�. By
definition � /4��1

U�0, if some component nj of n� fulfills
�nj��1, then the maximal component of the reordered ver-

sion of ��U+ �� /2�n� is at least 3� /4, which implies ��U�s�
�U

+ �� /2�n� . Therefore we can restrict our attention to vectors n�
with �nj��1. A case by case check shows that for n� � �−1,

−1,−1� , �0,−1,0� , �0,0 ,−1� , �0,0 ,1��, ��U+ �� /2��−1,0 ,0�
�s�

�U+ �� /2�n� , and for the remaining vectors n� , ��U

+ �� /2��0,0 ,0��s�
�U+ �� /2�n� . Thus the result follows.

We now work an explicit example on finding the mini-
mum time to synthesize a desired unitary under time varying
couplings. Assume the interaction Hd�t� takes the form
D�t���x � �x+�y � �y −2�z � �z�. We compute the minimum
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time to generate a swap gate corresponding to the unitary
transformation U=exp− i�� /4���x � �x+�y � �y +�z � �z�.

To fix ideas, consider the case when D�t� is constant, say
D�0. The canonical parameters of Hd�t� and U are
D�2,1 ,−1� and �� /4��1,1 ,1�, respectively. The mini-
mum time to generate U is the minimum T that
satisfies �� /4��1,1 ,1��sDT�2,1 ,−1� or �� /4��1,1 ,1�
+ �� /2��−1,0 ,0��sDT�2,1 ,−1�, which is 3� /16D. The
strategy to generate U is to use selective excitation on the
first spin preparing an effective Hamiltonian D�−�x � �x

+�y � �y +2�z � �z�, which evolves � /16D units of time.
This is followed by evolution of effective Hamiltonians
D�−2�x � �x+�y � �y +�z � �z� and D�−�x � �x+2�y � �y

+�z � �z� for � /16D units of time each. In the end we apply
a local unitaries e−i �/2 �x��x =−i�x � �x.

Now consider the time-dependent case, which models the
variation of coupling strength between homonuclear spins
under magic angle spinning �11�. The dipolar interaction
strength D�t� during magic angle spinning varies in time as
D�t�=D 3 cos2���t��−1/2, where ��t� is the angle internu-
clear vector makes with the B0 field. The angle ��t� changes
as the sample is being rotated around an axis making an
angle �M =tan−1�	2� with the B0 field. Let 	 denote the angle
internuclear axis makes with the magic angle axis. Then we
can express ��t� as

cos���t�� = cos�	� cos��M� + sin�	� cos��t� sin��M� ,

where � is the spinning frequency. D�t� is then a periodic
function. We choose 	=� /4 and plot modulation of D�t� in
Fig. 1. Each period of D�t� can be divided into two parts,
D�t��0�� D�t��0�. Let S1, S2 denote the area of these
two parts, respectively, i.e., S1=−�D�t��0�D�t�dt, S2

=�D�t��0�D�t�dt. We find that S1=S2= �1.4922/��D.
The canonical parameters for Hd�t� are

�D�t��2,1,− 1� for D�t� � 0,

− D�t��2,1,1� for D�t� � 0,
�

i.e., (2�D�t�� , �D�t�� ,−D�t�). Using theorem �2�, we get the
minimum time to generate U is the smallest T that satisfies

3�

4
� �

0

T

3�D�t�� − D�t�dt

when ��D, �0
T3�D�t��−D�t�dt is approximately n�2S1

+4S2�, where n is the number of periods of D�t� within time
T, so the minimum n= �3� /4�2S1+4S2��= �0.2632� /D� and
the minimum time T is approximately 2��n /��. The pulse
sequence prepares effective Hamiltonians �−�x � �x+�y

� �y +2�z � �z�, �−2�x � �x+�y � �y +�z � �z�, and �−�x

� �x+2�y � �y +�z � �z� for n /3 periods each, in the part of
the period when D�t��0. Similarly, we prepare effective
Hamiltonians �−�x � �x−�y � �y +2�z � �z�, ��x � �x+2�y

� �y −�z � �z�, and �−2�x � �x+�y � �y +�z � �z� for n /3
periods each, in the part of the period when D�t��0. As
before, we apply a local rotation e−i�/2�x��x in the end.

In this paper, we studied the problem of time optimal
synthesis of a unitary transformation for coupled qubits un-
der nonstationary interactions. Under the assumption that lo-
cal unitary transformations can be synthesized arbitrarily
fast, we characterized the time optimal trajectories and the
minimal time to prepare a general two qubit rotation under
general time varying coupling tensor. These results general-
ize the results presented in �1–3� for stationary coupling
Hamiltonians to the nonstationary case. The problem consid-
ered in this paper was motivated by design of time optimal
pulse sequences for controlling coupled spin dynamics in
solid state NMR spectroscopy, where couplings between
spins are modulated in time due to magic angle spinning.
The results presented here are of fundamental interest and
may find applications in some implementations of quantum
information processing.
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FIG. 1. The figure shows the modulation of the coupling
strength D�t� as function of time for 	=� /4.
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