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Classical orbit derivations of the triply differential cross section for electron bremsstrahlung �BrS� in a
Coulomb field are presented; the classical origin of the circular dichroism effect in the electron scattering
angular distributions is established for both spontaneous and laser-stimulated BrS.
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Nonrelativistic dipole bremsstrahlung �BrS� emission by
an electron scattered from a centrally symmetric �e.g., Cou-
lomb� potential is a fundamental radiative process that al-
lows one to analyze quantum-classical correspondences
within radiation theory. Even now, at the centenary of the
quantum theory, classical analyses remain useful for under-
standing fine details of the BrS process �see, e.g., Ref. �1��.
Since the first classical electrodynamics analysis by Kramers
�2�, exact analytical results for the Coulomb BrS cross sec-
tion have been obtained both quantum mechanically �3� and
classically �4�. The quantum results provide the most com-
plete information on the BrS process via the triply differen-
tial cross section

��3� �
d��e,k;p,p��
d� d�p� d�k

�1�

for emission of a photon �of frequency �, polarization vector

e �e ·e*=1� and wave vector k �k= �� /c�k̂�� by an incident
electron with momentum p that is scattered in the direction
p̂� �where p�= p�p̂� and p�=�p2−2m���.

In the classical theory, the key dynamics of the BrS pro-
cess summed over the polarization of the radiation or inte-
grated over the directions p̂� of the scattered electrons has
been analyzed in detail and compared with the corresponding
quantum results. For example, the spectral density of BrS
radiation d�� /d� can be expressed in terms of the energy
emitted by a charged particle at fixed impact parameter �,
dE���� /d�, as follows �4�:

d��

d�
= �

0

� dE����
d�

2	�d� � ��
d�cl���

d�
, �2�

where d�cl��� /d� is the classical counterpart of the quantum
singly differential cross section d���� /d�. For spontaneous
BrS, the measurement of the scattered electron angular dis-
tributions and their dependence on the polarization of the
BrS radiation is possible only in coincidence experiments
�with polarization-sensitive photodetectors� and is thus diffi-
cult. However, the current experimental ability to vary the
laser light polarization raises interest in the investigation of
polarization effects in laser-stimulated radiative collisions.
The simplest ones are stimulated BrS �SBrS� and inverse BrS
processes for elastic electron-atom scattering in the presence
of a laser field. For a low-intensity laser field, the high-

intensity corrections to the one-photon SBrS cross section as
well as multiphoton SBrS processes are negligible, so that
the SBrS cross section is closely related to that for sponta-
neous BrS �see Eq. �19� below�.

We present here the classical result, �cl
�3�, for the triply

differential cross section of polarized BrS radiation originat-
ing from low-energy electron scattering from a Coulomb
center of charge, Z�e� �i.e., the classical counterpart of Eq.
�1��. Our analysis shows that the difference in the cross sec-
tions for electron scattering in the fixed direction p� involv-
ing the emission of left-hand- or right-hand-polarized spon-
taneous BrS or SBrS radiation in the direction k �the circular
dichroism �CD� effect�, which in the quantum treatment ap-
pears as the result of quantum interferences �5�, exists also in
the results for �cl

�3�, thus showing the classical origin of the
CD effect.

To treat polarized dipole radiation emitted by an electron
moving along a classical orbit, we use the Hamiltonian for-
malism in the classical theory of radiation �6�, which has
been adapted in Ref. �7� for the analysis of BrS processes
within the framework of “Kramers electrodynamics.” In this
approach, the electromagnetic field in the volume V=L3 is
described by a set of field oscillators, whose generalized co-
ordinates qei,ki

�t� correspond to the monochromatic plane-
wave modes Aei,ki

�r� of the vector potential at the position r.
For the mode corresponding to radiation with polarization
vector e and wave vector k, the equation for qei,ki

�t� is �cf.
�7��

q̈e,k + �2qe,k = �4	/Ve„e · v�t�…exp�ik · r�t�� , �3�

where r�t� and v�t�= ṙ�t� are the position vector and velocity
of an electron on a prescribed classical orbit. Equation �3�
represents a forced vibration of an oscillator due to the mo-
tion of a charged particle. The energy emitted by the field
oscillator in the �k ,e� mode is the energy transferred from
the electron to the oscillator. This energy equals the work W
done by the “external force” on the right-hand side �RHS� of
Eq. �3�; it may be expressed in terms of the Fourier trans-
form of the RHS of Eq. �3� as a function of the frequency �
�8�. This Fourier component is proportional to that of the
classical velocity v�t�, v−�=	−�

� v�t�exp�−i�t�dt note that
�v�=v−�

* �, assuming the electron motion is nonrelativistic
and thus that the electric-dipole approximation exp�ik ·r�t��

1 may be used on the RHS of Eq. �3�. Thus, W
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= �2	 /V�e2�e ·v−��2. Multiplying W by the number of field
oscillators in the volume V and in the element dk of k space,
�V�2 d� d�k� / �2	c�3, the energy dEe� of polarized radia-
tion emitted in the frequency interval d� within the solid
angle d�k by an electron moving along a trajectory r�t� is

dEe� =
e2�2

4	2c3 �e* · v��2 d� d�k. �4�

This result generalizes the classical result for the energy dE�

of dipole radiation with frequency in the interval d� �emitted
during the entire time of collision� to the case of a specified
polarization state �e� of the radiation. Summing Eq. �4� over
the polarization states and integrating over the direction of k,
which is equivalent to the substitution �9�

eiej
* d�k → �8	/3�
ij , �5�

one obtains the known result �4�

dE� =
2e2�2

3	c3 �v��2 d� =
2�4

3	c3 �d��2 d� . �6�

For an electron moving along a hyperbolic trajectory in a
Coulomb field, the Cartesian coordinates of v�, ẋ�, and ẏ�, in
the orbit plane �x ,y� �with the x axis chosen as the symmetry
axis of the trajectory� are well known �4�:

ẋ� = i
2Ze2

mv2 e	�/2Ki�� ���� ,

ẏ� =
2Ze2

mv2

��2 − 1

�
e	�/2Ki����� , �7�

where K�z� and K� �z� are the Macdonald function and its
derivative with respect to z, and � and � are a dimensionless
“classical frequency” and an angular parameter,

� =
Ze2�

mv3 , � =
1

sin��/2�
, �8�

where � is the scattering angle and cos �= �p̂ · p̂��. Note that
K�z� is related to the Hankel function of imaginary argu-
ment, H

�1��iz� �10�: K�z�= i�	 /2�exp�i	 /2�H
�1��iz�. Also,

p�= p=mv since the damping effect of BrS radiation on the
electron motion is neglected in a classical treatment. The
vector v�= ẋ� x̂+ ẏ�ŷ may be expressed in an invariant form

v� = i�
Ze2

mv2e	�/2� i

�
Ki�����p+ + Ki�� ����p−� , �9�

where we have represented the unit vectors x̂ and ŷ in terms
of the vectors p±= p̂�± p̂

x̂ =
�

2
p−, ŷ = −

�

2��2 − 1
p+. �10�

The use of recurrence relations for the Macdonald functions
leads to an alternative representation for v� in terms of a
single �complex� Macdonald function:

v� = i�
Ze2

mv2e	�/2�K1+i�����p̂ − K1+i�
* ����p̂�� . �11�

To introduce the classical triply differential cross section
�cl

�3�, the energy dEe� emitted by an electron on a single tra-
jectory �from Eq. �4�� should be multiplied by the element
dS=� d� d� in the �orthogonal to p� plane of impact param-
eters. For a given classical orbit in a Coulomb field, the
relation between dS and the corresponding scattered electron
solid angle element d�p� is

� d� d� = �̃0 d�p�, �12�

where

�̃0 �
d�0

d�p�
=  Ze2

2mv2�2

�4 �13�

is the Rutherford cross section. Thus, �cl
�3� is given by the

product of the right-hand sides of Eqs. �4� and �12� divided
by �� d� d�p� d�k. Using Eq. �11�, �cl

�3� is thus

�cl
�3� = �̃0

�

4	2

v2

c2

�2�2

�
e	�

��K1+i������e* · p̂� − K1−i������e* · p̂���2, �14�

where �=e2 / ��c�. Substituting Eq. �9� into Eq. �6�, one ob-
tains the known results for the energy dE���� and spectral
density d�� /d� of Coulomb BrS �4�. Also, using Eqs. �4�
and �9� to calculate the differential spectral density d�k� /d�,
the angular distributions of Coulomb BrS radiation �with re-
spect to the vector p�, d�k�

� /d� and d�k�
� /d�, polarized,

respectively, in the plane �p ,k� and that orthogonal to �p ,k�,
have the known form of integrals of Macdonald �or Hankel�
functions. �In Ref. �11� these integrals are calculated analyti-
cally in terms of Ki����, Ki�� ���, dK��� /d, and dK� ��� /d
�with = i��; in Ref. �12� they are calculated in terms of
generalized hypergeometric functions pFp+1, with p=1,2 ,3.�

The classical cross section �cl
�3� in Eq. �14� should be com-

pared with the quantum result �3,9�, which we present here
in a similar form

��3� = �2Ze2

mc
�2 aa�v�

�v�v − v��4�e2	a − 1��1 − e−2	a��

� �Q�v,v�;���e* · p̂� − Q�v�,v;���e* · p̂���2. �15�

The amplitude Q contains the Gauss hypergeometric func-
tion 2F1�a ,b ;c ;z�,

Q�v,v�;�� = v�1 − ia�2F1�2 − ia,1 − ia�;2;�0� , �16�

where

a =
Ze2

�v
, a� =

Ze2

�v�
, �0 = −

4vv�

�v − v��2�2 . �17�

The quantum result �15� reduces to the classical one �14�
when �→0. Asymptotic forms of the functions 2F1 for large
parameters a and a� �with �a�−a� remaining finite� were
obtained in analyses of quantum corrections to the classical
orbit result for proton BrS �13�. In our case, the asymptotic
form of 2F1 in Eq. �16� is
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2F1�2 − ia,1 − ia�;2;�0�



i

	a
e�	/2��a+a��−2i����/2a�3−ia−ia�K1+i����� . �18�

Using Eq. �18� and taking into account the relations

�v − v�� → ����/�mv�, �a� − a� → � ,

Eq. �15� reduces to Eq. �14�. �For the case of linear polariza-
tion �e=e*�, Eq. �14� for �cl

�3� may be deduced also from the
semiclassical results of Ref. �11� for n-photon SBrS for the
case of n=1 and a low-intensity laser field. However, our
analysis shows that already for n=2, the low-intensity result
of Ref. �11� does not coincide with the classical limit ��
→0� of the exact quantum results for two-photon BrS �as
will be shown elsewhere�.�

The relation between ��3� and the cross section, d� /d�p�,
for SBrS emission in laser-assisted electron scattering is
given by

d�

d�p�
=

	2c3

��3 F2��3�, �19�

where F is the amplitude of a laser field having an electric
vector F�t�=F Re�e exp�i�k ·r−�t��� and an intensity I
=cF2 / �8	�. Thus, �cl

�3� allows one to analyze polarization
effects in both stimulated and spontaneous classical BrS. The
most interesting of these effects is the CD effect in the an-
gular distributions of scattered electrons. �For a general dis-
cussion of circular and elliptic dichroism effects in various
atomic photoprocesses see Ref. �14�.� The polarization vec-
tor e is generally complex �for an elliptical polarization�.
Taking into account the identity �5�

2 Im��e* · p̂��e · p̂��� = ��k̂ · �p̂ � p̂���, − 1 � � � 1,

�20�

where the pseudoscalar � is the degree of circular polariza-

tion �or the Stokes parameter �2�, �= i�k̂ · �e�e*�� �cf. Sec. 8
in Ref. �9��, and using Eq. �9� for v�, we find

�cl
�3� = �̃0

�

4	2

v2

c2

�2

�
e	��Ki�

2 �����e* · p+�2 + �2K�i�
2 �����e* · p−�2

− 2��Ki�����Ki�� �����k̂ · �p̂ � p̂���� . �21�

One sees that �cl
�3� is different for opposite helicities of the

BrS radiation �i.e., upon substituting �→−� or e→e*�. For
both classical and quantum cross sections, the “CD differ-
ence” �CD

cl ��cl
�3��e�−�cl

�3��e*� has a kinematical maximum
when p�p� and the polarization plane coincides with the
scattering plane �cf. Fig. 1�. In the quantum approach, the
CD effect originates from the interference between real and
imaginary parts of the complex BrS amplitudes Q�v ,v� ,��
and Q�v� ,v ,�� in Eq. �15� �5�. Equation �21� shows that in
the classical treatment the CD effect originates from interfer-
ence of the real and imaginary “classical amplitudes” Ki�� ����
and �i /��Ki����� in Eq. �9�. �Note that both Ki����� and
Ki�� ���� are real.� This classical CD effect shows that the
emission of polarized BrS radiation is sensitive not only to

the mutual orientation of the classical orbit plane and the
wave vector k �i.e., the polarization plane�, but also to the
handedness of the BrS radiation.

The CD effect vanishes for forward and backward scatter-
ing �p�= ±p�, for BrS emission in the scattering plane
�k� �p̂� p̂���, and also when the cross section is integrated
over the direction of the scattered electron’s momentum, p�.
It becomes small in the low-frequency domain ����1�,
where �cl

�3� has the following form:

�cl
�3� 
 �̃0

�

4	2

v2

c2�
e	�

���e* · p−�2 + 2�� ln
2

���
�k̂ · �p̂ � p̂���� , �22�

where �=1.781. . . is the Euler constant. In the high-
frequency limit ���1�, the CD term in �cl

�3� has no small
parameters, as may be seen from the asymptotic result for
�cl

�3� for ��1 and ��	:

FIG. 2. Comparison of classical and quantum triply differential
cross sections �cl

�3� �solid curves� and ��3� �dashed curves� as func-
tions of the electron scattering angle � for left- �top curves� and
right- �bottom curves� circular polarizations, �= �1 of the emitted
BrS radiation. For all curves, Z / p=10 a.u., �=1 �i.e., ��
=10−3Z2 a.u.�, and �=	 /2.

FIG. 1. Geometry of an angularly resolved BrS process.

BRIEF REPORTS PHYSICAL REVIEW A 72, 035401 �2005�

035401-3



�cl
�3� 
 �̃0

�

8	

v2

c2

��2

�
tan

�

2
e−���+2 cot��/2�−	�

��sin2��/2��e* · p+�2 + cos2��/2��e* · p−�2

+ � sin ��k̂ · �p̂ � p̂���� . �23�

�Equations �22� and �23� follow from Eq. �21� using the lim-
iting forms of the Macdonald functions.�

A significant CD effect beyond the low-frequency domain
�i.e., for finite �� is illustrated in Fig. 2 for the geometry
shown in Fig. 1. One sees that the classical and quantum
results are in good qualitative agreement and that in both
cases the CD difference between cross sections for opposite
helicities of the emitted BrS radiation can be as large as an
order of magnitude. Figure 3 shows that the dependence of
the ratio �cl

�3� /��3� on the Sommerfeld parameter a
= �Ze2� / ��v� �a=Z / p in a.u.� exhibits the typical decreasing
behavior with increasing p known from earlier studies of
total and differential �in k� BrS cross sections. The CD dif-
ference in the classical cross section �cl

�3� �see the inset in Fig.
3� decreases with increasing p in qualitative agreement with
the known fact that the CD effect disappears in the Born
approximation �5�.

In conclusion, we have obtained the classical result for the
triply differential cross section for Coulomb BrS and have
demonstrated that the CD effects in the angular distributions

of the scattered electrons in both stimulated and spontaneous
BrS processes have the same qualitative features as in the
corresponding quantum results.
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