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We study a quantum state transfer between two qubits interacting with the ends of a quantum wire consisting
of linearly arranged spins coupled by an excitation conserving, time-independent Hamiltonian. We show that,
if we control the coupling between the source and the destination qubits and the ends of the wire, the evolution
of the system can lead to an almost perfect transfer even in the case in which all nearest-neighbour couplings
between the internal spins of the wire are equal.
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The problem of designing quantum networks which en-
able efficient high-fidelity transfer of quantum states has re-
cently been addressed by a number of authors �see Refs.
�1–23��. Ideally, such a network should meet both the sim-
plicity and the minimal control requirements. By simplicity,
we mean that the network consists of typical elements
coupled in a standard way so that a few networks can be
combined together to form more complex systems. The mini-
mal control requirement says that the transmission of a quan-
tum state through the network should be possible without
performing many control operations �such as switching inter-
actions on and off, measuring, encoding and decoding, etc.�.
A 1D quantum network �quantum wire� which fulfills both
the above requirements was proposed by Bose �1�, who con-
sidered a spin chain with the nearest-neighbor Heisenberg
Hamiltonian; here, the transmission of quantum state be-
tween the ends of the chain was achieved simply by a free
evolution of the network. However, as was shown by Bose, if
all neighbor couplings have the same strength, the fidelity of
a transmission decreases with the chain length n. A similar
model �with the Heisenberg Hamiltonian replaced by an XY
one� was considered by Christandl et al. in Ref. �2�. They
show that one can transfer quantum states through arbitrary
long chains if spin couplings are carefully chosen in a way
depending on the chain length n �see also Refs. �3–8��. Note,
however, that this approach does not meet the simplicity re-
quirement since one cannot merge several “modulated”
quantum wires into a longer one.

Here, we study a transfer of quantum states between two
qubits attached to the ends of a quantum wire consisting of n
linearly arranged spins. In order to fulfill the requirement of
simplicity, we assume that all couplings between neighboring
spins forming the quantum wire are the same �and equal to
1�, while the couplings between the source and the destina-
tion qubits and the ends of the wire are equal to a. We show
that one can significantly improve the fidelity of the transfer
between the source and the destination qubits by selecting
the value of a appropriately. In particular, choosing a small
enough, one can achieve a transfer whose fidelity can be
arbitrarily close to 1, even for large n.

We assume that the Hamiltonian of the whole system of
n+2 qubits conserves the number of excitation �e.g., it is an
XY Hamiltonian�, so the state � j=0

n+1�0� j is its eigenstate. Let
Fab denote the fidelity of the transfer of an arbitrary state
���=a�0�+b�1� from the source �j=0� to destination �j=n
+1� qubit, and let F=F01 stand for the fidelity of the state �1�
transfer. It is easy to check that the average fidelity �Fab�,
where the average is taken over all possible values of a and
b, is uniquely determined by F, namely

�Fab� =
1

3
+

1

6
�1 + F�2.

Thus, from now on, we shall consider only the evolution of
the system with the initial state given by ���0��
= �1�0�0�1¯ �0�n+1, i.e., the wire is in the polarized state.
Then, the state space is spanned by vectors �p�= � j=0

n+1�� jp� j,
p=0, . . . ,n+1, and the Hamiltonian H�a� of the system can
be written as

H�a� = a��0��1� + �n��n + 1�� + �
p=1

n−1

�p��p + 1� + H.c.,

where, let us recall, both the source and the destination qu-
bits are coupled to the quantum wire with strength a, while
all couplings among spins of the quantum wire are taken to
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FIG. 1. The evolution of Pn+1�t� for the system of 30 spins for

t� �0,150�.
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be one. If a2�2, then all the eigenvalues of H�a� are of the
form �=2 cos �, where � is a solution of either of the two
following equations ��= ±1�:

� cot���cot�	n + 1

2
�
 =

a2

2 − a2 .

The eigenvector �v���� corresponding to the eigenvalue
2 cos � has coordinates vk

���= �k �v���� given by

v0
��� =

a

c
sin � ,

vk
��� =

1

c
�sin��k + 1��� + �1 − a2�sin��k − 1���� ,

for k=1, . . . ,n, and

vn+1
��� = �v0

���,

where c=c�a� is defined as

c2 = �n + 1�„2�1 − a2�cos2 � + a4/2… + 2a2 − a4.

Let Pj�t�= ��j ���t���2 denote the probability of the excita-
tion of the jth spin, if the initial state of the system is
�1�0�0�1¯ �0�n+1 �i.e., P0�0�=1�. Figure 1 shows the depen-
dence of Pn+1�t� on a for the first period of the evolution of
a system of 30 spins. Figure 2 presents the density version of
the same graph, while Fig. 3 shows the projection of the
evolution along the time axis. As clearly seen in Fig. 3, de-
creasing a from 1 to about 0.6 significantly improves the
fidelity of transfer; if we decrease a even further, then the
fidelity drops down but for small a it grows again, approach-
ing 1 as a→0.

In order to better understand Fig. 3, we graph the effect of
decreasing a on the eigenvalue spectrum of the whole system
as well as on the eigenvector population �v0

����2 �Fig. 4�. For

a�1 the spectrum is nearly harmonic in the vicinity of 0, but
the distribution of the eigenvectors is broad and the contri-
bution from the anharmonic part of the spectrum spoils the
transfer. If a decreases, the eigenvector distribution narrows
so that the anharmonic contribution drops down; conse-
quently, the transfer fidelity increases. Then, for small a, the
harmonicity of the spectrum in the vicinity of zero breaks
down, which reduces the fidelity of the transfer. If a is even
smaller, the system is very sensitive for spontaneous reso-
nances between different modes which, in turn, are greatly
affected by small changes of the value of a. For very small
values of a the behavior of the system is determined only by
the two �or three when n is odd� central eigenvalues of H�a�,
which enables an almost perfect transfer of states.

FIG. 2. The density plot for the graph in Figure 1.

FIG. 3. The dependence of Pn+1
max=max�Pn+1�t� : t� �0,20 000�

on a for the system of 30 spins.

FIG. 4. The dependence of the eigenvalues of H�a� on a �the
right-hand side of the figure� and the eigenvector populations
���v��� ���0���2� �on the left� for the system of 30 spins.

FIG. 5. The evolution of P0�t�, Pn+1�t�, Pnet�t�, for a=0.01 and
�a� n=198; �b� n=199. If n=198, then �a�10−4 and ��16 000; for
n=201 we have �a=1.41	10−3 and ��2200.
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In this phase the behavior of the system depends strongly
on the parity of n. If a→0+, then the initial state ���0�� is
concentrated basically on two eigenvectors for n even �see
Fig. 4�; if n is odd, then the evolution of the system takes
place in a three-dimensional space. More specifically, let �̂a
be the smallest positive eigenvalue of H�a�. If n is even

and a→0+, then for the two eigenvectors �x�= �v��̂a��, �y�
= �v�−�̂a�� corresponding to the eigenvalues ±�̂a, we have
x0=y0=xn+1=−yn+1�1/�2. Consequently, an almost perfect
transfer of states between qubits 0 and n+1 occurs after time
��
 / �2�̂a�. For odd n’s, the spectrum of ���0�� is concen-

trated on three eigenvectors: besides �x�= �v��̂a�� and �y�
= �v�−�̂a��, we need to take into account the eigenvector
�z�= �v�0�� corresponding to the eigenvalue zero. Then, z0
= �zn+1��1/�2, x0=y0= �xn+1�= �yn+1��1/2, and the sign
of zn+1 is opposite to the signs of both xn+1 and yn+1. In this
case an almost perfect transfer from the source to the desti-
nation qubits occurs after time ��
 / �̂a. Let us mention that
a similar phenomenon of transferring the states between two
qubits weakly interacting with a network has been recently
observed by Li et al. �9� and Plenio and Semiao �10�, who
consider transferring qubit states through a ladder and a
cycle, respectively.

Straightforward computations show that the fidelity of the
transfer scales as 1−O�a2n�, and it grows to 1 only when

a�1/�n. Moreover, we have �̂a�a2 for an even n, and �̂a

�2a /�n when n is odd. Hence, the time of the transfer
is ��a−2� for even n, and ���n /a� for odd n. Thus, for a
=� /�n, an almost perfect �F�1−�2� transfer is possible for

��1 in a time which scales linearly with the quantum wire
length n. The speed of the transfer n /� is approximated by
2� /
 and �2 /
 when n is odd and even, respectively. Thus,
for small a, a quantum wire with odd n ensures more effec-
tive transfer. In Fig. 5 the evolution of the excitation prob-
abilities of the source qubit P0�t�, the destination qubit
Pn+1�t�, and the total probability of the excitation of the wire
qubits Pnet�t�=� j=1

n Pj�t�, are presented for a=0.01 and n
=198,199. Note that if n is even, the spins of the wire re-
main almost unexcited during the evolution, i.e., the source
and destination qubits evolve like two isolated and directly
coupled qubits. Thus, the evolution of a system resembles
Rabi oscillations between the source and destination qubits,
despite the fact that they lie a significant distance from each
other.

Finally, we remark that if n is even and a→0+, after time
t�� /2 the state of the system is close to �1/�2���0�0�1�n+1

+ �1�0�0�n+1��0�1¯ �0�n. Thus, such an unmodulated quantum
wire can also be used to generate entanglement between the
source and destination qubits.

In conclusion, we have shown that one can significantly
improve a transfer of the qubit states between the ends of a
quantum wire by controlling the coupling on its ends. In
particular, an unmodulated spin chain of arbitrary length n
can be used as a universal quantum wire to transfer of quan-
tum states with arbitrary high fidelity in a time which scales
linearly with n.
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