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The thermal entanglement in a two-qubit Heisenberg XXZ spin chain is investigated under an inhomoge-
neous magnetic field b. We show that the ground-state entanglement is independent of the interaction of
z-component Jz. The thermal entanglement at the fixed temperature can be enhanced when Jz increases. We
strictly show that for any temperature T and Jz, the entanglement is symmetric with respect to zero inhomo-
geneous magnetic field, and the critical inhomogeneous magnetic field bc is independent of Jz. The critical
magnetic field Bc increases with the increasing �b� but the maximum entanglement value that the system can
arrive at becomes smaller.
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I. INTRODUCTION

Entanglement is the most fascinating feature of quantum
mechanics and plays a central role in quantum information
processing. In recent years, there has been an ongoing effort
to characterize qualitatively and quantitatively the entangle-
ment properties of condensed matter systems and apply then
in quantum communication and information. An important
emerging field is the quantum entanglement in solid state
systems such as spin chains �1–8�. Spin chains are the natu-
ral candidates for the realization of the entanglement com-
pared with the other physics systems. The spin chains not
only have useful applications such as the quantum state
transfer, but also display rich entanglement features �9�. The
Heisenberg chain, the simplest spin chain, has been used to
construct a quantum computer and quantum dots �10�. By
suitable coding, the Heisenberg interaction alone can be used
for quantum computation �11–13�. The thermal entangle-
ment, which differs from the other kinds of entanglements by
its advantages of stability for the reduction in entanglement
of an entangled state due to various sources of decoherence
and in entanglement in time due to thermal interactions are
absent as the entanglement at finite temperature takes ther-
mal decoherence into account implicitly, requires neither
measurement nor controlled switching of interactions in the
preparing process, and hence becomes an important quantity
of systems for the purpose of quantum computing. In the
studies on the entanglement of the Heisenberg spin model, a
lot of interesting work has been done �14–16�. It turns out
that the critical magnetic field Bc is increased by introducing
the interaction of the z-component of two neighboring spins
in Ref. �17�. However, only the uniform field case is care-
fully studied in the above mentioned papers. The nonuniform
case is rarely taken into account. We know that in any solid

state construction of qubits, there is always the possibility of
inhomogeneous Zeeman coupling �18,19�. Thus, it is neces-
sary to consider the entanglement for a nonuniform field
case. Asoudeh and Karimipour �20� studied the effect of in-
homogeneous in the magnetic field on the thermal entangle-
ment of an isotropic two-qubit XXX spin system. We noticed
that the entanglement for a XXZ spin model in a nonuniform
field has not been discussed. Although Asoudeh �20� states
that the different types of anisotropic interactions may not be
of much practical relevance to concrete physical realization
of qubits, in the theoretical analysis we think it is very inter-
esting and should be included in the studies of spin chain
entanglement. This is the main motivation of this paper.

For a system in equilibrium at temperature T, the density
matrix is �= �1/Z�e−�H, where �=1/kT, k is the Boltzmann
constant, and Z= tre−�H is the partition function. For simplic-
ity, we write k=1. The entanglement of two qubits can be
measured by the concurrence C which is written as
C=max�0,2 max��i�−�i

4�i� �15�, where �i are the square
roots of the eigenvalues of the matrix R=�S�*S, � is the
density matrix, S=�1

y
� �2

y, and � stands for the complex con-
jugate. The concurrence is available, no matter whether � is
pure or mixed. In the case that the state is pure �= ������
with

��� = a�0,0� + b�0,1� + c�1,0� + d�1,1� , �1�

the concurrence is simplified to

C��� = 2�ad − bc� . �2�

II. THE MODEL AND THE GROUND-STATE
ENTANGLEMENT

The Hamiltonian of the N-qubit anisotropic Heisenberg
XXZ model under an inhomogeneous magnetic field is
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H =
1

2�
i=1

N

�J�i
x�i+1

x + J�i
y�i+1

y + Jz�i
z�i+1

z

+ �B + b��i
z + �B − b��i+1

z � , �3�

where J and Jz are the real coupling coefficients. The cou-
pling constants J�0 and Jz�0 correspond to the antiferro-
magnetic case, and J�0 and Jz�0 the ferromagnetic case.
B	0 is restricted, and the magnetic fields on the two spins
have been so parameterized that b controls the degree of
inhomogeneity. Now we consider the Hamiltonian for N=2
case. Note that we are working in units so that B, b, J, and Jz
are dimensionless.

In the standard basis 	�1, 1�, �1, 0�, �0, 1�, �0, 0�
, the
Hamiltonian can be expressed as

H =�
Jz + 2B

2
0 0 0

0
− Jz + 2b

2
J 0

0 J
− Jz − 2b

2
0

0 0 0
Jz − 2B

2

� , �4�

A straightforward calculation gives the following
eigenstates:

�
1� = �0,0� ,

�
2� = �1,1� ,

�
3� =
1

1 + �2/J2� �

J
�1,0� + �0,1� � ,

�
4� =
1

1 + �2/J2� �

J
�1,0� + �0,1� � , �5�

with corresponding energies

E1 =
1

2
�Jz − 2B� ,

E2 =
1

2
�Jz + 2B� ,

E3 = −
Jz

2
−  ,

E4 = −
Jz

2
+  , �6�

where =b2+J2, �=b−, and �=b+. Note that when
b→0 and J�0, the two states �
3� and �
4�, respectively, go
to the maximally entangled state �1/2���0,1�− �1,0�� and
�1/2���0,1�+ �1,0��. For J�0, they, respectively, go to
�1/2���0,1�+ �1,0�� and �1/2���0,1�− �1,0��. We can also

find that the eigenenergies are even function of the coupling
constant J. Thus, we can think the ground-state entanglement
exists for both antiferromagnetic and ferromagnetic cases
and should be symmetric with respect to the coupling con-
stant J. The ground state depends on the value of the mag-
netic field B, the coupling constant Jz, and . It is readily
found that the ground-state energy is equal to

E1 =
1

2
�Jz − 2B�, if  � B − Jz;

E3 = − Jz/2 − , if  � B − Jz. �7�

Thus, when �B−Jz, the ground state is the disentangled
state �
1� and when �B−Jz, the ground state is the en-
tangled state �
3�. For each value of the magnetic field B,
there is a threshold parameter Jz

f =B− above which the
ground state will become entangled. Accordingly, for each
value of inhomogeneity  there is a value of magnetic field
Bf =+Jz above which the ground state will loosen its en-
tanglement. In the entangled phase, the entanglement of the
ground state is found from Eqs. �2� and �5� to be

C��
3�� =
2���

1 + �2 , �8�

where �=� /J. �= ±1 �i.e., b=0�, the system enters the maxi-
mally entangled phase �
3� with entanglement C��
3��=1.
This result accords with that in Ref. �20�. Here we can also
know that the ground-state entanglement is independent of
the interaction of z-component Jz.

III. THE THERMAL ENTANGLEMENT

As the thermal fluctuation is introducing into the system,
the entangled ground states will be mixed with the unen-
tangled excited state. This effect will make the entanglement
decrease. At the same time, the disentangled ground state
mixes with entangled excited states. To see the change of the
entanglement, we calculate the entanglement of the thermal
state �= �1/Z�e−�H. In the standard basis 	�1, 1�, �1, 0�, �0, 1�,
�0, 0�
, the density matrix of the system can be written as

�12 =
1

Z�
e−E2/kT 0 0 0

0 eJz/2kT�m − n� − s 0

0 − s eJz/2kT�m + n� 0

0 0 0 e−E1/kT
�
�9�

where Z=e−E2/kT�1+e2B/kT�+2e�Jz+B�/kT cosh� /kT�, m
=cosh� /kT�, n=b sin h� /kT� /, s=eJz/2kTJ sin h� /kT� /.
In the following calculation, we will write the Boltzmann
constant k=1. From Eq. �9� and the definition of
concurrence, we can obtain the concurrence at the finite
temperature.

Case 1: Jz=0. Our model corresponds to a XX spin model.
The eigenvalues and eigenvectors can be easily obtained. In
Fig. 1, we give the results at different temperature for the
nonuniform magnetic field �B=0� and the uniform magnetic
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�b=0�. From the figure, we can know that the entanglement
is symmetric with respect to zero magnetic field, the nonuni-
form magnetic field can lead to higher entanglement and
double-peak structure. This results accord with those seen
from Ref. �5�.

Case 2: Jz=J. In order to compare with the results in Ref.
�20�, we make the substitutions J→2J, B→2B, and b→2b.
The eigenvalues and eigenvectors can be easily obtained as

��1� = �0,0� ,

��2� = �1,1� ,

��3� =
1

1 + x2/J2� x

J
�1,0� + �0,1�� ,

��4� =
1

1 + y2/J2� y

J
�1,0� + �0,1�� , �10�

with corresponding energies

e1 = J − 2B ,

e2 = J − 2B ,

e3 = − J − 2�J�1 + �2,

e4 = − J + 2�J�1 + �2, �11�

where �=b /J, x=2b−21+�2, and y=2b+1+�2. For the
ferromagnetic case J=−1, the ground-state concurrence is
C���3��=1/1+�2. For the ferromagnetic case J=1, the
ground-state concurrence is C���4��=1/1+�2. These results
are same with those obtained in Ref. �20�. In Fig. 2, we give
the plot of the thermal concurrence for Jz=J=−1 case.

In order to compare our result with that in Ref. �20�, we
let the inhomogeneous magnetic field b=0.458 �this accords
to the value of � in Ref. �20��. We can see that the thermal
entanglement develops and is maximized for zero magnetic
field B and reaches the maximum value at T=0.

Case 3: For any Jz. With B=0, the concurrence as a func-
tion of b and T for two values of Jz are given in Fig. 3. They
show that the concurrences are 1 for different Jz when b=0
and T=0. At the point, the ground state is �
3� with energy
−Jz /2−1, which is the maximally entangled state and the
corresponding concurrences are 1. As the temperature in-
creases, the concurrences decrease due to the mixing of other
states with the maximally entangled state. We also know that
the concurrence decreases with the increasing of �b�. From
the two figures in Fig. 3, we can find that upon increasing Jz,
the critical temperature Tc is improved �for Jz=0, Tc is about
2, but for Jz=0.9, Tc has a higher value�. Thus, we can obtain
a higher entanglement at a fixed temperature when Jz is
increased.

Figure 4 shows the concurrence at a fixed temperature and

FIG. 1. The concurrence for Jz=0 and J=1 case. T=0.4 �solid
curve� and T=1.0 �dotted curve�. The left panel corresponds to the
nonuniform case and the right panel corresponds to the uniform
case. T is plotted in units of the Boltzmann’s constant k. We work in
units where B and b are dimensionless.

FIG. 2. �Color online� The thermal concurrence for Jz=J=−1
case. The inhomogeneous magnetic field b=0.458. T is plotted in
units of the Boltzmann’s constant k. We work in units where B and
b are dimensionless.

FIG. 3. �Color online� The concurrence in the XXZ spin model is
plotted vs b and T. Coupling constant J=1, and the magnetic field
B=0. The left panel corresponds to the Jz=0 case and the right
panel corresponds to the Jz=0.9 case. T is plotted in units of the
Boltzmann’s constant k. We work in units where b is dimensionless.

FIG. 4. The concurrence in the XXZ model is plotted vs b for
various value of Jz, where J=1, B=0.8, and T=0.6. From top to
bottom, Jz equals 0.9, 0.4, 0. T is plotted in units of the Boltzmann’s
constant k. We work in units where B and b are dimensionless.
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magnetic field for three values of positive Jz. It is shown that
the concurrences drop with the increasing value of b and
arrive at zero at the same b value, which is called the critical
inhomogeneous magnetic field, for various values of Jz. This
is to say the critical inhomogeneous magnetic field is inde-
pendent of Jz. Moreover, we can see that for a higher value
of Jz, the system has a stronger entanglement, which is con-
sistent with Fig. 3.

In Fig. 5 we give the plot of concurrence as a function
of T and B for b=0 and b=0.8 when Jz=0.4. For
B=0 and b=0, the maximally entangled state
���= �1/2���0,1�− �1,0�� is the ground state with eigen-

value −Jz /2− �J�. The maximum entanglement is at T=0, i.e.,
C=1. As T increases, the concurrence decreases, as seen
from Fig. 5, due to the mixing of other states with the maxi-
mally entangled state. For a high value of B �in left Fig. 5,
B=1.40 and in right Fig. 5, B=1.70� the state �
1� becomes
the ground state, which means there is no entanglement at
T=0. However, by increasing T, the entangled state �
3� and
�
4� will mix with the state, which makes the entanglement
increase. From the two figures in Fig. 5, we can see that
when b is raised, the critical magnetic field Bc increases, but
the maximum entanglement value at which the system can
arrive at becomes smaller.

IV. CONCLUSIONS

In conclusion, we have investigated the thermal entangle-
ment in a two-qubit Heisenberg XXZ spin chain under an
inhomogeneous magnetic field. The ground-state entangle-
ment and thermal entanglement at a finite temperature are
given. We find the entanglement exists for both antiferro-
magnetic and ferromagnetic cases. In addition, the entangle-
ment is enhanced by increasing the interaction of
z-component Jz. The critical inhomogeneous magnetic field
is independent of Jz. The critical magnetic field Bc increases
with the increasing �b� but the maximum entanglement value
that the system can arrive becomes smaller.
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FIG. 5. �Color online� The concurrence in the XXZ spin model is
plotted vs T and B, where J=1 and Jz=0.4. The left panel corre-
sponds to b=0 case and the right panel corresponds to b=0.8 case.
T is plotted in units of Boltzmann’s constant k. We work in units
where B and b are dimensionless.
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