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Decoherence induced by a composite environment
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We study the decoherence induced by the environment over a composite quantum system, comprising two
coupled subsystems A and B, which may be a harmonic or an upside-down oscillator. We analyze the case in
which the B subsystem is in direct interaction with a thermal bath, while the other remains isolated from the
huge reservoir. We compare the results concerning the decoherence suffered by the A subsystem.
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Decoherence is the process by which most pure states
evolve into mixtures due to the interaction with an environ-
ment [1]. The very notion of a quantum open system implies
the appearance of dissipation and decoherence as a ubiqui-
tous phenomenon and plays important roles in different
branches of physics [2,3]. Often times, a large system, con-
sisting of two or a few subsystems interacting with their
environment (thermal bath comprising a large number of de-
grees of freedom), can be adequately described as a compos-
ite system. Examples include electron transfer in solution
[4], a large biological molecule, vibrational relaxation of
molecules in solution, and excitons in semiconductors
coupled to acoustic or optical phonon modes. Quantum pro-
cesses in condensed phases are usually studied by focusing
on a small subset of degrees of freedom and considering the
other degrees of freedom as a bath.

In this article, we analyze the decoherence induced in a
composite quantum system, in which an observer can distin-
guish between two different subsystems, one of them
coupled to an external environment. Our composite system is
formed by a subsystem A coupled to a subsystem B which is
also bilinearly coupled to an external environment £. The
coupling to this external environment is only through sub-
system B. Subsystem A remains isolated from £ except for
the information delivered by B through a bilinearly coupling
between subsystems A and B. We will consider the thermal
bath to be at high temperature and will work in the under-
damped limit.

In order to investigate this problem, we mainly consider a
simple model where subsystem A is represented by a har-
monic oscillator and subsystem B is an upside-down one.
The main motivation for studying this model is to deepen
and enlighten previous analysis of decoherence induced by
chaotic environments. The upside-down oscillator has re-
cently been used to model a chaotic environment which in-
duces decoherence on the system [5]. Even though it is an
oversimplified model for a chaotic environment, it displays
exponential sensitivity to perturbations, which is crucial in
order to analyze chaotic evolutions. In this context, we shall
consider two different cases. First, we consider the case
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where the chaotic degree of freedom is part of the environ-
ment (i.e., an unstable system B) and is directly coupled to
an external reservoir £ and to another subsystem A with dif-
ferent bare frequency. Secondly, we consider the case where
subsystem A is unstable and directly coupled to a harmonic
oscillator (subsystem B) which, in turn, is coupled to an
external bath £ These are an extension of previous works
done in [5] and [6,7] for the first and second case, respec-
tively. In both situations, we will estimate the decoherence
time, which is the usual scale after which classicality
emerges.

The analysis is completed by the inclusion of the other
two different possibilities for the quantum composite system,
i.e., a composite system constituted by a subsystem A
coupled to subsystem B, both harmonic oscillators, and a
composite system formed by subsystem A coupled to sub-
system B, both inverted oscillators. As in the other two cases
mentioned above, subsystem B is also coupled to an external
reservoir £. All in all, we have four different composite sys-
tems to analyze. For each and every situation, we study the
dynamics of the subsystem A. Not only did we study the
influence of “its” environment (formed by subsystem B and
£) at low and high temperature, but also in the absence of the
external reservoir £. Each case develops a different dynam-
ics, being possible, in some cases, to find a quantum open
system described using mixed quantum-classical dynamics
[8-10] (part of the composite system completely decohered
and the other did not).

The total ABE classical action is S[x,q,Q]=S,[x]
+Splql+SLO1+Saplx.ql+Spelg, O] In the spirit of the
quantum Brownian motion (QBM) paradigm, the environ-
ment is taken to be a set of N independent harmonic oscilla-

tors with frequencies @,, masses m,, and coordinates Qn
Subsystem B consists of a single oscillator (upside-down or
harmonic, depending on the case considered) with bare mass
My, frequency (), and coordinate operator . The interaction
between subsystem B and the thermal environment is as-
sumed to be bilinear ¢(s)Q,,(s). For simplicity, we assume an
Ohmic environment, with the spectral density I¢(w)
=2M 7056—52/ Az, where A is a physical cutoff, related to the
maximum frequency present in the environment. Finally, we
consider subsystem A consisting of a single oscillator (again,
this oscillator can be an upside-down or harmonic one) with
coordinate operator X and frequency w. We suppose that sub-
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system A is bilinearly coupled to subsystem B by the inter-
action term Ax(s)g(s).

The dynamical properties of interest can be computed
from the density matrix of the system at time z. However, if
we want to know how the decoherence process is for the
subsystem A, we have to trace over all the degrees of free-
dom that belong to a composite environment. We can assume
that our new problem is a subsystem A and a subsystem B
which are coupled through an effective interaction defined by

Sui(r,q.x",q") = Sap(x,q) — Spp(x'.q")
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where the last two terms are the usual influence action for the
QBM problem, in the environmental high-7" limit [11-14].

After integrating out the external bath, the information
about subsystem A is encoded in the reduced density matrix.
That is to say, we have yet to trace over the degrees of
freedom of subsystem B. This final reduced density matrix
satisfies a master equation which can be presented, as usual,
as [12,15]
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where D(f)(x—x')? is the new diffusion term, which pro-
duces the decay of the off-diagonal elements. For simplicity,
we omitted the subindex f to indicate the final configuration
xs. The total diffusion coefficient is given by

—ﬁr(t)f(t)(x—x’)[a—i+

2vokpT ! .
D)= = 3N fo dsAqa(s)Aqa(s)
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+ 37; s =s)A(s). 3)

where Ag(s)=gq—q' is built from the solution of ¢(s)
—0%q(s)=(N/Mg)x(s) ( assuming subsystem B is an upside-
down oscillator [case (a)]). After imposing initial and final
conditions g(s=0)=g, and g(s=t) =g, respectively, we write
the complete classical solution as
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sinh[ Q(t —s)] . sinh({)s)
sinh(Q) Y sinh(Qo)
N sinh(Qs) [*
MgQ sinh(Q¢) J,

qa(s) =qo

x(u)sinh[Q(s — u)]du

+

)\Q fsx(u)sinh[ﬂ(s —u)]du. (4)

B 0

The kernel 7 is the new noise kernel (product of the interac-
tion between subsystem A and B), and it is given by
(s, —5,)=(\20/32h)cosh[ (s, —s,)]. o is the width of the
initial wave packet, used to describe the initial state of sub-
system B. It is important to note that Ag,(s) is the solution
of the coupled system, and the new noise kernel is not the
usual 7T-dependent noise kernel of the QBM problem.

At this stage, we assume that our subsystem A is a har-
monic oscillator (being possible to obtain the solution for an
upside-down oscillator by just replacing w for iw). If we ask
for initial and final conditions of the form x(s=0)=x, and
x(s=t)=x;, the classical solution of the free equation is

sin[w(t—s)]
sin(wt)

sin(ws)

Fals) = %o f sin(wt)

After integrating out all the degrees of freedom corre-
sponding to the external hot environment Q,, and the coor-
dinates g belonging to the subsystem B, we obtained the
diffusive terms that induce decoherence on subsystem A.
Therefore, we numerically integrated the diffusive terms in
time, in order to plot the decoherence factor
I'(r)=exp{-[,D(s)ds}. We will consider four different situa-
tions: Case (a): Harmonic Oscillator+ Upside
-Down Oscillator+&. This is the generalization of the toy
model considered in Ref. [5] where they did not consider the
interaction of subsystem B (upside-down oscillator) with an
external environment. It is easy to find results of [5] just by
setting y,=0 in our results. Case (a) is the situation in which
a Brownian particle (in a harmonic potential) suffers deco-
herence from an environment with one (or more) chaotic
degree of freedom. Case (b): Upside-Down Oscillator
+Harmonic Oscillator+&. 1t represents the possibility of
studying decoherence induced on an unstable system (toy
model for a chaotic subsystem) by a completely harmonic
environment [6,7,16,17]. We will see that this is the most
decoherent system among all four cases studied in this paper.
Case (c): Harmonic Oscillator+Harmonic Oscillator+E.
For completeness, we also consider the case of two harmonic
oscillators coupled together and one of them coupled to an
external environment. Case (d): Upside-Down Oscillator
+Upside-Down Oscillator+&. We will see that this case is
the most sensitive to external perturbations (both subsystems
are unstable) when there is no external environment, thus
decoherence is much more effective than in the other cases.
In particular, it is interesting to note that this case decoheres
long before the others when there is no thermal environment

(%=0).
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FIG. 1. (Color online) Decoherence factor I'(z). Isolated com-
posite system decoheres first for the (d) case (figures on the top).
Plots in the middle and bottom are the decoherence factors for
YokgT=1 and 100, respectively. Case (b) is more decoherent. On
the left, both frequencies of the subsystems A and B are of the same
order of magnitude (w={)) and on the right we show the case w
>Q).

In order to illustrate the different behaviors, we present all
four I' coefficients for two different situations: both frequen-
cies of the subsystems A and B are of the same order of
magnitude (w={()) and when w>(), as shown in Fig. I.
Both cases are considered in the absence of external environ-
ment & (i.e., ¥,=0) and for low and high values of yykgT.

From the numerical results shown on top of Fig. 1, we can
stress that in the absence of a hot bath, the decoherence time
is smaller in case (d) than in (b), and both of them decohere
long before cases (a) and (c). This is due to the fact that
subsystem A, which is the sole coupling to subsystem B,
generates noise and dissipation at large scales. Thus, this
noise and dissipation is bigger when the subsystem B is an
upside-down oscillator [case (d)] than when it is a harmonic
oscillator [case (b)]. In this situation (y,=0), case (d) is two-
fold exponential in time. In the former, the oscillatory dy-
namics of the A oscillator and the hyperbolic stretching of
the B environment proceed largely independently of one an-
other. The B environment induces only minor perturbations
in the subsystem A and this subsystem does not disturb the
environment. The stretching of the environment (due to be-
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ing an inverted oscillator) along its unstable manifold is re-
flected in the system as diffusion. The same physical process
occurs in case (b), with the sole and essential difference that
the one stretching along an unstable direction is the sub-
system A, while the environment is oscillating. As this
stretching results in diffusion, the more stretching the system
has, the more diffusion it feels. Case (d) is the best example
in this “isolated” model, because both A and B stretch along
a direction in the phase space, producing exponential diffu-
sion. This is the reason why it is the most decoherent case.
Case (c) is shown for completeness, but it is easily seen that
decoherence occurs in a longer time scale (there is no
stretching here). Therefore, case (d) decoheres at the time in
which all the other examples do not.

As soon as the interaction between B and the thermal
environment is switched on, oscillator B dissipates not only
on the bath but also on A. This is shown in the middle and at
the bottom of Fig. 1. At very high environmental tempera-
tures, there is no difference between cases (b) and (d); both
of them decohere in the same temporal scale. The huge res-
ervoir dominates the diffusion coefficient [first term in Eq.
(3)]. But they still differ from the cases where there are har-
monic oscillators as subsystems A [cases (a) and (c)]. The
inset in Fig. 1 (at the right bottom) presents the behavior of
the I'(¢) factors for these cases for a longer time scale. We
can observe that we need to wait longer times for decoher-
ence to be effective in cases (a) or (c) with respect to (b) and
(d) even in the highest temperature case. It is possible to
observe some recoherent effects in the case c, at the time in
which unstable subsystems have fully decohered.

When the final system A is an upside-down oscillator
[7,17], an unstable point forms in the center of the phase
space with associated stable and unstable directions. These
are characterized by Lyapunov coefficients A (A=2w? in the
linear case). The time dependence of the package width in
the direction of the momenta is given by o,(1)
=0,(ty)exp[At], where o,(t) is the corresponding width at
the initial time.

Diffusion effects limit the squeezing of the state on the
phase space. The bound on the width of the packets is given
by o.=v2D;/A [3,14] (where i is b or d). There is another
scale, ?,,,,, corresponding to the time in which decoherence
starts to be effective, and after which squeezing becomes of
the order of the limiting value. One can estimate the time
corresponding to the transition from reversible to irreversible
evolution as 7.=(1/A)In[c,(0)/o.]. Thus, we can use this
scale as the typical scale for decoherence, setting fp
~(1/M)In[o,(tna)/0c].  Therefore, we obtain =t
+(1/A)In[0,(0)/ 0. ]. For the same parameters used in Fig. 1,
we can numerically estimate decoherence times as tDb~7.7
and Ip,~ 6.4 for the first set of parameters on the left of Fig.
1, where y,=0; tDb~2.4 and th~2.7 for yykgT=1, and
tp,~ 1.6 and tp,~ 1.7 in the high-T case yykgT=100. For the
set in Fig. 1 on the right, we obtain 75 ~3.0 and 7 ~2.7 for
¥9=0. We also got tDb,dNO'] for yokpT=1, and tDb,d~0‘6 in
the case yykpT=100. All these results agree with the deco-
herence times, defined by the times at which the decoherence
factor I'(r) goes to zero, which can be seen in the plots
above.
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Decoherence times for cases (a) and (c) occur as for the
usual harmonic systems. We can estimate them by using the
result of the high-temperature limit of the QBM paradigm,
i.e., tp is the solution of 1=~ L?[{’D(s)ds (we have to take the
typical distance L as 2o, proportional to the dispersion in
position of our initial packet). The inset in Fig. 1 on the right
shows I'(¢) for a longer time scale in order to establish the
corresponding hierarchy in the environmental decoherent ef-
fectiveness.

In this article we analyzed the decoherence induced by an
effective environment. The effective environment was con-
sidered to be formed by part of a composite system and an
infinite set of harmonic oscillators. The composite system
was considered to be any of the four possible combinations
made up with a harmonic and an inverted oscillator.

Since a set of harmonic oscillators is a stable system,
small perturbations due to the state of the coupled system do
not induce exploration of a large volume of the phase space
for any oscillator. When one considers an inverted oscillator,
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it can explore its volume more efficiently when it is
perturbed.

We integrated out subsystem B in order to study the effect
of having (or not) unstable degrees of freedom into the full
environment. Then we analyzed different situations and con-
cluded that cases (b) and (d) are the most efficient (smaller
decoherence times) at high temperatures, and (d) is the most
diffusive case, when one turns off the thermal bath. There is
a clear hierarchy between the different compositions of the
composite systems. Those in which oscillator A is unstable
[cases (b) and (d)] decohere before those with a harmonic
oscillator as the A subsystem [cases (a) and (c)]. At high
temperatures of the external environment, it has been shown
that cases (b) and (d) have the same decoherence time scale,
while composite system (c) loses quantum coherence before
case (a).
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