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It is well established that unpolarized light is invariant with respect to any SU�2� polarization transformation.
This requirement fully characterizes the set of density matrices representing unpolarized states. We introduce
the degree of polarization of a quantum state as its distance to the set of unpolarized states. We use two
different candidates of distance, namely the Hilbert-Schmidt and the Bures metric, showing that they induce
fundamentally different degrees of polarization. We apply these notions to relevant field states and we dem-
onstrate that they avoid some of the problems arising with the classical definition.
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I. INTRODUCTION

The polarization properties of quantum fields have re-
ceived much attention over the past few years, especially in
the single-photon regime. The polarization state is a robust
characteristic, which is relatively simple to manipulate with-
out inducing more than marginal losses. It is thus hardly
surprising that many outstanding experiments in quantum
optics, such as Bell tests �1,2�, quantum tomography �3�, or
quantum cryptography �4,5�, have been performed using po-
larization states.

The polarization of a light beam in classical optics can be
elegantly visualized by resorting to the Poincaré sphere, and
is determined by the four Stokes parameters �6–9�. These
parameters present unique advantages: they are easily mea-
sured, they can be extended to the quantum domain, where
the Stokes parameters become the mean values of the Stokes
operators, and, finally, they allow us to classify the states of
light according to a degree of polarization �10–13�.

This classical degree of polarization is simply the modu-
lus of the Stokes vector. While this affords a very intuitive
image, it also has serious drawbacks that can be traced back
to the fact that the Stokes parameters are proportional to the
second-order correlations of the field amplitudes. This may
be sufficient for most classical problems, but for quantum
fields higher-order correlations are crucial. For this reason,
the Stokes parameters do not distinguish between quantum
states having remarkably different polarization properties
�14–16�. For example, the classical polarization degree of
the state with exactly one photon in each of the horizontally
and vertically polarization modes is zero, but it cannot be
regarded as unpolarized. These unwanted consequences call
for alternative measures.

Recently, Luis �17� has brought in a challenging idea to
circumvent these difficulties. For the full characterization of
polarization, a probability distribution �obtained via the
SU�2� Q function� is defined on the Poincaré sphere. To
some extent, the existence of such a probabilistic description
is unavoidable in quantum optics from the very beginning,
since the Stokes operators do not commute and thus no state
can have a definite value of all of them simultaneously �ex-

cept the vacuum�. In this framework, the degree of polariza-
tion of a field state can be defined as the distance from its
associated distribution to the uniform distribution corre-
sponding to unpolarized light. We find this proposal interest-
ing, but semiclassical in nature. In addition, we stress that the
SU�2� Q function does not connect manifolds with different
photon excitations, so the information it embodies cannot be,
in general, complete.

The question of what unpolarized light is has a relatively
long history �18–20�. Today, there is a wide consensus
�21,22� in considering unpolarized light to be described by
quantum states that is invariant with respect to any SU�2�
polarization transformation. It turns out that this requirement
fixes the set of density operators admissible to represent un-
polarized fields. It is then suggestive to look at the degree of
polarization as a distance from a given state to this set of
unpolarized states.

The notion of distance measure has been successfully
used in assessing nonclassicality �23–25�, entanglement �26�,
quantum information �27–35�, and localization �36–39�, to
cite only some relevant examples. These measures are useful
both when comparing experiments with the corresponding
theory and in comparing different experiments. We hope that
they will soon be agreed upon by experimentalists and theo-
rists alike.

In this paper, we connect the idea of distance with the
problem of assessing the polarization characteristics of a
quantum field, exploring a suitable definition that avoids at
least some of the aforementioned difficulties that previous
approaches based on Stokes parameters encounter.

II. SU(2) POLARIZATION STRUCTURE AND INVARIANCE
PROPERTIES OF QUANTUM FIELDS

We assume a monochromatic plane wave propagating in
the z direction, whose electric field lies in the xy plane. Un-
der these conditions, we are dealing with a two-mode field
that can be fully described by two complex amplitude opera-
tors. They are denoted by âH and âV, where the subscripts H
and V indicate horizontally and vertically polarized modes,
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respectively. The commutation relations of these operators
are standard:

�âj, âk
†� = � jk, j,k � �H,V� . �2.1�

The Stokes operators are then defined as the quantum coun-
terparts of the classical variables, namely �10–13�

Ŝ0 = âH
† âH + âV

† âV, Ŝ1 = âH
† âV + âV

† âH,

Ŝ2 = i�âHâV
† − âH

† âV�, Ŝ3 = âH
† âH − âV

† âV, �2.2�

and their mean values are precisely the Stokes parameters

��Ŝ0� , �Ŝ��, where Ŝ= �Ŝ1 , Ŝ2 , Ŝ3�. Using the relation �2.1�,
one immediately gets that the Stokes operators satisfy the
commutation relations of angular momentum:

�Ŝ, Ŝ0� = 0, �Ŝ1, Ŝ2� = 2iŜ3, �2.3�

and cyclic permutations. The noncommutability of these op-
erators precludes the simultaneous exact measurement of
their physical quantities. Among other consequences, this
implies that no field state �leaving aside the two-mode
vacuum� can have definite nonfluctuating values of all the
Stokes operators simultaneously. This is expressed by the
uncertainty relation

��Ŝ�2 = ��Ŝ1�2 + ��Ŝ2�2 + ��Ŝ3�2 � 2�Ŝ0� . �2.4�

Contrary to what happens in classical optics, the electric vec-
tor of a monochromatic quantum field never describes a defi-
nite ellipse �17�.

In mathematical terms, a SU�2� �or linear� polarization
transformation is any transformation generated by the opera-

tors Ŝ. It is well known �40� that the operator Ŝ2 is the in-
finitesimal generator of geometrical rotations around the di-

rection of propagation, whereas Ŝ3 is the infinitesimal
generator of differential phase shifts between the modes. As
indicated by Eq. �2.3�, these two operators suffice to generate
all SU�2� polarization transformations, which in experimen-
tal terms means that they can be accomplished with a com-
bination of phase plates and rotators �which produce rota-
tions of the electric field components around the propagation
axis� �21�.

The standard definition of the degree of polarization is
�7–9�

Psc =
	�Ŝ�2

�Ŝ0�
=

	�Ŝ1�2 + �Ŝ2�2 + �Ŝ3�2

�Ŝ0�
, �2.5�

where the subscript sc indicates that this is a semiclassical
definition, mimicking the form of the classical one. In the
semiclassical description it is implicitly assumed that unpo-
larized light �i.e., the origin of the Poincaré sphere� is defined
by the specific values �41�

�Ŝ1� = �Ŝ2� = �Ŝ3� = 0. �2.6�

Sometimes the extra requirement that the Stokes parameters
are temporally invariant is added to make the definition even
more stringent �42�. In any case, this conception has several

flaws that have been put forward before and give rise to
strange concepts such as that of quantum states with “hid-
den” polarization �43�. Actually, this notion leads to the para-
doxical conclusion that unpolarized light has a polarization
structure, which is latent when the mean intensities are mea-
sured and detectable when the noise intensities are measured
�44�.

If, as anticipated in the Introduction, one looks at unpo-
larized light as field states that remain invariant under any
SU�2� polarization transformation, then there is no more any
“hidden” polarization. Any state satisfying this invariance
condition will also fulfill the classical definition of an unpo-
larized state, but the converse is not true. It has been shown
�18–20� that the density operator of such “quantum” unpo-
larized states can always be written as

�̂ = �
N=0

�

�N1̂N, �2.7�

where N denotes the excitation manifold in which there are
exactly N photons in the field. All the coefficients �N are real
and non-negative, and to meet the unit-trace condition of the
density operator they must satisfy



N=0

�

�N + 1��N = 1. �2.8�

In the following, the basis states of the excitation mani-
fold N will be denoted as �N ,k�= �k�H � �N−k�V, k
=0,1 ,… ,N. These states span a SU�2� invariant subspace of

dimension N+1, and the generators Ŝ act therein according
to

Ŝ+�N,k� = 2	�k + 1��N − k��N,k + 1� , �2.9�

Ŝ−�N,k� = 2	k�N − k + 1��N,k − 1� ,

Ŝ3�N,k� = �2k − N��N,k� ,

where Ŝ±= Ŝ1± iŜ2. These invariant subspaces will play a key
role in the following.

III. QUANTUM DEGREE OF POLARIZATION
AS A DISTANCE

As we have discussed above, measures of nonclassicality
have been defined as the �minimum� distance to an appropri-
ate set representing classical states �23–25�. Similarly, the
minimum distance to the �convex� set of separable states has
been used to introduce measures of entanglement �26�. In the
same vein, we propose to quantify the degree of polarization
as

P��̂� � inf
�̂�U

D��̂,�̂� , �3.1�

where U denotes the set of unpolarized states of the form
�2.7� and D��̂ , �̂� is any measure of distance �not necessarily
a metric� between the density matrices �̂ and �̂, such that
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P��̂� satisfies some requirements motivated by both physical
and mathematical concerns. The constant of proportionality
in Eq. �3.1� must be chosen in such a way that P is normal-
ized to unity, i.e., sup�̂P��̂�=1.

In Ref. �34� a check list of six simple, physically moti-
vated criteria that should be satisfied by any good measure of
distance between quantum processes can be found. For our
problem, we impose the following two conditions:

�C1� P��̂�=0 iff �̂ is unpolarized.

�C2� Energy-preserving unitary transformations ÛE leave

P��̂� invariant; that is, P��̂�=P�ÛE�̂ÛE
†�.

The first condition is to some extent trivial: it ensures that
unpolarized and only unpolarized states have a zero degree
of polarization. The second takes into account that the re-
quirement that an unpolarized state is invariant under any
SU�2� polarization transformation makes it also invariant un-
der any energy-preserving unitary transformation �45�.

It is clear that there are numerous nontrivial choices for
D��̂ , �̂� �by nontrivial we mean that the choice is not a
simple scale transformation of any other distance�. None of
them could be said to be more important than any other a
priori, but the significance of each candidate would have to
be seen through physical assumptions. To illustrate this point
further, let us take an extreme example fulfilling the previous
conditions �26�. Define the discrete distance

Ddis��̂,�̂� = �1, �̂ � �̂ ,

0, �̂ = �̂ .

 �3.2�

If the degree of polarization is computed using this distance,
we have

Pdis��̂� = �1, �̂ � U ,

0, �̂ � U .

 �3.3�

This therefore tells us only whether or not a given state �̂ is
unpolarized.

There are authors insisting that D��̂ , �̂� is a metric �34�.
This requires three additional properties: �i� Positiveness:
D��̂ , �̂��0 and D��̂ , �̂�=0 iff �̂= �̂. �ii� Symmetry: D��̂ , �̂�
=D��̂ , �̂�. �iii� Triangle inequality: D��̂ , 	̂�
D��̂ , �̂�
+D��̂ , 	̂�. Most distances used in quantum mechanics have
these properties, since they are based on an inner product.
However, there exist pertinent examples in which D is not a
metric. For example, the quantum relative entropy �46–49�

S��̂ � �̂� = Tr��̂�ln �̂ − ln �̂�� �3.4�

is not symmetric and does not satisfy the triangle inequality.
Nevertheless, it generates a valuable measure of entangle-
ment, and the corresponding degree of polarization satisfies
both C1 and C2.

However, for a detailed analysis we will consider the
Hilbert-Schmidt metric

DHS��̂,�̂� = ��̂ − �̂�HS
2 = Tr���̂ − �̂�2� , �3.5�

which has been previously studied in the contexts of en-
tanglement �50–52�. Since DHS��̂ , �̂� is a metric, condition
C1 is satisfied. It follows from the unitary invariance of the
Hilbert-Schmidt metric that also C2 is satisfied.

According to the general strategy stated in the definition
�3.1�, for a given state �̂ we should find the unpolarized state
�̂ that minimizes the distance

DHS��̂,�̂� = Tr��̂2� + Tr��̂2� − 2 Tr��̂�̂� . �3.6�

If we take into account that the purity of an unpolarized state
is

Tr��̂2� = 

N=0

�

�N + 1��N
2 , �3.7�

we easily get

DHS��̂,�̂� = Tr��̂2� + 

N=0

�

��N + 1��N
2 − 2pN�N� , �3.8�

where pN is the probability distribution of the total number of
photons

pN = 

k=0

N

�Nk,Nk, �3.9�

and �Nk,N�k�= �N ,k��̂�N� ,k��. Now, it is easy to obtain the
coefficients �N that minimize this distance. The calculation is
direct and the result is

�N =
pN

N + 1
. �3.10�

The density operator �̂opt�U with these optimum coeffi-
cients �N satisfies the constraint �2.8�, and hence minimizes
the distance �3.6�. Note that �̂opt can be written as

�̂opt = 

N=0

�

pN�̂opt
�N�, �3.11�

with

�̂opt
�N� =

1

N + 1

k=0

N

�N,k��N,k� . �3.12�

With all this in mind, we can define the Hilbert-Schmidt
degree of polarization by

PHS��̂� = Tr��̂2� − 

N=0

�
pN

2

N + 1
, �3.13�

which is determined not only by the purity 0�Tr��̂2�
1 �as
it happens for other measures �53��, but also by the distribu-
tion of the number of photons pN. Although the maximum
Hilbert-Schmidt distance between two density operators is 2,
the minimum distance to an unpolarized state is normalized
to unity.

Using Eqs. �3.7� and �3.10�, the Hilbert-Schmidt degree of
polarization can be recast as

PHS��̂� = Tr��̂2� − Tr��̂opt
2 � , �3.14�

which makes it easy to verify that it vanishes only for unpo-
larized states, in agreement with condition C1.

It has been shown �50–52� that the Hilbert-Schmidt dis-
tance is not monotonically decreasing under every com-
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pletely positive trace-preserving map �what is called the CP
nonexpansive property�. This has motivated the quantum in-
formation community to identify the fidelity as a particularly
important alternative approach to the definition of a distance
measure for states �54�.

In consequence, as our second candidate of distance we
will employ the fidelity �or Uhlmann transition probability�
�55�

F��̂,�̂� = �Tr��̂1/2�̂�̂1/2�1/2�2. �3.15�

A word of caution is necessary here. There is an ambiguity in
the literature: both the quantity �3.15� and its square root
have been referred to as the fidelity. The reader should take
this into account when comparing different sources.

The fidelity has many attractive properties. First, it is
symmetric in its arguments F��̂ , �̂�=F��̂ , �̂�, a fact that is
not obvious from Eq. �3.15�, but which follows from other
equivalent expressions. It can also be shown that 0

F��̂ , �̂�
1, with equality in the second inequality iff �̂
= �̂. This means that the fidelity is not a metric as such, but
serves rather as a generalized measure of the overlap be-
tween two quantum states. A common way of turning it into
a metric is through the Bures metric,

DB��̂,�̂� = 2�1 − 	F��̂,�̂�� . �3.16�

The origin of this distance can be seen intuitively by consid-
ering the case where �̂ and �̂ are both pure states. The Bures
metric is just the Euclidean distance between the two pure
states, with respect to the usual norm on the state space.

Since the larger the fidelity F��̂ , �̂�, the smaller the Bures
distance DB��̂ , �̂�, we can define the Bures degree of polar-
ization as

PB��̂� = 1 − sup
�̂�U

	F��̂,�̂� . �3.17�

An alternative definition would be 1−sup�̂�UF��̂ , �̂�, which
arises naturally in the context of quantum computation �34�.
It is clear that these definitions order the states �̂ in the same
way. Unfortunately, we have not found a general expression
of the unpolarized state �̂ that gives the maximum fidelity.
Such a task must be performed case by case and will be
illustrated with some selected examples in the next section.
Let us conclude this section by noting that the fidelity can be
used to define a measure of entanglement �26�, whereas this
is not the case with the Hilbert-Schmidt metric �51�. Since
the unpolarized states are separable, PB��̂� thus gives an up-
per bound on the entanglement of �̂.

IV. EXAMPLES

It is clear from Eq. �3.13� that all pure N-photon states
have the same Hilbert-Schmidt degree of polarization. For
such states, denoted ���N��, we have

PHS����N��� =
N

N + 1
. �4.1�

The Bures degree of polarization for these states can also be
readily found:

PB����N��� = 1 −
1

	N + 1
. �4.2�

The vacuum is the only unpolarized state, in agreement with
condition C1. Note also that the expressions �4.1� and �4.2�
apply, e.g., to the states �n�H � �n�V. Since for them �Ŝ�=0,
classically they would be unpolarized for every n �that is,
Psc=0, even in the limit n
1�. In our distance-based ap-
proach, the degree of polarization is a function of all mo-
ments of the Stokes operators and not only of the first one, as
it happens for Psc, which causes this quite different behavior.
We also observe that all these states lying in the
�N+1�-dimensional invariant subspace satisfy P→1 when
their intensity is increased.

Next, we define the diagonal states as those that can be
expressed as

�̂diag = 

N=0

�



k=0

N

pNk��k
�N����k

�N�� , �4.3�

where we let pNk� pNk+1, for all k�N, and ���k
�N���k=0

N is an
arbitrary orthonormal basis in the excitation manifold N. It
then follows from C2 that any two diagonal states whose
probability distribution �pNk�k=0

N coincide, must have the
same degree of polarization. For any diagonal state, we have

PHS��̂diag� = 

N=0

�



k=0

N

pNk
2 − 


N=0

�
pN

2

N + 1

 


N=0

�
NpN

2

N + 1
. �4.4�

To deal with the Bures degree of polarization for this
example, we first note that

	F��̂diag,�̂� = 

N=0

�



k=0

N

	�NpNk = 

N=0

�

sN
	�N, �4.5�

where

sN = 

k=0

N

	pNk. �4.6�

The extremal points of Eq. �4.5� are then determined by

sN

2	�N

− ��N + 1� = 0, �4.7�

where � is a Lagrange multiplier that takes into account the
constraint �2.8�. Solving for �N and imposing again Eq. �2.8�
to fix the value of �, the optimum parameters �N are found to
be

�N =
sN

2

�N + 1�2

k=0

�
sk

2

k + 1

. �4.8�

In this way, we finally arrive at

PB��̂diag� = 1 −	

N=0

�
sN

2

N + 1
. �4.9�

One can easily prove that
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	pN 
 sN 
 	�N + 1�pN, �4.10�

so we have the bound

PB��̂diag� 
 1 −	

N=0

�
pN

N + 1
� 1. �4.11�

This and Eq. �3.13� show that 
N=0
� pN

2 �N+1�−1→0 is neces-
sary for both PB��̂diag� and PHS��̂� to approach unity. The
latter also requires the purity to approach unity, whereas it is
clear from Eq. �4.11� that this is not necessary in order to
have PB��̂�→1.

As another relevant example, let us consider the case in
which both modes are in �quadrature� coherent states. The
product of two quadrature coherent states, which we shall
denote by ��H ,�V�, can be expressed as a Poissonian super-
position of SU�2� coherent states �56�,

��H,�V� = 

N=0

�

e−N̄/2 N̄N/2

	N!
�N,�,�� , �4.12�

where N̄= ��H�2+ ��V�2 is the average number of excitations
and the SU�2� coherent states are defined as �57�

�N,�,�� = 

k=0

N �N

k
�1/2�sin

�

2
�N−k�cos

�

2
�k

e−ik��N,k� ,

�4.13�

and the state parameters are connected by the relations

�H = e−i�/2	N̄ sin
�

2
, �V = ei�/2	N̄ cos

�

2
. �4.14�

Taking into account that



N=0

�
pN

2

N + 1
=

I1�2N̄�

N̄
e−2N̄, �4.15�

where I1�z� is the modified Bessel function, Eq. �3.13� re-
duces to

PHS = 1 −
I1�2N̄�

N̄
e−2N̄. �4.16�

When N̄
1 we can retain the first term in the asymptotic
expansion of I1�z� to obtain

PHS � 1 −
1

2	�N̄3/2
. �4.17�

This tends again to unity. However, one may have expected a

N̄−1 behavior for coherent states, while the scaling is N̄−3/2.
One can ask if the Hilbert-Schmidt and Bures measures

order some pairs of states differently. In the Appendix we
show that this is indeed the case, and the induced degrees of
polarization are therefore fundamentally different.

V. CONCLUSION

In summary, we have shown that quantum optics entails
polarization states that cannot be suitably described by the

�semi�classical formalism based on Stokes parameters. We
have advocated the use of a degree of polarization based on
an appropriate distance to the set of unpolarized states. Such
a definition is closely related to other recent proposals in
different areas of quantum optics and is well behaved even
when the classical formalism fails.
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APPENDIX: PROOF OF THE DEFINITIONS’ DIFFERENT
ORDERING OF STATES

In this Appendix, we will show that the Hilbert-Schmidt
and the Bures distances induce fundamentally different de-
grees of polarization. To this end, we consider the states

�̂N1N2
= 


j,k=1

2

� jk���Nj�����Nk�� , �A1�

where ���N1�� and ���N2�� are orthogonal pure states with N1
and N2 photons, respectively. We here assume that N1�N2,
and note that �̂NN is a diagonal state of the form �4.3�. To
simplify calculations, we shall use the notation

p = �11, 1 − p = �22, q = �12 = �21
* . �A2�

The states ���N1�� and ���N2�� then correspond to p=0 and
p=1, respectively, and the purity becomes

Tr��̂N1N2

2 � = p2 + �1 − p�2 + 2�q�2. �A3�

We note in passing that 1−2p�1− p�
Tr��̂N1N2

2 �
1 and 0

 �q�2
 p�1− p�.

In the basis ����N1��, ���N2���, we can write

�̂1/2�̂�̂1/2 = � �N1
p 	�N1

�N2
q

	�N1
�N2

q* �N2
�1 − p� � . �A4�

Since the eigenvalues of this matrix are

�± =
1

2
��N1

p + �N2
�1 − p�

± 	��N1
p − �N2

�1 − p��2 + 4�N1
�N2

�q�2� , �A5�

the fidelity can be expressed as

F��̂,�̂� = �+ + 2	�+�− + �− = �N1
p + �N2

�1 − p�

+ 2	�N1
�N2

�p�1 − p� − �q�2� . �A6�

For any fixed �N1
, �N2

, and p, the fidelity decreases as �q�2

increases. This could have been expected, since the unpolar-
ized states do not have any off-diagonal elements.

The restriction �2.8� implies for this problem that
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�N2
=

1 − �N1 + 1��N1

N2 + 1
. �A7�

In consequence, the coefficients that optimize the fidelity are
determined by

�F

��N1

= 0 = p −
�1 + N1��1 − p�

1 + N2

+ �1 − 2�N1
�1 + N1��	 p�1 − p� − �q�2

�N1
�1 − �N1

�1 + N1���1 + N2�
.

�A8�

We first consider pure states, for which �q�2= p�1− p�.
Choosing �N1

according to

�N1
= 0, p �

1 + N1

2 + N1 + N2
,

0 
 �N1



1

1 + N1
, p =

1 + N1

2 + N1 + N2
,

�N1
=

1

1 + N1
, p �

1 + N1

2 + N1 + N2
, �A9�

then maximizes the fidelity:

sup
�̂�U

F��̂,�̂� = �
1−p

1+N2
, p 


1+N1

2+N1+N2
,

p
1+N1

, p �
1+N1

2+N1+N2
. � �A10�

On the other hand, when �q�2�p�1− p�, i.e., when 0� p
�1, the solution of Eq. �A8� is

�N1
=

1

2�N1 + 1��1

−
�1 + N1��1 − p� − �1 + N2�p

	�1 + N1�1 − p� + N2p�2 − 4�1 + N1��1 + N2��q�2
� .

�A11�

Depending on the parameters, this solution can take any
value in the interval 0��N1

�1/ �1+N1�. In fact, one can
check that the choice �A11� gives the closest unpolarized

state. Combining Eqs. �A6� and �A7�, and �A11� thus allows
one to obtain the fidelity and hence PB.

In Fig. 1, we have plotted the Hilbert-Schmidt and Bures
degree of polarization for some two-dimensional states.
From the explanation in the caption, we see that the two
measures order some pairs of states differently. The Hilbert-
Schmidt and Bures distances thus induce two fundamentally
different degrees of polarization.
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