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We analyze the effect of injected atomic coherence on transverse patterns of a broad area laser by means of
the semiclassical two-level Maxwell-Bloch equations. A single longitudinal mode is considered. The injected
atomic coherence forces a spatially homogeneous profile to appear and locks the field phase to a single value.
Above a pump threshold value a very rich scenario of patterns is developed. Near threshold we find stationary
patterns such as rhombic and hexagonal lattices. Well above threshold nonstationary patterns such as complex
highly ordered vortex lattices traveling along the cross section, and nearly traveling waves appear.
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I. INTRODUCTION

The formation and dynamics of transverse light patterns
in broad area lasers and other nonlinear optical resonators
have been a field of intense research in recent years �1–14�
�see also special issue �15��. In these systems, the pattern
formation is dominated by bulk parameters and nonlineari-
ties of the active medium. It is customary, when transverse
effects are included in the description of laser dynamics, to
restrict the analysis to a single longitudinal mode approxima-
tion, thereby eliminating the additional complexity associ-
ated with longitudinal behavior �3�. It is well known that the
pattern selected just above threshold depends on the sign of
the cavity detuning � �1,2,8,16�. For negative detuning
�cavities tuned above resonance� the laser selects a transverse
spatially homogeneous solution, whereas for positive detun-
ing �cavities tuned below resonance�, a traveling wave �TW�
is selected. In this last case, the laser emission is off-axis
which helps the laser to emit on resonance. This phenom-
enon has been experimentally observed by Staliunas et al.
�17� and by Hegarty et al. �18�. Other typical spatial struc-
tures that appear in lasers and laserlike systems �optical para-
metric oscillators and photorefractive oscillators� are the op-
tical vortices which are localized structures characterized by
the zero of the field amplitude, and the singularity of the field
phase �1,19,20�. Vortices can arrange to form extended pat-
terns �regular vortex lattices� �20–22�.

Laser systems can be modified in order to show amplitude
bistability response which corresponds to a change of the
nature of the Hopf bifurcation from supercritical to subcriti-
cal. This phenomenon leads to the formation of bright local-
ized structures or spatial solitons. Laser cavity solitons have
been only shown to exist in the following situations; a pas-
sive element �a saturable absorber� is placed inside the reso-
nator �23,24�, in the presence of two-photon amplification
�25�, and in dense amplifying medium, i.e., when local-field
effects are important �26�. These localized structures are of
great interest due to their potential applicability to informa-
tion processing �27,28�. In summary, a rich variety of ex-

tended patterns �tilted waves, vortex lattices� and localized
structures �optical vortices, amplitude domains, spatial soli-
tons� can be observed in laser and laserlike nonlinear optical
systems.

Other scenario of pattern formation appears when the
usual field phase invariance is broken, so then a pitchfork
bifurcation governs the laser dynamics. For example, this
happens when the active atoms are damped by a squeezed
vacuum field. In this case, phase solitons have been predicted
�29�, which consist in ring profiles in the intensity pattern.
Concerning the temporal features, the squeezed vacuum field
leads to a phase-locked steady-state laser field �30,31�. One
of the main attractive of this type of lasers is the reduction of
noise in their output field �32�. A closely idea about the
quantum-noise reduction in lasers consists of lasers with in-
jected atomic coherence �33–35�. It is possible to reduce si-
multaneously the photon-number noise and phase noise in
the laser when the active atoms are injected in a coherent
superposition of states �36�. The temporal behavior of lasers
with injected atomic coherence has been studied by Carty
and Sargent III �37,38�, Bergou et al. �39�, and Ge et al.
�40,41�. They found that the laser frequency is locked to the
atomic line frequency. Laser oscillation below the usual laser
threshold, and even in the absence of an inversion, was ob-
tained. All of the research in laser dynamics with injected
atomic coherence has been based on the plane-wave approxi-
mation, that is, ignoring transverse effects in the medium or
in the field.

In this work, we study the spatiotemporal dynamics of
broad area lasers with injected atomic coherence. We focus
on the role played by the initial atomic coherence in the
pattern formation. The injected atomic coherence increases
the pump threshold to obtain transverse patterns. Below this
threshold, a spatially homogenous state is forced by the ini-
tial atomic coherence, whereas above this threshold a very
rich pattern formation takes place. We find stationary rhom-
bic and hexagonal lattices, complex highly-ordered vortex
lattices traveling along the cross section, and nearly traveling
waves.

This system has several resemblances with the problem of
a laser with an injected signal. The effect of a weak external
signal in the laser transverse dynamics has been studied first
by Mandel et al. �42�, for a negative value of the detuning
and by Longhi �43�, for the positive detuning case. In this
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system, and for a positive value of the detuning, a forced
mode due to the external field also appears together with one,
two or three tilted waves. In the next section the differences
and resemblances between this case and our study will be
pointed out in more detail.

The paper is organized as follows. In Sec. II we present
the two-level Maxwell-Bloch equations when the initial in-
jected atomic coherence is considered. In Sec. III, we ana-
lyze the pattern forced by the injected atomic coherence and
its linear stability. The numerical simulations are presented
in Sec. IV. Finally, Sec. V provides brief conclusions.

II. LASER EQUATIONS

The starting point for our analysis are the Maxwell-Bloch
equations for a broad area homogeneously broadened two-
level laser with plane and parallel mirrors in the rotating
wave, slowly varying amplitude, and single-longitudinal-
mode approximations, and taking into account the injected
atomic coherence. This system of equations was previously
derived by Carty and Sargent III �37� without diffraction to
study the temporal dynamics of this laser:

�E

��
= ia��E + ��P − E� + i�E , �1�

�P

��
= − P + R21 + ED , �2�

�D

��
= − ��D − R +

1

2
�E*P + c.c.�� , �3�

where E, P, and D are the dimensionless slowly varying
envelopes of the electric field, the electric polarization, and
the population inversion, respectively. ���� /�� and �
=� /�� are the population inversion decay rate and the cavity
losses, respectively, in units of the polarization decay rate
����. �= ��21−�c� /�� is the usual rescaled detuning be-
tween the atomic line center and the cavity frequency. R
represents the pumping parameter. Light diffraction is taken
into account by means of the transverse Laplacian term in
the field equation, and is measured by the diffraction coeffi-
cient a=c2 / �2�21��b2�, where b is the spatial transverse size
of the laser. ��=�x

2+�y
2 is the transverse Laplacian where x

and y are normalized with the spatial scale b. The time � is
normalized versus the polarization decay rate ��=��t�.

The pumping process to the two-level system introduces a
population inversion R. Now, we continue by allowing the
pumping to posses a nonvanishing atomic coherence. The
time dependence of the injected atomic coherence is fixed by
the Bohr frequency condition of the transition �e−i�21t�, but
its spatial distribution may be chosen arbitrarily �37�. Thus,
if we want to phase match the injected atomic coherence to
the propagating laser field we consider the same longitudinal
dependence, thus, a running wave eikz, where k is the wave
vector of the longitudinal cavity mode with frequency �c,
then k=�c /c. Finally we introduce R21 which is the dimen-
sionless slowly varying amplitude of the injected atomic co-
herence.

Note that Eqs. �1�–�3� have been developed by consider-
ing as reference frequency the atomic line frequency �21. We
assume in the rest of the work that R21 has a real and positive
value since its phase dependence can be eliminated from the
laser equations.

Now, let us comment about the value of the injected
atomic coherence parameter R21. The pumping contributions
to the upper �	a
� and lower �	b
� lasing levels are propor-
tional to 	ca	2 and 	cb	2, respectively, where ca and cb are the
probability amplitudes of the upper and lower lasing levels,
respectively. These pumping contributions are the usual ones
in standard lasers. Therefore, the population inversion cre-
ated by the pumping R is proportional to R� 	ca	2− 	cb	2. As
we said above, the pumping generates a nonvanishing atomic
coherence R21 proportional to R21�2��cacb

* �with the same
proportionallity constant as R�. In these expressions we have
considered the changes of variables made to develop the la-
ser equations �1�–�3�. Using these expressions we can esti-
mate the value of the injected atomic coherence parameter
R21�2��R	ca	�1− 	ca	2 / �1−2	ca	2�. Therefore, it is easy to
achieve population inversion �	ca	�0.5� with an atomic co-
herence value of the same order of magnitude as R.

The system of equations �1�–�3� can be written as in the
model used by Longhi to study the case of a laser with an
injected signal making the following change of variables: e
=E, p= P−R21, and n=R−D �43�. The new equations are
similar to the ones used by Longhi, except for the appearance
of a new term in the inversion equation �1/2�e*R21+eR21��.
This new term measures the coupling of the laser field with
the injected atomic coherence. The analysis made by Longhi
in Ref. �43�, is based on the derivation of amplitude equa-
tions which is valid close to the instability point. This analy-
sis reveals the presence of stable patterns formed by one,
two, or three traveling waves for low values of the pump
parameter and the external signal. For high pump values the
single tilted wave which characterizes the standard laser is
recovered, whereas high values of the injected field makes
the system to emit on a homogeneous transverse solution
�forced mode�. In our study, we will handle with the whole
system of equations �1�–�3� which allow us to study the laser
dynamics well above the threshold. In our case, a high value
of the injected atomic coherence will make the laser to emit
also on the forced mode, while high values of the pump
parameter will tend to restore the single TW over a nonzero
background, i.e., over a spatially homogeneous field. Close
to this last situation a pattern called nearly traveling wave
appears which consists of a strong and a weak counterpropa-
gating TWs over the forced mode. Furthermore, more com-
plex patterns and bifurcations appear between these two ex-
tremes.

III. FORCED MODE

The laser equations �1�–�3� admit a spatially homoge-
neous stationary state forced by the atomic coherence R21
that acts as a driving force for the laser. This is the solution
found in previous works in the plane-wave approximation
�37,39�. This forced mode is E�� ,x��=Eh, P�� ,x��= Ph, and
D�� ,x��=Dh, with
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Ph = 
1 − i
�

�
�Eh, �4�

Dh = R − 	Eh	2, �5�

R21 = Eh
1 + 	Eh	2 − R − i
�

�
� . �6�

From the last equation �6� we can obtain the intensity value
Ih�	Eh	2 of the stationary spatially homogeneous state

Ih
3 − 2�R − 1�Ih

2 + ��R − 1�2 +
�2

�2�Ih − R21
2 = 0. �7�

This equation leads to three stationary solutions when the
condition

�R − 1�2 � 3
�2

�2 �8�

is fulfilled. Otherwise there is only one stationary solution.
The phase of the stationary field 	h�Eh= 	Eh	exp�i	h�� is
given by

tan 	h =
�/�

1 + Ih − R
, �9�

where only one of the two possible solutions of Eq. �9�—
differing by 
—is valid, i.e., satisfies Eq. �6�. Then, phase
domains and phase solitons are not possible since the initial
atomic coherence locks the field phase to a single value. This
is in contrast to the laser with squeezed vacuum, where two
different values of the locked-phase were obtained �29�.

A. Linear stability analysis of the forced mode

We are going to study the stability of this homogeneous
solution—forced by the initial atomic coherence—to finite
sideband perturbations by linearizing about the spatially ho-
mogeneous stationary solution given by Eqs. �4�–�6�. We fol-
low the stability analysis performed by Jakobsen et al. �8�
and Lega et al. �16�:

E = Eh + e1eik�·x� + e2e−ik�·x� ,

P = Ph + p1eik�·x� + p2e−ik�·x� ,

D = Dh + deik�·x� + d*e−ik�·x� , �10�

where e1, e2, p1, p2, and d are the perturbations and k� is the
perturbation wave vector. Then we obtain ��v� =M�k��v� ,
where M is a 5�5 matrix and v� denotes the column vector
�e1 ,e2

* , p1 , p2
* ,d�T. The time dependence of v� is chosen as e��,

� being the eigenvalues of M. Then the homogeneous sta-
tionary solution is stable if, for all values of k�, the matrix of
the coefficients M has all its eigenvalues with negative real
part. If any eigenvalue has positive real part, the forced mode
is unstable. The problem of finding the eigenvalues of the
5�5 matrix has been approached numerically. This analysis
gives us information about the stability area of this stationary
solution. Let us now to consider the following parameters:
�=0.5, �=0.2, and a=5�10−4. In Fig. 1�a� we plot the sta-
bility diagram in the plane �R21,R� for a detuning �=0.5
showing the stability region of the forced mode. The open
circles are the neutral stability curve of the forced mode cal-
culated numerically as explained above. In all the cases we
have found that at the bifurcation point the most unstable
wave has a wave vector close to 30 which corresponds to the
usual excited wave in standard lasers, i.e., k=�� /a. Con-
cerning to the nature of the bifurcation we obtain that it is
governed by a real eigenvalue which indicates that a pitch-
fork bifurcation is responsible of the dynamics. This result is
in contrast to the usual laser where the bifurcation takes
place through a complex eigenvalue, that is, by means of a
Hopf bifurcation. For example, Fig. 1�b� shows the real part
and the imaginary part of the maximum eigenvalue �max ver-
sus the perturbation wave number k for a pump value R=2
and two values of the atomic coherence parameter: R21
=0.99 �solid line� and R21=0.9 �dashed line�. The first curve
�solid line in Fig. 1�b�� corresponds to a situation just above
the instability point. Therefore, a TW with a wave vector
close to the usual one k��� /a makes unstable the forced
mode through a real eigenvalue, which agrees with our pre-

FIG. 1. �a� Neutral stability
curve of the forced mode in the
plane �R21,R�. Both magnitudes
are dimensionless. �b� The largest
real part of any eigenvalue
Re��max� and its imaginary part
Im��max� as a function of the di-
mensionless wave vector k for R
=2 and two values of the atomic
coherence parameter: R21=0.99
�solid line� corresponding to the
point �1� in �a� and R21=0.9
�dashed line� corresponding to the
point �2� in �a�. The rest of param-
eters are �=0.5, �=0.5, �=0.2,
and a=5�10−4.
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vious explanation. However, if we move further away from
the instability point �see dashed line in Fig. 1�b�� two differ-
ent instabilities take place. As well as the previous one, an-
other TW with a larger wave vector grows. This last TW
presents a complex eigenvalue which leads to a Hopf bifur-
cation. Therefore, in this regime, transverse patterns involv-
ing both type of instabilities and TWs are expected.

Now, let us go to try to obtain analytical expressions
about the stability of the forced mode. The characteristic
polynomial of the eigenvalue problem can be written as

��1 + ���� + �� − �Dh��2�2� + ��	Eh	2 +
2

�
�� + ��

���1 + ���� + �� − �Dh��
= �� − ak2��1 + ���2ak2	Eh	2

−
2

�
�� + ���� − ak2��1 + ��� . �11�

As we have mentioned above, the wave that grows faster at
the instability point has a wave vector of k��� /a. If we
take into account this result the right hand of the character-
istic polynomial equation �11� becomes zero, and then we
obtain a quadratic and a cubic equations. In other words, if
we analyze the stability of the forced mode against a pertur-
bation wave with wave vector k=�� /a, the eigenvalue prob-
lem can be solved analytically. The quadratic equation yields
the two eigenvalues

� = −
1 + �

2
±�
1 + �

2
�2

+ ��Dh − 1� . �12�

So, we can directly obtain the instability condition which
reads Dh
1. We can see that the bifurcation takes place
through a real eigenvalue, in agreement with the numerical
results. Now, we can calculate the threshold pump value �the
neutral stability curve� from Dh=1, and we obtain

Rth = 1 +
�2

�2R21
2 , �13�

so, if R is larger than the threshold value given by Eq. �13�,
the forced mode becomes unstable and then a pattern is ex-
pected. This threshold pump obtained analytically agrees
with the one obtained numerically as is shown in Fig. 1�a�.
We clearly see from expression �13� that the pump threshold
value to reach a pattern increases as R21 becomes larger. In
the case of R21=0, we recover the usual threshold value of 1.
So, in principle, the injected atomic coherence tries to main-
tain an homogeneous state, i.e., the forced mode.

IV. NUMERICAL SIMULATIONS

We have numerically integrated Eqs. �1�–�3� in a square
dibimensional lattice of 101�101 cells with periodic bound-
ary conditions by means of a finite-difference algorithm. We
have chosen a dimensionless cell size �x=0.01 which allows

a good representation of the traveling wave, that is, enough
cells per wavelength and also enough number of phase rolls
in the lattice. The system starts with small-amplitude random
initial conditions and runs for times much larger than the
characteristic relaxation times �final dimensionless time of
the order of �=5�104 with a dimensionless time step ��
=0.05�.

Let us analyze the spatiotemporal dynamics of the in-
jected atomic coherence laser for a pump value below the
usual threshold, i.e., R�1. We take R=0.5 and a detuning
�=0.5. We use the initial atomic coherence R21 as control
parameter. Obviously, at R21=0 �standard laser� there is not
laser emission. For all of the values of R21 we obtain the
spatially homogeneous stationary solution �4�–�6�, in agree-
ment with the linear stability analysis of Sec. III A, where we
showed that the forced mode is always stable for pump val-
ues below 1 �see Fig. 1�a��.

Let us continue analyzing the pattern formation for a
pump value above the usual threshold one, we take R=2. We
also use the initial atomic coherence R21 as control param-
eter. First we consider a detuning equal to �=0.5. As is well
known, in the standard laser, i.e., R21=0, we find a traveling
wave �TW� with wave vector k��� /a �see first row in Fig.
2�. However, a very rich scenario of patterns appears when
an injected initial atomic coherence is considered. We have
found several regimes depending on the value of R21, as can
be seen in Fig. 2 where we plot the intensity field �first col-
umn�, the phase field �second column�, and the power spec-
trum �third column� for different values of R21. Note that a
change of the initial atomic coherence means a change of the
pump threshold �see Eq. �13��. With the above parameter
values and using the threshold condition given by Eq. �13�,
we obtain that the forced mode is stable for R21
� �� /���R−1=1. That is, there is a threshold value of R21

equal to 1 above which the forced mode appears �see last
row in Fig. 2�. Below the threshold value R21=1, the homo-
geneous state loss its stability and a transverse pattern is
expected. Close to threshold �R /Rth�1�, we obtain a station-
ary pattern which consists in two pairs of stationary waves
with opposite wave vectors and a homogeneous state �see
fifth row in Fig. 2�. The two pairs of opposite waves are
crossed at an angle of 55° and they have the same wave
vector which corresponds to the usual one found in standard
lasers, i.e., k��� /a. This pattern corresponds to a rhombic
lattice. However, stationary patterns formed by different
number of stationary waves can be obtained by changing the
cavity detuning. In particular, we find that the total number
of stationary waves forming the stationary pattern increases
with the value of the cavity detuning. In fact, a hexagonal
lattice is found at �=1 just above threshold �R /Rth�1�, as
shown in Fig. 3. The lattice period agrees with the usual one
given by k��� /a. So, these stationary waves seem to be the
basic mechanism of this hexagonal pattern. Hexagonal pat-
terns have been previously found in lasers by means of spa-
tial perturbations �44,45�. The simplest configuration of this
type of stationary patterns that we obtain consists in two
opposite stationary waves and the homogeneous state. This
roll pattern is obtained at �=0.2. We investigate in more
detail this last pattern. We search for a solution of Eqs.
�1�–�3� of the following form:
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FIG. 2. �Color online.� The in-
tensity field �first column�, the
phase field �second column�, and
the power spectrum �third col-
umn� for �=0.5, R=2, and differ-
ent values of the injected atomic
coherence strength: R21=0 �first
row�, R21=0.2 �second row�, R21

=0.4 �third row�, R21=0.7 �fourth
row�, R21=1 �fifth row�, and R21

=1.5 �sixth row�. The rest of pa-
rameters are the same as in Fig. 1.
All the magnitudes presented in
this figure are dimensionless �in-
cluding the real �x ,y� and the Fou-
rier �kx ,ky� space coordinates�.

FIG. 3. �Color online.� The intensity field �first column�, the phase field �second column�, and the power spectrum �third column� for
�=1, R=2, and R21=2. The rest of parameters are the same as in Fig. 1. All the magnitudes presented in this figure are dimensionless
�including the real �x ,y� and the Fourier �kx ,ky� space coordinates�.
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E = E0 + E+eik�·x� + E−e−ik�·x� ,

P = P0 + P+eik�·x� + P−e−ik�·x� ,

D = D0 + D+e2ik�·x� + D+
*e−2ik�·x� . �14�

Inserting Eqs. �14� into Eqs. �1�–�3� and neglecting the
higher harmonics, we obtain that the homogeneous contribu-
tion is very similar to the forced mode

D0 = �R + 2 − 	E0	2�/3,

3R21 = E0
1 + 	E0	2 − R − i3
�

�
� . �15�

So the intensity I0 and the phase field 	0�E0��I0 exp�i	0��
satisfy the same equations of the forced mode by changing
R21 and � /� in Eqs. �7� and �9� by 3R21 and 3� /�, respec-
tively. Concerning to the stationary waves, we find that the
wave vector is equal to k2=� /a. We also obtain that their
amplitudes are equal to 	E+	= 	E+	=�D0−1 and the phases
obey the relation �E±= 	E±	exp�i	±��

tan�	+ + 	− − 2	0� =
4��/��

��/��2 − 4
. �16�

These stationary patterns that appear just above threshold
can be explained by means of a pitchfork bifurcation in
agreement with the stability analysis shown in Fig. 1�b�
�solid line�.

More complex regimes appear when we move away from
the threshold condition �Eq. �13��. At R21=0.4, i.e., R /Rth
�1.7 �third row in Fig. 2� and R21=0.7. i.e., R /Rth�1.3
�fourth row in Fig. 2�, the pattern consists in a complex
highly ordered vortex lattice. The zeros of the intensity field
are accompanied by dislocation defects in the phase struc-
ture. Furthermore, the pattern is traveling along the cross
section. This pattern resembles to the nonstationary vortex
lattices found in class B lasers �46�. It is well known that
when periodic boundaries are used, the vortex lattice can
undergoes a parallel translation, as we obtain in our numeri-
cal results. We can observe in the intensity pattern corre-
sponding to R21=0.4 �see third row in Fig. 2� that there are
two different shapes of vortices. They correspond to opposite
topological charge optical vortices. As we have seen in Sec.
III A, in this regime the stability analysis of the forced mode
gives two different instabilities at different wave vectors. A
pitchfork bifurcation—real eigenvalue—with a wave vector
close to the usual one �k��� /a�, and a Hopf bifurcation—
complex eigenvalue—with a TW with larger wave vector
govern the transverse dynamics of the laser with injected
atomic coherence. This situation corresponds to the dashed
line in Fig. 1�b�.

Finally, for very small values of the initial atomic coher-
ence, R21=0.2 which means pump values well above thresh-
old R /Rth�1.9 �see second row in Fig. 2�, a pattern domi-
nated by a traveling wave �TW� and the homogeneous state
appears. There is also a weak TW propagating in the oppo-
site direction than the first one. The linear stability analysis
of the homogeneous stationary state �see Sec. III A� for this

region shows that the forced mode becomes unstable and the
perturbation k that grows faster agrees with the wave vector
found in the simulations. If we continue decreasing the initial
atomic coherence strength the weak TW disappears, as hap-
pens for R21=0.1, i.e., R /Rth�2. Therefore, the single tilted
wave that characterizes the standard laser is recovered, al-
though this TW is developed over a nonzero background
field.

V. CONCLUSIONS

In this work we have studied the effect of injected atomic
coherence in the spatiotemporal dynamics of a broad area
laser. The temporal dynamics of lasers with injected atomic
coherence has been previously studied in the plane-wave ap-
proximation, i.e., ignoring transverse effects in the medium
or in the field �37–41�. Here we find that the injected atomic
coherence forces a spatially homogeneous profile to appear
and locks the field phase to a single value. So, the usual field
phase invariance is broken, and a pitchfork bifurcation gov-
erns the pattern formation. Above a pump threshold value
complex patterns appear. Close to threshold, we obtain sta-
tionary patterns such as rhombic lattices and hexagonal lat-
tices. More complex regimes appear when we move away
from the pump threshold. The pattern consists in a complex
highly ordered vortex lattice traveling along the cross sec-
tion. Finally, for very small values of the initial atomic co-
herence, a pattern dominated by a nearly traveling wave—a
strong and a weak counterpropagating TWs—and the homo-
geneous state appears.

To conclude, let us discuss about the feasibility of the
experimental realization of this laser system. First, the typi-
cal scheme of lasers with atomic coherence considers two
excited atomic levels pumped at different rates and decaying
to other levels, with negligible decay from upper to lower
level �37�. This can be done using three-level atoms in which
the two upper levels are the lasing transition. Therefore, the
atoms are regularly injected into the laser cavity in a coher-
ent superposition of the two upper levels and interact with
the cavity laser field. This interaction is time limited by the
decay of the two upper levels to the inert ground state. On
the other hand, the atomic coherence is created through co-
herent transient phenomena which allows any desired super-
position of the two lasing levels by controlling the interac-
tion time of the atomic medium with an external short-time
radiation field. Another difficulty that makes this physical
problem a great challenge from the experimental point of
view is the phase matching between the injected atomic co-
herence and laser field in both time and space. In Ref. �37�
Carty and Sargent discuss this problem in depth. Agarwal et
al. �35� suggest another scheme which is perhaps the sim-
plest one from the point of view of experimental feasibility.
They consider the active atoms being pumped into the upper
level by the usual incoherent pump mechanism. In addition,
these active atoms interact with an external field which is
injected into the laser cavity from the side. This external field
gives rise to the atomic coherence. Using the previous ideas
we are going to consider the following experimental situa-
tion. We assume the laser medium as a two level system

CALDERÓN et al. PHYSICAL REVIEW A 72, 033811 �2005�

033811-6



inside a microresonator. This system will be pumped by a
coherent pulsed laser field. If the pumping pulse width is of
the order of the Rabi period, the system becomes coherently
inverted. To have a quasistationary transverse pattern, the
build-up time of the laser field must be much shorter than the
coherence lifetime. A high-Q microresonator makes it more
feasible to obtain a high Fresnel number and a short build-up
time. In order to have an atomic coherence lifetime as large
as possible it will be necessary to strongly cool the laser

medium. A colinear pumping makes possible the phase
matching between the injected coherence and laser field in
both time and space.
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