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Maps of the dynamics of an optically injected solid-state laser
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Maps of the dynamics of an optically injected solid-state Nd: YV Oy laser are presented. Experimental maps
showing different dynamical regions are generated automatically from measured intensity time series by
plotting the maxima of intensity. Corresponding numerical maps and a bifurcation diagram are calculated with
a rate equation model of an injected class B laser. Intensity time series inside different regions in the maps are
examined. The experimental and numerical maps are shown to be in good agreement with each other if the
linewidth enhancement factor « is used as a fitting parameter in the model. As a result, experimental estimates
for an effective a are given for a Nd: YVO, laser. The effects of noise on the dynamics are also discussed.
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I. INTRODUCTION

In optical injection, light from a master laser is sent to the
cavity of the injected slave laser. The controllable parameters
in the system are the injection strength K and the frequency
detuning Aw between the master laser and the free running
injected laser. In class B lasers, external optical injection is
known to cause complex dynamics.

An illustrative way to study the dynamics of optically
injected lasers is to construct maps showing different dy-
namical regions in the parameter plane spanned by the injec-
tion parameters K and Aw. Detailed experimental maps have
been published for Fabry-Pérot type semiconductor lasers
[1-3] and for distributed feedback lasers [4,5]. Numerically,
maps are calculated either by directly integrating the injected
laser rate equations [6—8] or with bifurcation analysis
[5,9,10]. In direct integration, some measure of the dynami-
cal state is computed for a large number of points in the
(K,Aw) plane. In bifurcation analysis, boundaries of differ-
ent dynamical regions are located and followed.

In the experimental part of this study, the dynamical state
of the injected solid state laser is examined with intensity
time series. This is different from the case of semiconductor
lasers, where experiments rely mostly on optical spectra due
to the much shorter time scales. The microsecond time scale
of the solid state laser and the use of intensity time series
allow continuous measurement of the dynamics while one
injection parameter is swept. Time series have been used to
investigate injected class B lasers both experimentally with
CO, [11] and NMR systems [12] and numerically (see, e.g.,
[13,14]).

In this paper, maps of the dynamics of an optically in-
jected solid state Nd: YVO, laser are presented. A method
based on maximum amplitudes of the intensity time series is
used to distinguish different dynamical regions in the
(K,Aw) plane. The same method is also utilized numerically
with a rate equation model of an injected class B laser. Fi-
nally, the model is studied with bifurcation analysis.

Experimental mappings of the solid state laser dynamics
have not been reported so far. Experimental studies on in-
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jected solid state lasers have concerned mainly injection
locking, including works on noise properties (e.g., [15,16])
and chaos synchronization [17,18]. Theoretically, solid state
laser dynamics in injection has been studied recently
[9,19-21].

The dynamics of an injected class B laser is greatly af-
fected by the linewidth enhancement factor a. In semicon-
ductor lasers « is typically between 2 and 7, whereas it is
expected to be near zero in solid state and CO, lasers. In
solid state lasers, precise experimental values for the « factor
have not been published, although, evidence has been given
recently that « can take a rather large value (=1) in a mi-
crochip laser [22]. To get an agreement between experimen-
tal and numerical maps in this paper, experimental estimates
are found for an effective a factor in a Nd: YVO, laser. As a
result, mapping the dynamics constitutes a way of experi-
mentally determining the value of a. Also shown is that the
effective @ may change. The explicit origin of a in solid
state lasers will be an interesting topic for future studies.

This paper is organized as follows: in the next section the
experimental setup is presented together with the method
used to acquire intensity time series of the injected laser. The
model and the measurement of its parameters are introduced
in Sec. III. The experimental maps are compared to the simu-
lated maps and to the bifurcation diagram in Sec. I'V. Experi-
mental intensity time series in a few specific dynamical re-
gions are plotted with their numerical counterparts in Sec. V.
Conclusions are given in Sec. VI.

II. EXPERIMENTAL SETUP

Figure 1 shows the experimental setup for optical injec-
tion. Two solid state lasers are operated in a master-slave
configuration. Both lasers are 1 mm thick Nd: YVO, crystals
(CASIX) pumped with 150 mW SDL diode lasers at 809 nm.
Feedback to the pump laser diodes is blocked with Faraday
isolators. The crystals are mounted to copper mounts to al-
low temperature control. Remaining pump light after the
crystals is removed from the 1064 nm beams with interfer-
ence filters. The Faraday isolators make the coupling be-
tween the master and slave lasers unidirectional and prevent
unwanted feedback. The injection beam from the master la-
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FIG. 1. Experimental setup: LD, laser diode; FI, Faraday isola-
tor; TEC, temperature control; IF, interference filter; BS beam split-
ter; AOM, acousto-optic modulator; FP, Fabry-Pérot interferometer;
PD’s, photodetectors.

ser is directed into the cavity of the slave laser through an
acousto-optic modulator (AOM) and the injection power is
measured after the AOM with the detector PDI.

Optical spectra are recorded with a 150 GHz free spectral
range scanning Fabry-Pérot interferometer (Burleigh TL-15)
to ensure single mode operation of both lasers and to enable
coarse frequency tuning. The beat frequency between the
lasers is measured with a home-made 400 MHz photodetec-
tor PD3 and the optical input (PD2) of a Tektronix CSA 7404
oscilloscope is used to measure intensity time series of the
injected laser.

The relaxation oscillation frequency and output power of
the master laser are 4 MHz and 8 mW, respectively. An op-
toelectronic feedback loop (not shown in Fig. 1) is employed
to suppress the relaxation oscillation peak of the master laser
intensity noise spectrum [23]. The temperature of the master
laser is tuned with a Peltier element to control the frequency
detuning between the lasers. The slave laser is pumped 3.5
times above threshold, resulting in an output power of 8 mW
and a relaxation oscillation frequency of 3.5 MHz.

The measurement of the intensity time series of the in-
jected slave laser is realized in the following way. For a fixed
frequency detuning, the injection power is modulated using
an AOM. The slave laser intensity time series (PD2), the
time series of the beat frequency (PD3) and the measured
injection power (PD1) are all coupled to the three channels
of the same oscilloscope. As a result, the intensity time series
of the injected laser are recorded as a function of the injec-
tion power and the beat frequency is picked up for each time
series.

The injection strength that is needed to achieve locking in
solid state lasers increases linearly with the frequency detun-
ing (the locking region is the white area in Figs. 4 and 5).
Moreover, once the locking range is entered, further increase
in injection power does not change the state of the injected
laser. Consequently, if an injection power sweep starts from
zero and continues until locking is reached, all the wave-
forms of the dynamics for the corresponding frequency de-
tuning are captured in a single intensity trace. Figure 2 pre-
sents an example of an intensity time trace recorded in such
a way. The use of triangle wave modulation enables direct
observation of possible hysteresis in the dynamics by com-
paring the results with increasing and decreasing injection
power. These time traces captured for a large number of dif-
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FIG. 2. An example of an intensity time trace during a single
injection power sweep. The frequency detuning is approximately
1.4 times the relaxation oscillation frequency of the injected laser.
The injection power is zero at =0 ms and at t=1.6 ms and it is
increasing when #<<0.8 ms and decreasing after t>0.8 ms as
shown in the inset. The intensity time trace around 0.8 ms corre-
sponds to locking.

ferent frequency detunings contain all the data needed to
construct the experimental maps presented in Sec. IV.

III. THE MODEL

The experimental results are compared to a phenomeno-
logical single mode rate equation model of a class B laser
[7,24]

d 1 . 1

da _ —(1_ia)y‘—7fl(n—1)——yp(a2—1)+i9 a+k+F,

dr 2 vJ 2

dn ~ 2 2 'yp%j 2 2

o = =y =a) + @ (L =m) + 2 aa - 1)
+F,, (1)

where a and n are the amplitudes of the slowly varying field
envelope and the population inversion density, both normal-

ized to their steady state values, J=(J—J,;)/J,, is the pump
power J normalized to the threshold value J;,, « is the line-
width enhancement factor, y, and vy, are the decay rates for
the cavity and for the upper laser level, vy, and 7y, are the
relaxation rates for the differential and nonlinear gain. The
experimentally controllable injection parameters « and ()
=27(vy—vg) stand for the coupling of the injected field
and the angular frequency detuning between the master and
the slave lasers, respectively. Noise is introduced into the
system through the Gaussian white noise source terms F,
and F,.

The parameter values for the model have been estimated
with the following procedure. The 90 us lifetime of the up-
per laser level [25] gives y,=1.11 X 10* s™'. An approxima-
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FIG. 3. Experimental power spectrum and the calculated spec-
trum from Eq. (2). Approximation D>=0 is used due to the shape

of the experimental spectrum. S(w) is normalized with the peak
value at 3.5 MHz.

tion for v, is given by the relation vy, = yj . The cavity decay
rate is then obtained from %:Qi/y,,, where Qp=27fy is
the angular relaxation oscillation frequency. Once 7, and 7y,
are known, the nonlinear gain relaxation rate v, is found
from the power spectral density

(22)°D} + 402w + (3, + 7))

%
(QF - 0)* + Wy} ’

S(w) = (2)

where

Vo= Yot Yat+ Voo Di=(F(0)F,(0)"), D2 =(F (0)F,(»)")

and where (-) indicates a time average. A value for 1y, is
obtained by fitting the calculated power spectral density to
the measured one. Both the measured and the fitted power
spectra are presented in Fig. 3. Based on the shape of the
measured power spectrum, F, is the dominant noise source,
see, e.g., [26] for details. Finally, D, is calculated from the
variance of the output power (Ap?). Neglecting the minor
noise term D7,

PHYSICAL REVIEW A 72, 033810 (2005)

2 o

1 [~ 4D o>+ (v, +v,)*
A2=—fS dow=—* .
(@ 2m7) (@)de 27 J (Qi—w2)2+w2yf

3)

The parameter values obtained above are summarized in
Table 1. The linewidth enhancement factor « is the only un-
determined parameter. The « factor, which couples gain
variations to the refractive index, arises from an asymmetric
gain profile or from a detuning of the lasing mode from the
gain line center. In solid state lasers a<<1 is expected and
used in simulations [9,19,27], although, no precise measured
values have been published. Based on the symmetric form of
the locking region shown in the next section, @ <<0.6. On the
other hand, a>0 is required due to the experimentally ob-
served asymmetry in the dynamics above and below the
locking region [9,10]. In order to reach a good agreement
between the experiments and the model, « between 0.2 and
0.35 must be chosen in the simulations of this paper.

The above rate equations contain complex dynamics and
multistability. Multistable regions complicate the comparison
between experimental and numerical results since the found
attractors may depend on the chosen initial conditions. To
minimize such problems, the used integration scheme mim-
ics the experimental procedure. To be more precise, the in-
jection strength « is increased from zero while keeping the
angular frequency detuning () constant. When « is increased,
the initial condition is taken as the last point found for the
previous k.

In addition to the direct integration of the rate equations,
the model is also investigated with bifurcation analysis, a
powerful tool in the study of dynamical systems. In direct
integration, a measure of the dynamical state, e.g., Lyapunov
exponent, is calculated in a large number of points in the
injection parameter plane to find different dynamical regions.
Therefore, good resolution means time-consuming simula-
tions. In bifurcation analysis, a different method is used;
boundaries of dynamical regions are detected and then fol-
lowed. The resulting bifurcation diagram gives a global view
on laser dynamics. A detailed review of bifurcation analysis
of laser dynamics can be found in [28,29]. In this paper, the
Matlab package Matcont [30] is used to construct the bifur-
cation diagram.

In the next sections, results are given in terms of the nor-
malized injection strength K=«/{)p and the normalized fre-
quency detuning Aw=Q/Q. These commonly used dimen-
sionless injection parameters make the comparison of the
results to other reports easier.

TABLE 1. Parameter values used in the simulations.

Parameter Symbol Value
Relaxation oscillation frequency fr 3.5 MHz
Normalized pump power 7 2.5

Cavity decay rate Ye 1.7%x10'0 57!
Atomic decay rate Y L.11X10*s7!
Differential gain relaxation rate Vi 278X 10% s7!
Nonlinear gain relaxation rate Y 3.0x10% 57!
Langevin noise spectral density D? 750 57!

a

033810-3



VALLING, FORDELL, AND LINDBERG

N
-t ek
- N

-
—_
o

Detuning Am

NN W R OO N 0 ©

—_

0.5 1 1.5 2 25 3 3.5
Injection strength K

FIG. 4. Experimental map, where the color coding reveals the
intensity time series maximum for certain (K,Aw).

IV. MAPS

In this section, maps showing different dynamical regions
are presented for an injected Nd: YVO, laser. Experimental
maps based on intensity time series maxima are compared
with the corresponding numerical maps. The maps are also
compared with the bifurcation diagram.

An experimental map of intensity time series maxima is
presented in Fig. 4. The map is constructed as follows.
Traces like the one presented in Fig. 2 are first recorded for a
large number of different detunings. Each trace contains all
intensity waveforms for a specific frequency detuning when
the injection strength is increased from zero until locking is
observed. The traces are then divided into subintervals cor-
responding to different values of the injection strength K. For
each subinterval, which consists of several periods of oscil-
lating intensity, the largest maximum of the intensity time
series is recorded. The intensity time series maxima found in
such a way are then plotted as a function of the injection
strength, side by side for a large number of frequency detun-
ings to generate the map shown in Fig. 4. As a result, Fig. 4
represents the maxima of intensity time series in the (K, Aw)
plane. The maxima are normalized with the free running la-
ser intensity (=1). The white color (=1) in the maps means
that the laser has the same intensity as in the free running
case. The black (=12) end of the color scale means that the
maximum peak heights of the intensity time series are about
twelve times the free running value. All the intensity maxima
maps presented in this paper are color coded similarly to
allow comparisons between them.

Numerical maps representing intensity time series
maxima are constructed likewise. Intensity time series are
integrated at numerous points in the (K,Aw) plane and the
maximum value of each time series is recorded. Numerical
map of intensity time series maxima for «=0.35 is presented
in Fig. 5.

Because the absolute value of the injection strength could
not be measured reliably, the experimentally obtained rela-
tive injection strength, i.e., the square root of relative injec-
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FIG. 5. Numerical map of intensity time series maxima with
a=0.35.

tion power, was normalized to K in the model by matching
the lower locking range boundary to the corresponding
boundary in the simulations. With a value of 0.35 for the
fitted effective « in simulations, an agreement between the
experimental and the numerical map is observed in the
shapes of different regions. The maximum intensities are also
similar, slight differences are observed in the dark regions
corresponding to high intensity maxima. To be more precise,
the intensities given by the model are somewhat higher than
the measured ones.

The triangular white region in the middle of the maps of
Figs. 4 and 5 corresponds to locking. The injection strength
needed to reach the locking range is observed to increase
linearly with the frequency detuning. The intensity in the
locked state is approximately the same as the free running
laser intensity. In the large dark region below the lower lock-
ing range boundary, pulsed intensity with peak heights above
ten times the free running value are observed. Light or gray
regions on the maps typically correspond to periodic sinu-
soidal oscillations. Inside the dark, crescent-shaped region
above the upper locking range boundary, oscillations are
born with twice the basic period.

As it is demonstrated in Figs. 4 and 5, the intensity time
series maxima of an injected solid state laser are successfully
described with the rate equation model used. Next it is
shown that mapping the maxima of intensity time series is a
suitable method for distinguishing different dynamical re-
gions in the (K,Aw) plane. For that purpose, bifurcation
analysis is employed with the same model without the noise
term. In Fig. 6, a bifurcation diagram with principal bifurca-
tions for @=0.35 is shown. Hopf (H), saddle-node (SN),
period-doubling (PD), and torus (T) bifurcations are identi-
fied, supercritical bifurcations are plotted with solid lines and
subcritical ones with dashed lines. For torus bifurcation
curves plotted with gray lines, the stability is unclear due to
very small normal form coefficients found with Matcont.
Comparison between the bifurcation diagram and the maxi-
mum intensity maps reveals that all the numerically obtained
bifurcation curves shown in Fig. 6 have their counterparts in
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FIG. 6. Bifurcation diagram with a=0.35. H, Hopf; SN, saddle-

node; T, torus; PD, period-doubling. Supercritical bifurcations are

plotted with solid black lines and subcritical bifurcations with
dashed lines. Gray lines stand for unclear stability of a bifurcation.

the boundaries of different regions in the experimental map
in Fig. 4.

The role of « in the dynamics of an injected class B laser
can be emphasized by comparing the bifurcation diagram of
Fig. 6 to those calculated for different « values and for typi-
cal semiconductor laser parameters in [9,10]. Despite the to-
tally different laser parameters, it is the a that makes the
bifurcation diagrams similar. For this reason, special atten-
tion must be paid to the experimental determination of « for
the model of an injected laser.

In Fig. 7, an experimental map is presented for another
measurement where the operating point of the injected laser,
determined by the output power and (), is the same as that
in the preceding experiment. The map is, however, slightly
different compared to Fig. 4. There is one extra detail at
about (K,Aw)=(0.3,-1). This detail and the slight shift of
the torus curve to the right can be achieved with a smaller «
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FIG. 7. Experimental map of time series maxima.
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FIG. 8. Numerical map of time series maxima with a=0.2.

in the simulations. In Fig. 8, a=0.2 is used. Again, agree-
ment between the measurements and the simulations is ob-
served. Thus, it is demonstrated that the « needed to cor-
rectly model the injected Nd:YVO, laser may change
between measurements. This may be due to changes in pa-
rameters like lasing frequency, temperature or exact pumping
conditions. The aim here is to point out that the effective «
factor cannot be assumed to be constant for a Nd:YVO,
laser.

To illustrate the resolution of the experimental maps ob-
tainable with the intensity maxima method used, a map
based on another measurement with better resolution is pre-
sented in Fig. 9. The experimental parameters used are the
same as in the map of Fig. 7 and the map shown can there-
fore be thought of as a zoom of Fig. 7. Enhanced resolution
comes from the larger number of different detunings mea-
sured compared to maps in Figs. 4 and 7. The resolution in
the detuning axis is limited by the number of measurements
and ultimately by the +100 kHz accuracy of the measured
frequency detuning. The injection strength is measured con-

0.5 ;
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o
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FIG. 9. A detailed experimental map of time series maxima.
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FIG. 10. A detailed numerical map of time series maxima with
a=0.2.

tinuously, the accuracy is limited by the uncertainties in the
measurements of the relative injection power and the nor-
malization of the power to K. As a result, the resolution and
accuracy of the intensity maxima map presented in Fig. 9 is
better than 0.05 in terms of K and Aw. Comparable resolu-
tion can be achieved in any range of parameters (K,Aw), i.e.,
for larger maps as well. In Fig. 10, the corresponding nu-
merical map is shown with a=0.2. All the details of the
numerical map can be found clearly in the experimental map
and vice versa.

V. INTENSITY TIME SERIES

It has been shown in the preceding section that the shapes
of different dynamical regions in (K,Aw) plane as well as

(a1) (b1) (c1) (d1) (e1)
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the intensity time series maxima for certain injection param-
eters coincide well with each other in the experiments and in
the simulations. Moreover, the boundaries of different re-
gions in the intensity maxima maps in Figs. 4 and 5 have
their counterparts in the bifurcation diagram of Fig. 6. The
distinction between bifurcation analysis and the intensity
maxima method is that the latter only distinguishes the dif-
ferent regions. In order to experimentally specify the corre-
sponding dynamical states, intensity time series must be ex-
amined more closely inside each region. In Fig. 11,
experimental (above) and numerical (below) intensity time
series are compared in different regions of the maps for «a
=0.35. The injection parameter values (K,Aw) used in the
simulations are given for each time series in 11(a2) to 11(f2).
The corresponding experimental values in 11(al) to 11(fl)
differ at most 0.05 from the numerical ones.

Figures 11(al) and 11(a2) present relaxation oscillations
of a free running laser in the absence of the injected field.
The amplitude of the oscillations gives an insight into the
noise level of the laser because relaxation oscillations build
up from noise. Typical time series corresponding to a limit
cycle are presented in Figs. 11(b1) and 11(b2). In the maps
this dynamical region covers almost the whole area above
the supercritical Hopf bifurcation for positive detunings and
below the torus bifurcation for negative detunings. A peri-
odic sinusoidal signal is observed, the parameters used in
this specific case are (K,Aw)=(1.5,2.3). In Figs. 11(c1) and
11(c2), the time series of a torus are shown with the injection
parameters (K,Aw)=(1.32,-3.6). The waveforms shown are
typical along the stable torus bifurcation curve shown in Fig.
6. Between the torus bifurcation and the supercritical saddle-
node bifurcation that corresponds to the lower locking range
boundary, a vast dark region is seen in Figs. 4 and 5 that
suggests high intensity time series maxima. Indeed, large
pulsed oscillations are observed, examples of which are
shown in Figs. 11(d1) and 11(d2). Intensity time series inside
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the stable period-doubling bifurcation curve with positive de-
tunings are plotted in Figs. 11(el) and 11(e2) with (K,Aw)
=(0.6,1.55). Finally in Figs. 11(f1) and 11(f2), typical time
series are plotted that correspond to locking. In the bifurca-
tion diagram, the locking region is the area between the su-
percritical parts of Hopf and saddle-node bifurcations.

As is shown in Fig. 11, not only the dynamical regions of
the model and experiments are equal but also the time series.
Both the amplitude and the oscillation frequency of the nu-
merical and the experimental time series are in good agree-
ment with each other. Small differences are obtained due to
the random nature of noise both in experiments and simula-
tions. In addition, in the time series in Fig. 11 that corre-
spond to locking, the experimental time series 11(fl) has
some extra noise compared to the simulations in 11(f2). This
is due to the fact that in the simulations the master laser
power is stable. In experiments, however, the master laser
exhibits some relaxation oscillations even though an elec-
tronic feedback loop is used to suppress them.

The « factor and the noise term are of major importance
in the model in order to get a good agreement with the ex-
periments. The « factor is mainly responsible for the shapes
and sizes of the dynamical regions in the maps. In the states
with large amplitude oscillations, that is between the stable
torus bifurcation curve and the lower locking range bound-
ary, the peak heights and intervals are greatly reduced by the
noise term.

Intensity time series of an injected Nd:YVO, laser are
also reported in [31]. Routes to locking when the injection
strength is increased are presented there for different fre-
quency detunings.

VI. CONCLUSIONS

Maps of the dynamics of an optically injected Nd: YVO,
laser are presented. Experimentally constructed maps where
intensity time series maxima are plotted in the (K,Aw) plane
are shown to be in agreement with the rate equation model
used in the simulations. In addition, the found boundaries of
dynamical regions are demonstrated to correspond to the bi-
furcation curves obtained with bifurcation analysis of the
same model. The intensity time series maxima method is
thus shown to be a convenient experimental way to map the
dynamical states of an injected solid state laser. Compared to
the maps based on optical spectra used typically with semi-
conductor lasers, the following advantage is achieved: the
intensity maxima maps are constructed directly from the raw
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data without human-made decisions on where the boundaries
of the dynamical regions are. This allows a large amount of
data to be analyzed straightforwardly, leading to a good reso-
lution. The resolution of the method presented in this paper
is better than 0.05 in terms of the normalized injection pa-
rameters K and Aw. On the other hand, the intensity maxima
do not directly reveal the dynamical states of distinct regions
on the maps. To accomplish that, intensity time series must
be examined more closely inside each region. In this paper, a
good correspondence is demonstrated between experimental
and numerical time series both in waveforms and in ampli-
tudes.

To reach an agreement with the experiments, estimates are
found for the linewidth enhancement factor « in the model.
Matching the maps leads to an error of at most 0.10 for a. It
is also shown that « for a Nd: YVO, laser may vary between
measurements even if the same operating point, determined
by the output power and (), is used. It has to be pointed out
here that the values presented should be considered as an
effective «; the origin of « in solid state lasers may be dif-
ferent to that in semiconductor lasers, and it will be an inter-
esting topic for future studies.

The noise term must be included into the model to prop-
erly describe the laser studied in this paper. In the model, the
noise is only added to the injected slave laser and the master
laser noise contribution is neglected. It can be assumed that
the effects of the master laser noise on the maps are smaller
but somewhat similar to those observed with the slave laser;
the peak heights decrease in pulsed regions. The small con-
tribution of master laser noise could be responsible for the
slight difference between experimental and numerical peak
heights. Generally, due to noise some of the interesting dy-
namics may be blurred by random effects.

In this paper, maxima of the intensity time series are
mapped to distinguish different dynamical regions, meaning
that only a fraction of the data recorded is actually used in
the analysis. By computing suitable quantities that change at
the bifurcation boundaries, the method introduced offers the
possibility to automatically construct a detailed experimental
bifurcation diagram of the injected laser.
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