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The squeezing spectrum of the fluorescent light is investigated for a laser-driven three-level atom of the �

configuration when quantum interference of the decay channels is accounted for. We show that when the two
atomic transitions contribute to the detected fluorescence field, squeezing at certain frequency intervals is
obtained in both the weak- and the high-Rabi-frequency regimes even for equally decay rates of the transitions.
Unlike in two-level atoms in free space, squeezing can be obtained in both the in-phase and out-of-phase
quadrature spectra although in different spectral regions. We also show that the squeezing spectrum can be
controlled by an adequate selection of the Rabi frequencies and atomic detunings. Another remarkable effect is
that squeezing can be achieved with proper relative phases of the driving fields. We provide an analytical
description in the dressed basis which accounts for the main features of the squeezing spectra obtained from the
numerical work.
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I. INTRODUCTION

Resonance fluorescence is a central topic in quantum op-
tics and has been shown to be a successful way to investigate
the fundamentals of the interaction of matter and radiation
�1–4�. Using this technique, a manifold of interesting phe-
nomena have been observed or predicted such as photon an-
tibunching �4–6�, sub-Poissonian statistics �7�, and squeez-
ing �8�, among others.

In contrast to fluorescence spectra which are detected
without phase sensitivity, squeezing spectra are obtained by
homodyne detection of scattered radiation from free atoms
driven by a coherent field. In these experiments, the scattered
radiation field of the atoms, E, is mixed with a local oscilla-
tor �LO� field �ELO�ei�, having a controllable fixed phase �,
relative to the driving field. Thus, the signal P�t� reaching the
detector is proportional to the interference term between the
LO and the scattered field, that is, P�t�� �ELO�x�, where x� is
a quadrature of the scattered field given by x�=1/2�e−i�E
+ei�E†�. Squeezing in the radiation field can be measured by
analyzing the fluctuations in the detected power. In this way,
the normally ordered variance of the quadrature components,
either in total phase quadratures or in frequency components
�squeezing spectrum�, can be obtained. In the last case, the
field must be frequency filtered �9,10�. Moreover, the phe-
nomenon of phase-sensitive squeezing in resonance fluores-
cence, first predicted by Mandel �7� and Walls and Zöller
�11�, has received considerable attention in the context of
two-level atoms. Theoretical calculations in a two-level atom
have shown that the squeezing can be found in the out-of-
phase quadrature component spectra in a weak coherent ex-
citation regime under the condition ��2� �12–14�, where
� and � are the Rabi frequency and the atomic decay rate,
respectively.

In spite of receiving considerable attention, squeezing in
resonance fluorescence has eluded experimental observation,

one of the problems being that atomic motion produces
phase shifts which destroy the squeezing �15�. However, in a
recent work �16�, precision near-resonant phase-dependent
spectra have been obtained by using a homodyne detection
technique that suppresses excess noise by subtracting trans-
mitted power signals from two identically prepared atomic
samples. With this scheme, Lu et al. �16� and Zhao et al. �17�
have found some evidence of squeezing when measuring the
phase-dependent fluorescent spectra of coherently driven
174Yb atoms at a phase near ±� /4 relative to the exciting
field. This important result has renewed the exploration of
phase-dependent spectra of resonance fluorescence in two-
level atoms. Since the fluorescence field quadrature compo-
nents in two-level systems depend on the difference between
the upper-level population and the square of the dipole mo-
ment �18�, it was claimed �19–22� that three-level atoms of
the � type would be more suitable than two-level atoms, due
to the possibility of reducing the upper-state population via
the coherent population trapping effect. This dynamically in-
duced atomic coherence also lead to many phenomena, such
as electromagnetically induced transparency �23–25�, lasing
without inversion �26–28�, refractive index enhancement
without absorption �29–31�, and giant nonlinearity �32–34�.
Squeezing of the fluorescent field emitted by �-type atoms
has been previously discussed in terms of the variance of
quadrature components of the total electric field rather than
in terms of the squeezing spectrum. Vogel and Blatt �15�
found steady-state squeezing only when the two spontaneous
emission rates and the two Rabi frequencies were signifi-
cantly different from each other. Ficek et al. �22� also found
that steady-state squeezing is limited to the case when the
fluorescence of only one atomic transition is detected and the
decay rate of the transition, which exclusively contributes to
the detected fluorescence field, is larger than the decay of the
other transition. Moreover, they did not find squeezing when
the two atomic transitions equally contribute to the detected
fluorescence field.
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In this paper we are interested in analyzing the effects of
another way of generating coherence which connects with
relaxation processes such as spontaneous emission. This
spontaneously generated coherence �SGC� is responsible for
many novel effects, such as narrow resonances and probe
transparency �35–37�, dark spectral lines �38,39�, phase-
dependent line shapes �40,41�, gain features, and dark tran-
sitions �42�. While spontaneously generated interference ef-
fects have been intensively studied in V-type atoms, such
effects in � systems have received considerably less atten-
tion. The existence of such spontaneously generated interfer-
ence effects in �-type atoms, first predicted by Javananien
�43�, is not obvious due to the fact that there are two lower
states as possible final states. For this reason, most of the
work related to � atoms did not include the effect of SGC.
However, Hu and Peng �44� have recently demonstrated that
a � system with maximum quantum interference can be car-
ried out using a dressed-state picture of a coherently driven
V system without interference. It has been pointed out that
SGC in a �-type atom can change the steady-state response
of the medium �43,45� and can significantly modify the ab-
sorption or spontaneous emission spectra of a near-
degenerate system. Menon and Agarwal �46� have investi-
gated the effects of SGC on a standard � system and found
that SGC brings about quantitative changes in line profiles
when the two applied fields are both strong enough. Wu and
Gao �47� have found that, in this system, the inversionless
gain stems from both spontaneous generated coherence and
dynamically induced coherence, although the former pro-
vides the major contribution to the inversionless gain. Joshi
et al. �48� have demonstrated the controllability of atomic
optical bistability in � atoms by using SGC in the decay
channels. Evers, Bullock, and Keitel �49� have discussed the
effect of SGC on resonance fluorescence spectra in �-type
atoms, when both transitions from the upper level to the
lower levels are driven by a single laser field, and they found
that the SGC term produces interesting effects such as the
suppression of a dark state, which is present without inter-
ference, and the appearance of a narrow spectral feature in
the fluorescence of the atom. Thus, it is expected that SGC
may also greatly modify the squeezing spectrum.

In view of the experimental success in measuring the
squeezing spectrum �16�, in this paper we study the effect of
spontaneous generated coherence on the squeezing spectrum
of the fluorescent field. As far as we know, little research has
been done in the phase-dependent spectra of three-level at-
oms, apart from the work of Gao et al. �50�, which analyzes
the effect of quantum interference on the squeezing spectrum
in V-type atoms, and the work of Antón et al. �51� covering
the squeezing spectrum in V-type atoms damped by a
squeezed vacuum. We show that additional features in the
squeezing spectrum emerge by the inclusion of SGC in a
�-type system. With appropriate selection of the atomic pa-
rameters, we find that the squeezing spectrum is quite differ-
ent from the case without SGC. In particular, we find that
when a single coherent field couples both transitions, SGC
causes squeezing otherwise not noticeable in absence of
SGC. In the case of two coherent fields, each one coupled to
a single transition, squeezing can be obtained for equal decay
rates in the weak- and high-Rabi-frequency regimes in con-

trast to the case of a two-level atom. The most remarkable
effect is that the squeezing spectrum depends on the relative
phase of the driving fields, so we can control the fluctuations
by tuning the relative phase and/or the Rabi frequencies of
the applied fields.

The paper is organized as follows. Section II establishes
the model, i.e., the Hamiltonian of the system and the evo-
lution equation of the atomic operators assuming the
rotating-wave approximation and the squeezing spectrum is
obtained in terms of the correlations of the density matrix.
Numerical analysis showing the influence of SGC on the
squeezing of the fluorescent field is presented in Sec. III. In
Sec. IV, we develop an analysis in terms of the dressed states
which aids in interpreting the numerical results. Finally, Sec.
V summarizes the main conclusions.

II. THE MODEL

We consider a closed �-type three-level system with two
near-degenerate levels �1� and �2�, and one excited level �3�
as shown in Fig. 1. The energies of the levels are �	i�i
=1,2 ,3�. Spontaneous and stimulated emissions between
these states are governed by the interaction of the atom with
a reservoir in a thermal field at zero temperature. In order to
analyze the induced-coherence effects by spontaneous emis-
sion, the upper level �3� is coupled to the lower levels �1� and
�2� by the same vacuum modes. The resonant frequencies
between the upper level �3� and the ground levels �2� and �1�
are 	32 and 	31, respectively. Note that 	31−	32=	21, is the
frequency separation of the lower levels. Both transitions
�3�→ �2� and �3�→ �1� are driven by an external coherent

field E� given by

E� =
1

2
E� 1�t�e−i�	Lt+
1� +

1

2
E� 2�t�e−�i	Lt+
2� + c.c., �2.1�

where E� j�t� and 
 j�j=1,2� are the amplitudes and phases of
the slowly varying field envelopes, respectively, and 	L
stands for the angular frequency of the fields.

The system is studied using the density matrix formalism.
By following the traditional approach of Weisskopf and

FIG. 1. A �-type atom driven by �a� a single-mode laser of
frequency 	L and �b� two coherent fields of the same frequency 	L.
The polarization arrangement is also shown. �1 and �2 are the decay
rates from the excited level to levels �1� and �2�, respectively.
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Wigner �45,52,53�, we have rederived the master equation
for the reduced density matrix of the atomic system �s

I, in the
Born and Markov approximation and in the interaction pic-
ture

��s
I

�t
= −

i

�
�Hex

I ,�s
I� −

1

2
�1�
33�s

I + �s
I
33 − 2
13�s

I
31�

−
1

2
�2�
33�s

I + �s
I
33 − 2
23�s

I
32�

+ �12�
13�s
I
32e

−i��	31−	32�t+�� + 
23�s
I
31e

i��	31−	32�t+��� ,

�2.2�

where Hex
I is given by

Hex
I = �1
33 + ��1 − �2�
22 − ��

m=1

2

��m
3m + H.c.� .

�2.3�

The operators 
mn= �m��n� are the usual Pauli matrices, and

�� m3 and �m=�� m3 ·E� m /2��m=1,2� are the dipolar moment
and the Rabi frequencies of the transitions �m�→ �3�, respec-
tively. �1=	31−	L and �2=	32−	L are the detunings be-
tween the field and the optical transitions �3�→ �1� and �3�
→ �2�, respectively; �=
2−
1 is the relative phase of the
two coherent fields. The damping terms �1 and �2 are the
decay rates for the �3�→ �1� and �3�→ �2� transitions, respec-
tively. The damping terms proportional to �12 in Eq. �2.2� are
particularly important when �	31−	32�	�1 ,�2, and they
arise due to the coupling of the two transitions �3�→ �1� and
�3�→ �2� with the same vacuum mode. They are responsible
for the quantum interference between the two decay chan-
nels. In addition, it can be shown �45� that

�12 = 
�1�2p , �2.4�

where p���� 13·�� 23� / ��� 13���� 23�=cos �, � being the angle be-
tween the dipole moments. Thus, the quantum interference is
maximum if the transition moment �� 13 is parallel to �� 23, and
it disappears if they are perpendicular. The ability to control
�12 has been experimentally demonstrated �54� in sodium
dimers by considering the superposition of singlet and triplet
states due to spin-orbit coupling, although a conflicting result
was obtained in �55�. Recently some novel methods to pro-
duce spontaneous coherence are discussed in the literature
�56,57�.

The equations of motion of the elements of the density
matrix in a rotating-wave frame read as

��13

�t
= − ���1 + �2�/2 − i�1��13 + 2i�1�33 − i�2�12

+ i�1�22 − i�1, �2.5�

��33

�t
= − ��1 + �2��33 + i�1��13 − �31� + i�2��23 − �32� ,

�2.6�

��12

�t
= + i	21�12 − i�2�13 + p
�1�2ei��33 + i�1�32,

�2.7�

��22

�t
= �2�33 − i�2��23 − �32� , �2.8�

��23

�t
= − ���1 + �2�/2 − i�2��23 + i�2�33 − i�1�21 − i�2�22,

�2.9�

where �ij ��
 ji�.
Based on the Bloch equations �2.5�–�2.9�, we may calcu-

late the optical properties of light scattered by the atom such
as the squeezing spectrum. For this purpose, the operator of
the electric field

E� �r�,t� = E� +�r�,t� + E� −�r�,t� , �2.10�

at the point r� of the observation is required. It may be de-
composed into free and source field parts, i.e.,

E� +�r�,t� = E� free
+ �r�,t� + E� s

+�r�,t� , �2.11�

E� s
+�r� , t� being the positive-frequency part of the fluorescent

light emitted by the atom. In our case, for the �-type atom
shown in Fig. 1, and in the radiation zone, the positive-
frequency part of the fluorescent light emitted by the atom
takes the form �58�

E� s
+�r�,t� = −

1

c2r
�	31

2 n� � �n� � �� 13�
13�t�� + 	32
2 n�

��n� � �� 23�
23�t���e−i	Lt�, �2.12�

where t�= t−r /c is the retarded time, and n� is a unit vector in
the direction of observation. We will assume that 	31		32
and n� is perpendicular to the atomic dipole moments �� 13 and
�� 23, so Eq. �2.12� can be rewritten as

E� s
+�r�,t� = f�r���� 13
13�t�� + �� 23
23�t���e−i	Lt�, �2.13�

where f�r�=	31
2 /c2r.

In squeezing measurements the normally ordered variance
�:��E��2 : � is the magnitude of interest, E� being the slowly
varying electric field operator modified due to the beating of
the scattered field under study with a local oscillator with
phase �,

E� ��r�,t� =
1

2
E� s

+�r�,t�ei�	Lt+�� +
1

2
E� s

−�r�,t�e−i�	Lt+�� = E� 1�r�,t�cos �

+ E� 2�r�,t�sin � , �2.14�

where

E� 1�r�,t� =
1

2
E� s

+�r�,t�ei	Lt +
1

2
E� s

−�r�,t�e−i	Lt, �2.15�
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E� 2�r�,t� =
i

2
E� s

+�r�,t�ei	Lt −
i

2
E� s

−�r�,t�e−i	Lt, �2.16�

are the in-phase and out-of-phase quadratures of the fluores-
cent field relative to the coherent driving field, respectively.

The normally and time-ordered variance of E� is defined
as follows �see Ref. �9,10,50��:

�:��E��r�,t��2:� = � 1

2�

2�

−�

�

d	1d	2�
−�

�

dt1dt2

�e−i�	1�t−t1�+	2�t−t2��T�:E��r�,t1�,E��r�,t2�:� ,

�2.17�

where �A ,B�= �A .B�− �A��B�, and T�: : � indicates the opera-
tor orderings which are further explained in Appendix A.

In the steady-state regime, Eq. �2.17� can be written as

�:��E��r�,t��2:� =
1

2�
�

−�

�

d	�
�

−�

d� e−i	1�

�T�:E��r�,t�,E��r�,t + ��:� . �2.18�

Since we are interested in the squeezing spectrum, following
Knoll et al. �10� and Gao et al. �50�, we introduce the
squeezed spectral density

�:S�r�,t,��:� =
1

2�
�

�

−�

d� e−i	1�T�:E��r�,t�,E��r�,t + ��:� .

�2.19�

Inserting the positive and negative parts of the fluorescent
field of Eq. �2.13� into Eq. �2.19�, we can express the spec-
trum as

�:S�r�,	,��:� =
f�r�2

4�
Re�

0

�

d��ei	� + e−i	�����13
2 �
13�t

+ ��,
13�t�� + �� 13 · �� 23�
13�t + ��,
23�t��

+ �� 13 · �� 23�
23�t + ��,
13�t�� + �23
2 �
23�t

+ ��,
23�t���ei2��+	Lr/c� + �13
2 �
31�t + ��,
13�t��

+ �23
2 �
32�t + ��,
23�t�� + �� 13 · �� 23�
31�t

+ ��,
23�t�� + �� 13 · �� 23�
32�t + ��,
13�t��� .

�2.20�

The two-time correlation functions which appear in Eq.
�2.20� are calculated in Appendix B where the final form of
the spectrum is provided in a useful form for computational
work.

III. SQUEEZING SPECTRA OF THE FLUORESCENCE
FIELD QUADRATURES: NUMERICAL RESULTS

In this section we present numerical results concerning
the effect of SGC on the behavior of the squeezing spectrum.
In the calculations Rabi frequencies, detunings, and atomic
splittings are in units of the spontaneous emission rate of the
upper level ��1=�2���. We assume that ��� 13�= ��� 23� for

simplicity. We also assume that e2i	Lr/c=1, and scale the
squeezing spectrum by �13

2 f2�r� / �2���. In the rest of the
work 	 stands for �	−	L� /�. We are interested in showing
how different experimentally accessible parameters, such as
Rabi frequencies or atomic detunings, can affect the squeez-
ing spectrum. In the following analysis we compare the case
without quantum interference �p=0� with the case when
quantum interference is present �p�0�.

Let us consider the squeezing spectrum for the nondegen-
erate case 	21=10�, and �2=	32−	L=0, that is, the driving
field is on resonance with the atomic transition �3�→ �2�. If a
single field couples both transitions �see Fig. 1�a�� then �1
=�2��.

We plot in Fig. 2�a� the out-of-phase quadrature spectrum
�S�	 ,�=� /2�� versus the frequency 	 when considering �
=2.5� and different degrees of quantum interference. The
dashed, dot-dashed, dotted, and solid lines correspond to p
=0, 0.5, 0.7, and 0.99, respectively. We call attention to the
fact that the fluorescent field is squeezed in a selected
quadrature � and at a certain frequency 	 if S�	 ,���0. In
the absence of quantum interference �dashed line�, the spec-
trum consists of seven peaks located at the driving laser fre-
quency and the Rabi sidebands. The squeezing obtained is
null or negligible �the minimum value is in the order of
−10−4�. The spectral features are dramatically modified when
considering the quantum interference between the decay
channels. For p larger than a certain threshold value �p
�0.55�, two negative peaks appear at the high-frequency
inner sidebands. Note that squeezing is obtained for Rabi

FIG. 2. Squeezing spectrum S�	 ,�� as a function of 	 for 	21

=10�, �2=0, and �=2.5�. The curves correspond to p=0 �dashed
line�, 0.5 �dot-dashed line�, 0.7 �dotted line�, and 0.99 �solid line�.
�= �a� � /2 and �b� 0.
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frequencies greater than ��2�, in contrast to the two-level
case where squeezing appears only for ��2� �12–14�. For a
very strong field, squeezing disappears for the out-of-phase
quadrature spectrum as in two-level atoms. It is remarkable
that squeezing appears in other quadratures as a consequence
of SGC although at different Rabi sidebands. To illustrate
this feature we plot in Fig. 2�b� the in-phase quadrature spec-
trum �S�	 ,�=0�� versus the frequency 	 when considering
the rest of parameters as those used to produce Fig. 2�a�. The
numerical analysis of the in-phase quadrature spectrum re-
veals that there exists a different threshold value �p�0.22�
to obtain squeezing at the outer sideband. The new threshold
value is lower than those found for the out-of-phase quadra-
ture. Finally, the maximum level of squeezing at the in-phase
�out-of-phase� quadrature is −0.106 �−0.089�. In Fig. 3 we
plot a state diagram in the �	 ,�� plane showing the regions
where squeezing is obtained. We observe that squeezing
takes place in all quadratures. Furthermore we observe that
the maximum reduction of fluctuations at different frequen-
cies depends on the considered quadrature: when �=0 the
squeezing is obtained at the outer sideband and by varying �
up to � /2 the frequency at which the maximum squeezing is
achieved changes from the outer sideband to the high-
frequency inner sideband. In view of these results, we con-
clude that SGC plays a crucial role in the reduction of fluc-
tuations beyond the standard limit and it opens the possibility
for obtaining significant squeezing in the fluorescent signal.
Similar results are obtained for other values of the splitting
between the two lower levels. We have also checked the
generality of our results by analyzing the squeezing spectra
for different values of the detuning �2. We found that
squeezing occurs for a wide range of parameters, not just the
ones chosen in Figs. 2 and 3.

We now consider a scheme where two coherent fields are
driving the atom. Note that p�1 due to the polarization
arrangement in this configuration �see Fig. 1�b��. In this case,
we have more externally adjustable parameters to modify the
squeezing spectrum than in the case of a single driving laser.
Here we show that the detuning and the relative phase of the
driving fields alter the squeezing spectrum almost at will.

First, we address the influence of the detuning �1 in the
squeezing spectrum for �2=0. In Figs. 4�a� and 4�b� we

show the squeezing spectrum of the out-of-phase and in-
phase quadratures for different values of �1. In the case with
�1=0 �dotted line� the fluorescence emission quenches com-
pletely and no squeezing is obtained since the system is in a
trapping state. For �1�0, the trapping state is destroyed and
squeezing appears at the inner or outer sideband. Therefore,
the frequency of the radiation at which squeezing occurs can
be tuned by changing the atomic detuning, or the splitting of
the two lower levels. We obtain again that squeezing appears
in both quadratures as a consequence of SGC although at
different frequencies. It should be remarked that in the ab-
sence of quantum interference no squeezing appears neither
in the out-of-phase nor in the in-phase quadrature spectrum.

Now we resort to analyze how the relative phase of the
driving fields influences the squeezing spectrum. In Figs.
5�a� and 5�b� the squeezing spectrum is shown for different
values of the relative phase � of the driving fields for the
out-of-phase and in-phase quadratures. We assume a lower
level splitting 	21=5�, �2=0, and Rabi frequencies �1=�,
and �2=4�. It is well known that, in the absence of SGC, the
fluorescence spectrum of a � atom does not depend on the
relative phase between the two applied fields. However,
when a system forms a closed loop, its dynamics becomes
phase dependent �40,41,59,60�. We found that the squeezing
spectrum is very sensitive to the relative phase � of the driv-
ing fields. In the case presented in Fig. 5�a� squeezing ap-
pears in two peaks near the central region when �=0 �solid
line� while for phase opposition ��=�� no squeezing is ob-
tained at any frequency �dashed line�. For the case of the
in-phase quadrature shown in Fig. 5�b� squeezing appears at

FIG. 3. State diagram in the plane �	 ,�� showing the regions
where squeezing appears �in white�. The values of the squeezing
vary within the interval �−0.12,−0.001�. Parameters used are 	21

=10�, �2=0, �=2.5�, and p=0.99.

FIG. 4. Influence of the detuning �1 on the squeezing spectrum
S�	 ,�� as a function of 	 for �2=0, �1=1�, �2=4�, p=0.98, and
�=0. �1=0 �dotted line�, 2 �dashed line�, and 5 �solid line�. �=
�a� � /2 and �b� 0.
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the outer sidebands. The main effect of changing the relative
phase � from 0 to � when �=0 is to change the level of
reduction of fluctuations at the outer sideband. We have
checked that the strong reduction or even the disappearance
of squeezing when the relative phase � changes from 0 to �
is a general trends for all quadratures.

In summary, the presence of SGC allows the control of
the squeezing features by modifying the detuning and/or the
relative phase of the fields from zero to �. It is worth noting
that squeezing can also be controlled by changing the
strength of one of the driving fields, say for example �1,
while maintaining fixed the other field ��2�.

IV. DRESSED-STATE EXPLANATION OF THE
NUMERICAL RESULTS

The objective of this section is to gain some insight in the
numerical results presented in the previous section. In what
follows we shall see that the squeezing is a direct conse-
quence of the SGC. To this end we rewrite the squeezing
spectrum �2.20� as the sum of two contributions, i.e.,
�:S�r� ,	 ,�� : �=SNI�	�+SI�	�. The first and the second terms
will be referred to as the noninterfering and interfering terms,
respectively. We express these terms as

SNI�	� = S1�	� + S2�	� , �4.1�

SI�	� = p�S12�	� + S21�	�� , �4.2�

where

Sj�	� =
�� j3�2f2�r�

4�
Re�

0

�

d��ei	� + e−i	��

���
 j3�t + ��,
 j3�t��ei2� + �
3j�t + ��,
 j3�t���,

�j = 1,2� , �4.3�

Sjk�	� =
�� j3���k3�f2�r�

4�
Re�

0

�

d��ei	� + e−i	��

���
 j3�t + ��,
k3�t��ei2� + �
3j�t + ��,
k3�t���,

�j,k = 1,2� . �4.4�

Note that the explicit appearance of p in SI�	� �see Eq. �4.2��
arises from the classical interference of the two fields radi-
ated by the two dipoles. Furthermore, the quantum interfer-
ence parameter p is also incorporated in the correlations
through the time evolution of density matrix elements. The
noninterfering term involves correlations associated with
single transitions �3�→ �1� �S1�	�� and �3�→ �2� �S2�	��,
whereas the interfering term involves correlations of the two
transitions. It is of interest to analyze how each term contrib-
utes to the squeezing spectrum. Thus, we plot in Figs. 6�a�
and 6�b� the different terms separately corresponding to the
case in solid line in Figs. 2�a� and 2�b�. We observe that the
stronger fluctuations are associated with �3�→ �1�, thus we
can approximate SNI�	��S1�	�. On the other hand, the con-
tributions to SI�	� are negative definite at the sidebands of
interest, and the main contribution is associated with S21�	�,

FIG. 5. Influence of the relative phase � on the squeezing spec-
trum S�	 ,�� as a function of 	 for �2=0, �1=1�, �2=4�, p
=0.98, and 	21=5�. �=0 �solid line� and � �dashed line�. �= �a�
� /2 and �b� 0.

FIG. 6. Contributions of the different terms of the squeezing
spectrum: S1�	� �solid line�, S2�	� �dashed line�, S12�	� �dash-
dotted line�, and S21�	� �dotted line�. In �a� ��b�� the data are those
used to produce Fig. 2�a� �Fig. 2�b�� for the case p=0.99.
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then we can make the approximation SI�	�� pS21�	�. There-
fore the squeezing at the high-frequency inner sideband
�outer sideband� displayed in Figs. 2�a� and 2�b� is purely
attributable to the quantum interference. In view of the pre-
vious considerations, the spectrum may be approximated by

�:S�r�,	,��:� � S1�	� + pS21�	� . �4.5�

To further explore the origin of the reduction of fluctua-
tions we will work out the spectrum of Eq. �4.5� in the
dressed-state basis, which are eigenstates of Hext

I �see Eq.
�2.3��. While it is possible to treat the problem with full
generality in the dressed-atom picture, in the interest of hav-
ing transparent expressions to deal with, we restrict ourselves
to the situations considered in previous section, where
squeezing appears at the sidebands.

The eigenstates of Hext
I �see Eq. �2.3�� can be written in

terms of the bare states as

����
���
���

� = �a1� a2� a3�

a1� a2� a3�

a1� a2� a3�

���1�
�2�
�3�
� , �4.6�

where the coefficients are explicitly given by

�a1� a2� a3�

a1� a2� a3�

a1� a2� a3�



=�

�1��� − �1�
D�

�2��

D�
−

����� − �1�
D�

�1��� − �1�
D�

�2��

D�
−

����� − �1�
D�

�1��� − �1�
D�

�2��

D�
−

����� − �1�
D�

� ,

�4.7�

with Di=
��i−�1�2��1
2+�i

2�+ ��2�i�2 �i=� ,� ,��. The ei-
genvalues �i are the roots of the cubic equation

�3 − 2�1�2 + ��1
2 − ��1

2 + �2
2��� + �1

2�1 = 0, �4.8�

and are given by ��������. These eigenvalues give seven
different frequencies of the fluorescence spectrum

	ij = 	L + �ij , �4.9�

where �ij =�i−� j�i , j=� ,� ,��. Specifically, for the case of
Fig. 2, the eigenvalues obtained are ��=12.8�, ��=7.9�, and
��=−0.6�. These frequencies are in agreement with those of
the spectral lines presented in Fig. 2: ���=13.4�, ���

=8.5�, ���=4.9�. The corresponding energy diagram is
shown in Fig. 7�a�. In consequence, the squeezing found at
the high-frequency inner sideband displayed in Fig. 2�a�
arises from transitions ���→ ��� and ���→ ���, while that
found at the outer sideband and displayed in Fig. 2�b� arises
from transitions ���→ ��� and ���→ ���.

In order to obtain the intensities of the spectral lines and
the condition for squeezing, we calculate populations and
coherences of the dressed states. Note that the energy sepa-
ration between the dressed states is not symmetrical with
regard to state ��� �see Fig. 7�a��, thus when computing the

time evolution of the coherences like �ij we only retain terms
involving �ij �i , j=� ,� ,��. The equations of motion of the
density matrix in the dressed-state picture and in the secular
approximation read as

d���

dt
= �0��� + �1��� + �2,

d���

dt
= �3��� + �4��� + �5,

d���

dt
= − ���� + i�������,

d���

dt
= − ���� + i�������,

d���

dt
= − ���� + i�������, �4.10�

where the decay rates �� are given in Appendix C. Equation
�4.10� reveals that the steady-state values of coherences are
null. In addition, populations of the dressed states depend on
the relative phase of the driving fields since the �� are shown
to be phase dependent. In Fig. 7�b�, we plot the dressed-state
populations �ii �i=� ,� ,�� as a function of �1 for the case

FIG. 7. �a� Relevant transitions between dressed states which
account for the squeezing at the high-frequency inner sideband dis-
played in Fig. 2�a�. �b� Populations of dressed states versus �1 for
�2=0, and �1=�2=2.5�. Solid line, dotted line, and dashed line
correspond to ���, ���, and ���, respectively. The vertical dash-
dotted line indicates the value of �1 used to produce Fig. 2.
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considered in the solid line of Fig. 2. It is seen that in the
case �1=0, all the population is in the state ���. This is the
population trapping effect dynamically induced by the coher-
ent fields which leads to a complete quenching of the fluo-
rescence emission. It is worth noting that in this situation,
Menon and Agarwal �46� have shown that the SGC effect
does not destroy the trapping state if the two fields have
different amplitudes. For �1�0, it can be concluded from
Fig. 7�b� and Eq. �C1� that all dressed states are populated.

In the particular situation we are here addressing, the time
evolution of the different coherences decouples each other in
the high field limit, the problem of evaluating the squeezing
spectrum becomes tractable. This simplification arises from
the fact that steady-state correlations of the type
�
ij�0�
kl�0�� are null for i� l and j�k, where i , j ,k , l
=� ,� ,�.

By inverting Eq. �4.6� we can easily obtain the atomic
operators 
ij��� in terms of the atomic operators in the
dressed basis, i.e.,


ij��� = ai�aj�
����� + ai�aj�
����� + ai�aj�
�����

+ ai�aj�
����� + ai�aj�
����� + ai�aj�
�����

+ ai�aj�
����� + ai�aj�
����� + ai�aj�
�����

�i, j = 1,2,3� . �4.11�

The three first terms stand for the transitions that have the
same frequency as that of the driving field, while the remain-
ing terms describe the transitions between adjacent dressed
states and they produce the different Rabi sidebands. By in-
serting Eq. �4.11� into Eq. �4.5�, the squeezing spectrum of
the out-of-phase and the in-phase quadratures reduce to

�:S�r�,	±,�/2�:� = ���

�a3�a1� − a1�a3����a3�a1� + pa3�a2������0� − �a1�a3� + pa2�a3������0��
���

2 + �	 � ����2

+ ���

�a3�a1� − a1�a3����a3�a1� + pa3�a2������0� − �a1�a3� + pa2�a3������0��
���

2 + �	 � ����2

+ ���

�a3�a1� − a1�a3����a3�a1� + pa3�a2������0� − �a1�a3� + pa2�a3������0��
���

2 + �	 � ����2 , �4.12�

�:S�r�,	±,0�:� = ���

�a3�a1� + a1�a3����a3�a1� + pa3�a2������0� + �a1�a3� + pa2�a3������0��
���

2 + �	 � ����2

+ ���

�a3�a1� + a1�a3����a3�a1� + pa3�a2������0� + �a1�a3� + pa2�a3������0��
���

2 + �	 � ����2

+ ���

�a3�a1� + a1�a3����a3�a1beta + pa3�a2������0� + �a1�a3� + pa2�a3������0��
���

2 + �	 � ����2 +
A���

����
2 + 	2 , �4.13�

where the subindex � ��� stands for the positive �	�0�
�negative �	�0�� part of the spectrum. Explicit expressions
for ���� and A��� in Eq. �4.13� can be derived in a straight-
forward manner, although we do not provide them since they
are related to a Lorentzian centered at the laser frequency
where no squeezing is obtained for any quadrature.

From Eqs. �4.12� and �4.13� it can be concluded that the
condition for obtaining squeezing at a certain sideband is that
the numerator of the corresponding Lorentzian must be nega-
tive. Note that the numerators of the Lorentzians in Eqs.
�4.12� and �4.13� depend explicitly on p and on the steady-
state populations of dressed states.

By using Eq. �4.12� and the expressions for the coeffi-
cients ajk�j=1,2 ,3�, �k=� ,� ,�� given in Eq. �4.7�, we can
explain how squeezing originates in the situation displayed
with the solid line in Fig. 2�a�. In this particular case the
squeezing occurs due to transitions ���→ ��� and ���→ ���.
This means that we must only retain the first term of Eq.
�4.12� which corresponds to the required transitions. In the

case of Fig. 2�a�, where �1��R, with �R=
�1
2+�2

2, the
eigenvalues obtained from Eq. �4.8� can be estimated as ��

	�1+�R, ��	�1−�R, and ��	−�1
2�1 / ��1

2−�R
2�. Using

these eigenvalues, the squeezing spectrum of the out-of-
phase quadrature at the high-frequency inner sideband can be
roughly written as

�:S�r�,	 = � ���,�/2�:� 	
���

���
2 + �	 � ����2 ��R��1 − �R�

���1
2 − �R

2 + p�1�2�����0�

− �1�1�p�2��1 − �R� − �1�R�����0�� . �4.14�

Some consequences can be derived from Eq. �4.14�. First of
all, it is obvious that in the absence of quantum interference
�p=0�, the squeezing spectrum is positive and no squeezing
is possible. This explains the results obtained in Fig. 2�a�
�dashed line�, and it clearly points out that quantum interfer-
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ence is a necessary condition for obtaining squeezing. More-
over, the strength of quantum interference needed to produce
squeezing must be greater than a certain value. Note that Eq.
�4.14� consists of two terms: the first one is proportional to
the population of the dressed state ��� and is always positive,
whereas the second term is proportional to the population of
the lower level ��� and its sign can be positive or negative
depending on the strength of the quantum interference. So in
order to obtain squeezing, two different conditions must be
satisfied: �1� the second term must be negative and �2� its
absolute value must be larger than that of the first term. The
first condition gives us a threshold value for the strength of
the quantum interference

p �
�1�R

�2��1 − �R�
, �4.15�

which is easily reachable with a moderate quantum interfer-
ence strength. As example, for the case of solid line in Fig.
2�a�, Eq. �4.15� provides a threshold value of p approxi-
mately equal to 0.55, which agrees with the numerical cal-
culations shown in Fig. 2�a�. The second condition to obtain
squeezing can be physically interpreted as follows: the popu-
lation of the lower dressed level must be larger than in the
second dressed level, i.e., ����0������0�. This condition in-
dicates that fluctuations are reduced beyond the standard
limit when most of the population is in the dressed ground
level and therefore spontaneous emission is significantly di-
minished. By looking again at Fig. 7�b�, we see that, effec-
tively, the lower level is highly populated at large detunings,
which demonstrates the appearance of squeezing. However,
this situation changes as we approach to the resonant condi-
tion, i.e., as �1 approaches to zero. This means that squeez-
ing is not expected at detunings close to zero, in agreement
with the numerical findings.

Now let us consider the results obtained for the in-phase
quadrature as displayed in Fig. 2�b�. In this case the squeez-
ing is obtained at the outer sidebands which originate from
transitions ���→ ��� and ���→ ���; thus we must retain the
second term of Eq. �4.13�. In this case the squeezing spec-
trum reduces to

�:S�r�,	 = � ���,0�:� 	
���

���
2 + �	 � ����2 ��R�1

2����0�

− �1��1�R + p�2�1�����0�� . �4.16�

To obtain squeezing at the outer sideband it is necessary
that the numerator in Eq. �4.16� should be negative. Thus the
following approximate inequality must be satisfied for the
case of a single driving laser ��1=�2���:

����0� �
p�

�1
����0� . �4.17�

In this case the fluctuations are reduced beyond the standard
limit when most of the population is accumulated in the
lower dressed level ��� in comparison with that in level ���.
This is in accordance with the numerical results presented in
Figs. 7�b� and 2�b�.

Finally, the dependence of the squeezing spectrum on the
relative phase of the driving fields ��� shown in Fig. 5 can be
understood by considering the behavior of dressed-state
populations. To this end we plot in Fig. 8 the corresponding
populations as a function of �. From the squeezing spectrum
given by Eqs. �4.14� and �4.16� we can see that squeezing
appears when the respective numerators take negative values.
These conditions strongly depend on the steady-state relative
populations of states ��� and ��� for the out-of phase quadra-
ture and those of states ��� and ��� for the in-phase quadra-
ture, provided p is greater than a certain threshold value, so
we can conclude that the dependence of the squeezing spec-
trum on � is fully attributable to the dependence of popula-
tions on � �see Appendix C�. From Fig. 8 it can be appreci-
ated that the population of the level ��� does not change with
�, its value being close to 0.1, whereas the other two popu-
lations depend on �. When the two external fields are in
phase ��=0�, the bulk of the population is concentrated in
state ���, and there is little population in state ���, taking
negative values in the numerators of Eqs. �4.14� and �4.16�.
This explain the appearance of squeezing at the high-
frequency inner �outer� sideband �see Fig. 5� for the out-of-
phase �in-phase� quadrature. By increasing � from 0 to �,
population tends to accumulate in state ��� with the simulta-
neous reduction of population in state ��� which reduces
squeezing in both quadratures, in agreement with the numeri-
cal results shown in Fig. 5�a�. In fact, when � is larger than a
threshold value ��0.35�, squeezing disappears in the out-
of-phase quadrature, because the population ��� approximate
to ���, in agreement with Fig. 5�a�. This value of � corre-
sponds to a situation at which ����0��3.5����0�. Therefore,
to obtain squeezing at the high-frequency inner sideband,
population of dressed lower level must be more than three
times larger than that of the intermediate level. However the
value of the population in the dressed state ��� when �
changes still satisfies condition �4.17�, so the fluorescent
field exhibits squeezing at the outer sideband for any value
of �, i.e., squeezing is obtained in regions I and II for the
in-phase quadrature, in accordance with the numerical results
presented in Fig. 5�b�.

FIG. 8. Populations of dressed states versus � for �2=0, �1

=�, �2=4�, and 	21=5�. Solid line, dotted line, and dashed line
correspond to ���, ���, and ���, respectively. The vertical dash-
dotted lines establish two regions for �, regions I and II, where
squeezing is or is not obtained for the out-of-phase quadrature,
respectively.
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One may wonder if the disappearance of the squeezing at
a certain frequency when changing the relative phase of the
driving fields is accompanied by the generation of squeezing
at other quadratures at the same frequency. In order to ana-
lyze this question we have carried out a numerical analysis
for the case of the low-frequency inner sideband displayed as
a solid line in Fig. 5�a� found at 	=1.8�. Note that according
to the previous discussion when ��0.35� there is no
squeezing when considering �=� /2 since we have changed
from region I to region II in Fig. 8. We have computed the
value of S�	=1.8� ,�� for several values of � ranging from
� /2 to 0 by considering values of � in regions I and II close
to �=0.35�, and no squeezing was found. We can conclude
that the disappearance of squeezing at a certain frequency
when varying � is not accompanied by the generation of
squeezing at other quadratures when considering the same
frequency.

In summary, we can conclude that the squeezing charac-
teristics can be modified by changing the dressed population
distribution, which in turn can be achieved by changing Rabi
frequencies, optical detunings or the relative phase of the
driving fields.

V. CONCLUSIONS

In this work we present a theoretical investigation of the
interaction of a three-level �-type atom with a coherent field
when SGC is accounted for. The analysis is carried out using
standard density matrix techniques that describe the evolu-
tion of atomic variables and incorporates the coupling with
the vacuum at zero temperature. A key component of the
system is the assumption that both lower levels are coupled
to the same modes of the vacuum field. This assumption
gives rise to the occurrence of well-known quantum interfer-
ence in the atomic decay, the so-called SGC. The effects of
SGC on the squeezing phase-dependent resonance fluores-
cence are analyzed in detail. We find that significant squeez-
ing can be obtained in contrast to the usual case where inter-
ference between the two decay channels is not included in
the atomic model.

When the atom is driven by a single field, we find that
SGC allows us to obtain squeezing at the Rabi sidebands in
the out-of-phase and in-phase quadratures. Furthermore,
squeezing can be obtained in the high-Rabi-frequency re-
gime. This result is of interest from an experimental point of
view, since it should allow the observation of the reduction
of fluctuations under nonrestrictive experimental conditions.
We also show that the appearance of squeezing in the fluo-
rescent field depends on the value of the quantum interfer-
ence parameter p. There is a threshold value of p which
makes possible the obtention of squeezing. Finally, it should
be remarked that squeezing is obtained when considering
that the decay rates are identical, in contrast to other situa-
tions previously analyzed by Vogel and Blatt �15� and by
Ficek et al. �22�, where very different decay rates of the
atomic transitions were considered.

When the atom is driven by two fields, and each field
couples one transition, squeezing can be obtained in a wide
spectral region by changing the Rabi frequencies of the

fields. We also show that the phase-dependent resonance
fluorescence spectrum is very sensitive to the relative phase
of the two fields. The level of squeezing can be controlled by
tuning the relative phase from zero to �.

Finally, we have analyzed the squeezing spectrum in the
dressed-state basis. We have obtained analytical expressions
which allow us to interpret the numerical results in terms of
the relative populations of the dressed states. We show that
squeezing takes place when the bulk of the population is
concentrated in the dressed ground level and hence sponta-
neous emission diminishes appropriately.

In summary, we have shown the controllability of the
squeezing spectrum by changing the SGC parameter, the am-
plitude of the Rabi frequencies, the detunings, or the relative
phase of the fields.
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APPENDIX A: NORMAL-ORDERING AND TIME-
ORDERING CRITERIA

The normal and time orderings indicated by T�: : � in Eq.
�2.17� are necessary to ensure that each correlation function
of the positive- and negative-frequency parts of the electric
field in �:��E��r� , t��2 : � has a correct time order and is mea-
surable �9,10�. Note that in Eq. �2.17� the normal ordering is
closely related to the basic mechanism of light absorption in
ordinary photodetection, and time ordering reflects the fact
that the time-dependent field commutation relations differ
from the corresponding free-field commutation relations in
the so-called time-delayed terms, which in general do not
vanish �see Eq. �2.191� in �10��. The reason to carry out the
mentioned operations relies in the fact that source fields and
free fields do not commute, in general, at different times.
Time ordering allows us to express the correlations in terms
of the source fields only, provided that correlations of the
type �¯Efree

+ � , �Efree
−

¯ � are zero at the detector. Thus T�: : �
in Eq. �2.17� indicates the following operator orderings.

�1� There is normal ordering of the operators E+�r , t� and
E−�r , t�, with the operators E−�r , t� to the left of the operators
E+�r , t�.

�2� Time-ordering operator over a given set of normally
ordered correlations acts as follows:

T�E1
−�t1�E2

−�t2� ¯ En
−�tn�En+1

+ �tn+1�En+2
+ �tn+2� ¯ En+m

+ �tn+m��
�A1�

=T−�E1
−�t1�E2

−�t2� ¯ En
−�tn��

�T+�En+1
+ �tn+1�En+2

+ �tn+2� ¯ En+m
+ �tn+m�� , �A2�

where T± are defined as follows �10�:

T−�E1
−�t1�E2

−�t2� ¯ En
−�tn�� = Ei1

− �ti1
�Ei2

− �ti2
� ¯ Ein

− �tin
� ,
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ti1
� ti2

� ¯ � tin
,

T+�En+1
+ �tn+1�En+2

+ �tn+2� ¯ En+m
+ �tn+m��

= Ein+1

+ �tin+1
�Ein+2

+ �tin+2
� ¯ Ein+m

+ �tin+m
� ,

tin+1
� tin+2

� ¯ � tin+m
. �A3�

Thus, taking into account the defined action of the time-
ordering operator T, the integrand of Eq. �2.17� takes the
form

T�:E��r�,t1�,E��r�,t2�:�

=
1

4
��E� s

+�r�,t1�,E� s
+�r�,t2��ei�	L�t1+t2�+2����t1 − t2�

+ �E� s
+�r�,t2�,E� s

+�r�,t1��ei�	L�t1+t2�+2����t2 − t1�

+ �E� s
−�r�,t1�,E� s

−�r�,t2��e−i�	L�t1+t2�+2����t1 − t2�

+ �E� s
−�r�,t2�,E� s

−�r�,t1��e−i�	L�t1+t2�+2����t2 − t1�

+ �E� s
−�r�,t1�,E� s

+�r�,t2��ei	L�t2−t1����t1 − t2� + ��t2 − t1��

+ �E� s
−�r�,t2�,E� s

+�r�,t1��ei	L�t1−t2����t1 − t2� + ��t2 − t1��� .

�A4�

APPENDIX B: STEADY-STATE SQUEEZING
SPECTRUM

The set of equations �2.5�–�2.9� can be written in matrix
form as

d��

dt
= B�� + C� , �B1�

with �� defined as

�� = ��
31�t��,�
13�t��,�
33�t��,�
21�t��,�
12�t��,

��
22�t��,�
32�t��,�
23�t���T, �B2�

where �
kl�t��=�lk, and the superscript T stands for the trans-
pose. The B matrix is an 8�8 time-independent evolution
matrix easily obtained from the coefficients Eqs. �2.5�–�2.9�.

In order to obtain the two-time correlation functions in
Eq. �2.20�, we introduce the deviation �
ij of the dipole
polarization operator from its mean steady-state value

�
ij�t�� = 
ij�t�� − �
ij����, i, j = 2,3, �B3�

which obviously satisfies

d��
ij����
d�

= B��
ij����, i, j = 1,2,3. �B4�

The two-time correlation function of the deviations can be
obtained by invoking the quantum regression theorem �52�
together with the optical Bloch equations �2.5�–�2.9�. To do
this, it is practical to define the column vectors

Û�ij���� = ���
31����
ij�0��,��
13����
ij�0��,

���
33����
ij�0��,��
21����
ij�0��,

���
12����
ij�0��,��
22����
ij�0��,

���
32����
ij�0��,��
23����
ij�0���,

i, j = 2,3. �B5�

According to the quantum regression theorem and Eq. �B4�,
the vectors Û�ij� satisfy

dÛ�ij����
d�

= BÛ�ij����, i, j = 2,3. �B6�

By following the same procedure as described in �50�, and
working in Laplace space we obtain the steady-state fluores-
cence spectrum

�:S�r�,	,��:� =
f�r�2

4�
Re��

k=1

k=8

�R1k�iz���1Ûk
�13��0� + �21Ûk

�23��0��

+ R2k�iz���2Ûk
�13��0� + �12Ûk

�13��0���

�ei2��+	Lr/c� + �
k=1

k=8

�R1k�iz���1Ûk
�31��0�

+ �21Ûk
�32��0�� + R2k�iz���2Ûk

�32��0�

+ �12Ûk
�31��0���
 , �B7�

where Ûm
ij�0� stands for the steady-state mth component of

the vector Ûij��� and Rjk�iz� is the �j ,k� element of the ma-

trix R�iz����izÎ−B�−1+ �−izÎ−B�−1�, Î being the 8�8 iden-
tity matrix and z��	−	L� /
�1�2.

APPENDIX C: DECAY RATES OF THE DENSITY MATRIX
EQUATIONS IN THE DRESSED-STATE PICTURE

The � of Eq. �4.10� are given by

�0 = − ��1 + �2�a3�
2 + �a3�

2 − a3�
2 � � F ,

�1 = �a3�
2 − a3�

2 � � F ,

�2 = a3�
2 � F ,

�3 = �a3�
2 − a3�

2 � � H ,

�4 = − ��1 + �2�a3�
2 + �a3�

2 − a3�
2 � � H ,

�5 = a3�
2 � H ,

��� =
�1 + �2

2
�a3�

2 − a3�
2 � − a3�a3���1a1�a1� + �2a2�a2��

− �12a3�a3��ei�a1�a2� + e−i�a1�a2�� ,
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��� =
�1 + �2

2
�a3�

2 + a3�
2 � − a3�a3���1a1�a1� + �2a2�a2��

− �12a3�a3��ei�a1�a2� + e−i�a1�a2�� ,

��� =
�1 + �2

2
�a3�

2 + a3�
2 � − a3�a3���1a1�a1� + �2a2�a2��

− �12a3�a3��ei�a1�a2� + e−i�a1�a2�� . �C1�

The coefficients F and H in Eq. �C1� are given by

F = �1a1� + �2a2� + 2�12a1�a2� cos��� ,

H = �1a1� + �2a2� + 2�12a1�a2� cos��� . �C2�
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