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We study a single incoherently pumped atom moving within an optical high-Q resonator in the strong-
coupling regime. Using a semiclassical description for the atom and field dynamics, we derive a closed system
of differential equations to describe this coupled atom-field dynamics. For sufficiently strong pumping, the
system starts lasing when the atom gets close to a field antinode, and the associated light forces provide for
self-trapping of the atom. For a cavity mode blue detuned with respect to the atomic transition frequency, this
is combined with cavity-induced motional cooling, allowing for long-term steady-state operation of such a
laser. The analytical results for temperature and field statistics agree well with our earlier predictions based on
quantum Monte Carlo simulations. We find sub-Doppler temperatures that decrease with gain and coupling
strength, and can even go beyond the limit of passive cavity cooling. Besides demonstrating the importance of
light forces in single-atom lasers, this result also gives strong evidence to enhance laser cooling through
stimulated emission in resonators.
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I. INTRODUCTION

A single incoherently pumped atom within a high-Q op-
tical resonator constitutes the smallest and conceptually sim-
plest conceivable laser �1�. On the one hand, this model is
particularly interesting, as it allows one to theoretically study
important aspects of laser physics analytically �2,3�, while,
on the other hand, there is great technological interest in very
small tailored coherent light sources. Already two decades
ago, laserlike systems were set up in the microwave regime
�4,5�. With the tremendous recent progress in laser cooling
and microcavity technology, such systems have now indeed
been experimentally realized �6–9� in the optical regime.
This requires ultracold atoms trapped in a rather small vol-
ume between mirrors of extremely high quality. In this re-
gime, the light forces induced by the cavity field on the atom
become important and have to be accounted for. In a first
approximation, these forces are detrimental by heating the
atomic motion and limiting the operation time of the system.
This heating is less problematic for a trapped ion, but here
the spatial requirements for the ion trap prevent one from
reaching the strong-coupling regime. In optical cavity QED
setups, such heating is significant and strongly shortens the
interaction time �10�.

In a recent paper, we have shown that, for carefully cho-
sen operating conditions, one can reverse the detrimental ef-
fect of heating and combine gain with optical cooling and
trapping �1�. In this way, the laser field generated by the
atom can be used to simultaneously trap and cool the atom,
which leads to a self-sustained laser operation. Interestingly,
the temperature attained by the atom can be even lower than
for free-space Doppler cooling at comparable parameter val-
ues. This stems from the strong nonlinear dependence of the
field intensity on the atomic position, which gives new pros-
pects of developing a novel laser cooling method enhanced
by stimulated emission. The numerical results obtained in
Ref. �1� clearly demonstrate the significance and potential
usefulness of light forces for single-atom lasing �10�, but

they only provide little insight into the basic physics going
on to facilitate this interesting behavior.

As a prototype example for the influence of light forces in
lasing, in this work, we develop a systematic semiclassical
description of a single-atom laser including the light force on
the laser-active atom. In order to go beyond just pure numer-
ics, we try to generate an approach as simple as possible that
still captures the essential physics. In this respect, we follow
the semiclassical models of laser cooling where the atomic
center-of-mass motion is treated as a classical c number as-
sociated with the atomic center of mass. The light forces in
this approach are then modeled by an averaged Newtonian
force from the mean resonator field and random fluctuating
forces associated with light intensity fluctuations and recoil
from spontaneous emission. The key to this treatment relies
upon the fact that the time scale governing the external mo-
tion is much slower than the internal atomic dynamcis so that
the internal degrees of freedom almost instantaneously adjust
to the local field. In fact, there is a strong analogy to standard
single-mode laser theory where one adiabatically eliminates
the internal atomic dynamics with respect to a slower field
evolution in the good cavity limit �11�. In general, there is,
however, no such clear distinction between the time scales of
cavity damping and atomic motion so that both quantities
have to be treated dynamically in general. A systematic ap-
proximative description based on these time-scale separa-
tions can be derived from the atom-field master equation in
different ways by mapping its solution in phase space to a
partial differential equation for the Wigner function. This
equation is truncated at second order and then can be asso-
ciated with a set of stochastic differential equations for the
corresponding quantities, as in models developed for cavity
cooling �12�. A summary and comparison of different limit-
ing cases of the light forces in both a good and a bad cavity
in such a semiclassical approach can also be found in a re-
cent review paper �13�. There is, however, one decisive dif-
ference to these models. In contrast to laser cooling, we can-
not assume a small population of the upper atomic state, as
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we need an inverted atom for gain. Nevertheless, by use of a
factorization approximation as in Sec. II B of Ref. �13� for
higher-order atom-field expectation values, we still can de-
rive a closed system of coupled equations for the combined
dynamics.

One important step in any laser treatment is to introduce
pumping in a quantum mechanically consistent way. As we
are dealing with exactly one atom at a time, a simple random
injection of upper-state atoms with a combined loss term for
lower state atoms, as commonly used �see, e.g., in Ref. �11��,
cannot be employed. Here, we have to implement a closed
excitation loop, which in principle requires at least one extra
level. Fortunately, as noted by Haken already a couple of
decades ago �14�, one can use an inverted heat bath approach
to mimic such pumping in a consistent way, even for a two-
level atom. We use this description here, as it keeps the com-
plexity of the model to a minimum and is very well suited to
a single-atom approach. Of course, in a realistic single-atom
laser, the pumping process will involve several intermediate
steps with different rates, which leads to a much more com-
plex dynamics but essentially the same basic physics �10,15�.

As in standard laser cooling models �16�, the internal dy-
namical equations then give the basis to derive the average
light potential as well as friction and momentum diffusion
coefficients for the atomic center-of-mass dynamics in an
analytic form �13�. Here we have to take into account spon-
taneous emission and pumping. This approach still allows
analytic studies of atomic motion and laser-field evolution
that can be checked and compared to quantum Monte Carlo
simulations for selected parameters.

II. MODEL

Let us consider a single two-level atom freely moving in
the field of an optical resonator with high finesse. The rel-
evant mode with frequency �c=kc is detuned from the
atomic transition frequency �a by �=�c−�a. The dipole–
resonator-field interaction Hamiltonian in the rotating-wave
and electric-dipole approximation ��=1� then reads

Ĥ = − ��+�− + iG�a†�− − �+a� , �1�

which is written in a frame rotating at the cavity resonance
frequency. Here �− ��+� and a denote, respectively, the
atomic lowering �raising� operator and the bosonic field op-
erator for the cavity mode while the position-dependent
atom-field coupling is given by G=g cos�kx�.

Both the field and atom are coupled to the environment,
which is modeled by Markovian decay processes with rates
2� �photon loss via the mirrors� and 2� �spontaneous emis-
sion�. Using standard techniques of quantum optics, one can
derive the following master equation �17� �damped Jaynes-
Cummings model�:

d

dt
�̂ = − i�Ĥ,�̂� + L��̂ + L��̂ . �2�

It describes the time evolution of the resulting open system
including decay of the resonator mode �L��̂� and the atomic
upper state �L��̂�.

In order to feed energy into the system, the atom is driven
externally by incoherent excitation at rate 2�. As mentioned
above, a simple but still quantum mechanically consistent
way to incorporate such a pumping mechanism is inverse
spontaneous emission. This method has been introduced al-
ready in the early quantum models of lasing �14� and proven
to reproduce the essential physics of incoherent pumping via
auxiliary levels. Mathematically, we simply have to add a
corresponding Liouvillian term to Eq. �2�:

L��̂ = ��2�+�̂�− − �−�+�̂ − �̂�−�+� . �3�

This term preserves the trace of the density matrix and in-
duces the desired atomic excitation rates. Due to its simlar-
tities with the normal decay term, it can be also easily in-
cluded in the equations for the forces and diffusion constants.

The above master equation is equivalent to a set of quan-
tum Langevin equations for the system operators. They can
be derived following the lines of Chap. II in Ref. �18� and
read

ȧ = − �a + G�− + �	, �4a�

�̇− = �i� − � − ���− + G�za + ��, �4b�

�̇z = − 2�� + ���z − 2G�a†�− + �+a� + 2�� − �� + �z.

�4c�

Here we have introduced noise operators that originate from
the coupling of the system to the environment and, therefore,
contain only input bath operators. While their expectation
values vanish when the environment is a T=0 heat bath, they
are fixed by their nonvanishing second-order correlation
functions, which can be found in Appendix A.

In this paper, we assume that the kinetic atomic tempera-
ture stays well above the recoil limit kBTrec=�2k2 / �2m�,
which of course has to be self-consistently checked at the
end. This allows for a so-called semiclassical approximation
where the particle’s position and momentum are treated clas-
sically and enter the equations for the field and internal
atomic dynamics, which evolve on a much faster timescale,
simply as real parameters x and p. A systematic way to de-
rive these equations for an atom in a cavity field is, e.g.,
presented in Ref. �12�. In this approximation, simulations of
atomic trajectories will then be governed by the Langevin-
type equations

ẋ = p/m , �5a�

ṗ = F + � , �5b�

where F denotes the average force acting on the atom and �
is a noise term giving rise to momentum diffusion. Both of
these values have to be calculated from the corresponding
solution of the master equation �2�.

III. LAMB SEMICLASSICAL MODEL

Let us first try to get some qualitative insight into the
dynamics of our system and neglect all the noise terms �i and
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replace all operators by c numbers—i.e., �a�=	, ��−�=s, and
��z�=z. Hence, for the moment, we treat the system classi-
cally in terms of the internal dynamics as well and get the
following set of coupled differential equations:

	̇ = − �	 + Gs , �6a�

ṡ = �i� − � − ��s + Gz	 , �6b�

ż = − 2�� + ��z − 2G�	*s + s*	� + 2�� − �� . �6c�

This can be readily solved for the steady state for an atom at
fixed position. Although any operator and noise correlations
are neglected in this “Lamb-type” model, we still get some
vital insights into the dynamical characteristics of our sys-
tem. As an immediate consequence, Eqs. �6� imply the con-
tinuity equation

��1 − P� = �P + �N , �7�

which describes the energy balance in the system due to
pumping and losses via the atom and the cavity in the sta-
tionary state. Here we used the atomic ground- and excited-
state populations 1− P= �1−z� /2 and P= �1+z� /2 and the
photon number N= �	�2. This is a universal relation indepen-
dent of the particle’s position and will be recovered several
times throughout the paper. Linking P to N, Eq. �7� immedi-
ately yields the atomic population from the intracavity inten-
sity, which will appreciably simplify the analysis in the
following.

Obviously, for an atom fixed at a node of the cavity field
where the atom-field coupling vanishes, the photon number
is zero as well and the atomic upper-state population is P
=� / ��+��. When the atom moves into regions where G ex-
ceeds the threshold value Gth=�����+��2+�2� / ��−��, the
atom-field coupling opens an additional decay channel via
the cavity mode. Indeed, one can calculate the rate of emis-
sion into the cavity mode

W =
�� + ��G2

�� + ��2 + �2 . �8�

The general behavior of the resonator photon number is
depicted in Fig. 1�a� where we have plotted N �solid line� as
a function of the atomic position along the cavity axis, within
half a wavelength. Note that the cavity field starts to be
populated with G crossing a threshold value in a highly non-
linear way. According to Eq. �7�, this sudden increase has to
be accompanied by a corresponding drop in the atomic popu-
lation inversion z=� /W �dashed line�. At the same time,
there will be a big change of the light force on the atom,
originating from the modified optical potential. If the atom is
a high-field seeker, this already lets one expect a possible
tight confinement of the atom.

For an atom at rest at a fixed position, the mean force in
steady state is simply proportional to the photon number as
well as the gradient of the mode function and explicitly reads

F =
2��

� + �

�G

G
N . �9�

Obviously, F will be zero at antinodes, where N is maximal,
due to the vanishing gradient of the mode function. Notice
that, for G→0, N tends faster to 0 such that expression �9�
remains well defined zero. Since W, z, and N are even func-
tions of the detuning � above threshold, we get F�−��=
−F���, and the atom will be a high-field seeker for �
0.

This can be seen in Fig. 1�b� showing F �solid line�, as a
function of x for �=200�, as well as the corresponding light
potential, both in arbitrary units. Although this sounds con-
tradictory first when compared to standard formulas for the
optical potential, one has to remember that the atom is in-
verted, and thus the sign of the light potential is reversed and
dominated by the upper-level Stark shift. Note that, within
this approximation, a fixed atom will not feel any mean force
unless G
Gth.

Let us now look at the full coupled dynamics of atom and
field by simultaneously integrating Eqs. �5� and �6�, which
can be easily performed numerically. In Fig. 1�c� we show
the evolution of the particle’s position x and momentum p as
well as the intracavity photon number N for a typical set of
parameters where one gets trapping. The atom starts at some
random position, initially moving fast along the cavity axis.
Gradually, its motion gets damped until its kinetic energy
falls below the potential depth, and the atom is then confined

FIG. 1. �a� Photon number N �solid line� and population inver-
sion z �dashed line� for the steady state as a function of the
particle’s position x. The parameters are �� ,� ,g ,��
= �10,20,100,200��. �b� Stationary force acting on the atom F
�solid line� and corresponding potential U �dashed line� for the
same parameters. �c� Time evolution of the photon number N, par-
ticle position x, and particle momentum p for the same parameters.
�d� Cutout of �c� demonstrating the cooling mechanism �see text�.
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to oscillate in a single well. Here, its kinetic energy is still
reduced further, but at a much slower rate. As a remarkable
feature, the photon number suddenly undergoes a drastic in-
crease as the atom gets trapped. This is due to the fact that
the atom remains close to antinodes and never enters a spa-
tial region where the laser threshold is not fulfilled. This
could experimentally clearly be used to observe trapping in
real time.

The physical mechanism responsible for the fast dissipa-
tion of the particle’s motional energy during the initial stage
is yet another variant of Sisyphus cooling. Whenever the
atom enters a spatial region where the system falls below
threshold, the momentary photon number is higher than at a
time later than when it reenters the lasing region. Hence, it is
pulled back stronger during leaving than sucked in during
reentering, which gives rise to net friction forces. This type
of friction force even continues while the particle is oscillat-
ing in a single well, as illustrated in Fig. 1�d�. It shows a
cutout of the trapping phase. Due to the finite response time
of the cavity field to the atomic position, the cavity field
attains a maximum value every time shortly after the atom
has passed a field antinode �see 1�, and the atom still feels a
significant friction. On the other hand, when the atom ap-
proaches a turning point �2�, the intensity reaches a mini-
mum resulting in a smaller accelerating force towards the
center. This is of course very similar to passive cavity cool-
ing in principle. However, here the response time of the field
is not only dominated by the cavity decay rate but by the full
laser field dynamics. This can strongly enhance the effective
friction and lower cooling time as well as the steady-state
temperature.

IV. QUANTUM RATE EQUATIONS
FOR THE INTERNAL DYNAMICS

Let us now go beyond the simple factorized c-number
model and include fluctuations due to the interaction of the
system with the environment, represented by the noise op-
erators in Eqs. �4�. As one central consequence, these opera-
tors induce momentum diffusion of the atomic motion, coun-
teracting the cooling process, and prevent the atom from
stopping completely at a field antinode. They also introduce
fluctuations in the photon number and atomic occupation
probabilities.

In the following quantum model, we include the corre-
sponding noise terms, but we still assume a rather localized
atomic wave packet. This allows us to replace the atomic
momentum and position operators by their average values;
i.e., we treat the atom like a classical Brownian particle in
the optical potential. However, we will keep the quantum
correlations between the cavity field and the atomic polariza-
tion which were neglected in the previous section due to
factorization. We therefore base our treatment on second-
order operator products that turn out to obey a closed set of
equations. Using the abbreviations �=a†a, �=�+�−, 

=a†�−+�+a, and �= �a†�−−�+a� / i, we get

�̇ = − 2�� + G
 + ��, �10a�

�̇ = − 2�� − G
 + 2��1 − �� + ��, �10b�


̇ = − �
 − �� + iG�
,�� + �
, �10c�

�̇ = − �� + �
 + ��. �10d�

Here, �=�+�+� is the total damping rate of 
 and � where
the latter gives the atom field interaction energy and is
closely related to the force. The quantum fluctuations are
contained in the operators �i, which again are fully deter-
mined by their second-order correlation functions, listed in
Appendix A. Note that Eqs. �10� are exact but still clearly
nonlinear. Thus, the corresponding equations for their expec-
tation values are not closed, and we have no explicit solution
for their steady state. The difficulties arise from the operator
product in Eq. �10c�. An extra equation for ��
 ,��� of course
will inevitably incorporate higher-order operator products,
resulting in an infinite hierarchy of equations. Following an
idea developed in earlier laser models �28�, we break this
loop by replacing

i�
,�� = 2�2� − 1�� + 2� 	 2Z� + 2� , �11�

where Z= �2�−1� is a real parameter that later can be self-
consistently calculated from Eq. �7�. This approximation
means that we drop part of the quantum correlations between
the atomic populations and the field intensity. Fortunately,
this turns out to play a minor role in the calculation of the
system-variable expectation values in the parameter regime
we are interested in. The factorized equations for �
= �� ,� ,
 ,�� now read

d

dt
� = M� + v + ��, �12�

where we have defined v= �0,2� ,0 ,0� and

M =

− 2� 0 G 0

0 − 2�� + �� − G 0

2ZG 2G − � − �

0 0 � − �
� . �13�

If the coupling strength g is much less than the damping rate
� or the detuning �, the operators 
 and � will adiabatically
follow the values of � and � such that one is allowed to
eliminate them. Adiabatic elimination of 
 and � then yields
the quantum rate equations for the photon number N= ���
and the particle’s upper state population P= ���,

Ṅ = − 2�� − ZW�N + 2WP , �14a�

Ṗ = − 2�� + W + ��P − 2ZWN + 2� . �14b�

Again,

W =
�G2

�2 + �2 �15�

denotes the emission rate into the resonator. In contrast to
Eq. �8�, W now comprises the combined rate �. It tends
towards the rate found in the previous section when the cav-
ity relaxation time �−1 is much longer than any other time
scale of the system.
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Apart from relation �7�, which immediately follows from
the rate equations in steady state, there are two main effects
arising from the strong atom-field coupling. �Note that Eq.
�7� is recovered whether or not the factorization �11� is
made.� First, the emission of photons into the resonator field
is represented by the terms explicitly interlinking Eqs. �14�.
While the atomic population P decreases, the field intensity
grows due to the source term 2WP.

Interestingly, both the atomic and cavity linewidths are
effectively modified, as can be seen from the remaining
terms proportional to W. This intricately affects the decay
properties of the whole system and, e.g., reduces the resona-
tor linewidth for an inverted atom. As a result, even the sta-
tionary solution depends on the atomic position in a highly
nonlinear way.

Let us emphasize here that the cooling limit for conven-
tional cavity cooling is usually related to the cavity linewidth
� �19�. An effectively gain-reduced cavity damping rate thus
can give rise to even lower final temperatures �20�. On the
other hand, for an inverted atom, momentum diffusion due to
spontaneous emission is strongly pronounced and, since W
can be of the order of �, heating through dipole fluctuations
will tend to raise the particle’s kinetic energy. This effect can
be expected to be reduced for several gain atoms in the mode
where the inversion can be shared among many atoms.

V. FORCES

In the following, we will investigate the atomic motion in
more detail. While the atom moves under the influence of the
light forces induced by the cavity field, the atom modifies the
light field dynamics according to its position. For a passive
resonator, this mutual influence is a well-known feature of
cavity QED and has been already seen experimentally
�21,22�. There are further complications in the present
system. First, the atom itself generates the light field it inter-
acts with. Second, the photon creation from the incoherent
pump is a highly nonlinear process exhibiting threshold. In
particular, there is no light in the mode without an atom close
to an antinode. As the atom also provides gain inside the
resonator, the lasing-induced trapping and cooling effects
will be strongly enhanced when the system operates above
threshold.

A. Photons and forces in the steady state

As is well known, the radiation pressure force on an atom
at rest in a standing-wave field cancels on average and only
the dipole force is left �23�. This remains true for a standing-
wave cavity field, and the only contribution to the net aver-
age force arises from the reactive response of the atom to the
field dynamics �dipole force F�. For a slow enough atom, the
state of the field dynamically adjusts to its current position x
and can be well approximated by the steady state for an atom
fixed at x. In this adiabatic approximation, we can calculate
F from the stationary expectation value of the force operator

F̂, which is given by the Heisenberg equation for the mo-

mentum operator P̂,

F̂ = − i�P̂,Ĥ� = − �Ĥ = ��G�� . �16�

Inverting the matrix M and defining D=det M /4, we get,
from Eq. �12�,

F =
2���G

D
��G� . �17�

Here, the environment is considered at zero temperature, and
hence the noise operators have vanishing expectation values
and do not contribute. From Eq. �17�, we can read off that F
is an odd function of the detuning �. By help of the solution

N =
��G2

D
�18�

for the photon number, we then see that Eq. �17� tends to Eq.
�9� for ���+�. This corresponds to resonator fields close to
coherent states with large mean intensity, allowing a classical
description.

In Fig. 2 we plot the stationary values of N, P, and F,
respectively. As expected from Eq. �15�, the photon number
is a monotonic function of the atom-field coupling G and
decreases for growing mismatch between the atomic and
resonator frequencies. In contrast to the Lamb model, even a
slight displacement of the atom from a field node causes the
atom to radiate into the lasing mode although the system has
not crossed the laser threshold. This small but nonzero mode
occupation leads to a force acting on the particle now. De-
pending on the detuning, the atom is either pushed back to
the node ���0� or attracted to the interaction region
��
0�. The resulting light potential shows minima at
antinodes, where we would like the atom to be trapped, for
positive detunings, and hence we will concentrate on this
situation in the following.

Figure 3�a� shows the potential depth V in units of the
interaction energy as a function of the detuning �. In each
curve, the pumping rate � is adjusted in order to achieve
constant maximum photon number N, as indicated. The pa-
rameters are �� ,g�= �10,50��. It is clear that V successively
increases with growing photon number. On the other hand,
large light intensities in the resonator will result in enhanced
cooling and particle localization, as we will see later.

B. Friction and diffusion

For finite particle velocities, the field cannot follow the
atomic motion instantaneously, but will show some time-
delayed response. Let us now derive the linear velocity de-
pendence of the force—i.e., the friction coefficient �. If the
atom moves much less than a wavelength before the internal
variables attain their stationary values according to a dis-
placement of the atom, one can derive the linearized correc-
tion term � to the force as follows �24�. Expanding the sys-
tem operators in terms of the particle velocity v and
replacing the total time derivative by � /�t+v�, we get a set
of dynamical equations that can be solved systematically in
different orders of v. Writing ���	X0+vX1, the zeroth- and
first-order variables obey

X0 = − M−1v , �19a�
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X1 = − M−1 � �M−1v� , �19b�

where the first line is precisely the afore discussed adiabatic
solution. The friction coefficient is then given by �
= ��G���1� which is a rather lengthy expression and can be
found in Appendix B. Note that, in principle, it is straight-
forward to derive the solution to higher orders in v, which
would certainly produce more accurate results. However,
here we are mainly interested in the parameter regime with a
very low final temperature of the atom. In this limit, the
friction can be well approximated by the position-averaged
force term linear in v.

In order to give an estimate for the temperature, we also
need the momentum diffusion coefficient D so that we can
apply the Einstein relation �23�,

kBT = �̄/D̄ . �20�

Hence, we also have to calculate the force fluctuations due to
the coupling of the system to the vacuum modes. In our case,
the cavity field as well as the atomic variables experience
fluctuations around their stationary values which directly re-
late to force fluctuations. This counteracts the cooling pro-
cess and prevents the atom from stopping completely at an-
tinodes. Equation �20� then describes a situation where the
contributions of friction and heating cancel, and the atom
reaches an equilibrium momentum distribution.

Similar to Brownian motion, we calculate the diffusion
coefficient D from the linear growth term of the momentum
spread due to field fluctuations �23�. Here we use the ap-
proach first outlined in Ref. �25� which allows one to ap-
proximately read off D from the two-time covariance of the
force operator,

�F̂�t�F̂�t − ��� − �F̂�t���F̂�t − ��� = 2D���� . �21�

A more detailed derivation of D can be found in Appendix C.
Here we only want to note that, in addition to fluctuations of
the cavity field, we have to consider momentum diffusion
owning to the random recoil of spontaneously emitted pho-
tons and therefore have to add Drec, which can be found
elsewhere �23�. Note that, in principle, force fluctuations

FIG. 2. �a� Stationary photon number obtained from the rate
equations as a function of the atomic position x and the detuning �.
The parameters are �� ,� ,g�= �20,25,20��. �b� Atomic upper-state
population for the same parameters. �c� The dipole force F is an odd
function of �.

FIG. 3. �a� Optical potential depth for �� ,g�= �10,50��. In each
curve, the pumping rate � is adjusted resulting in constant maxi-
mum photon number N, as indicated. �b� Position-averaged friction
coefficient in arbitrary units for the same parameters as in �a�. �c�
Equilibrium temperature associated with the atomic center-of-mass
motion. It can be lower than for free-space Doppler cooling, where
TD=��. �d� Ratio of atomic kinetic energy and the light potential.
For N
1, it drops well below unity when the cavity is far detuned
from the atom indicating strong particle localization.
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from the pumping mechanism would enter here as well. As
we do not explicitly specify the corresponding mechanism
and assume that the pumping occurs transversally, we will
neglect this contribution at this point.

Let us now come to some numerical examples. In
Fig. 3�b� we have plotted the position-averaged friction co-
efficient for the same parameters as in �a�. For very low
intracavity fields, we have �	0, and the atomic motion is
slightly accelerated rather than damped. Only above thresh-
old does a strong friction force arise. We see that, for a given
photon number, we can have both heating and cooling, which
already indicates that the system is active. In the regime
where ���, the atomic population is not yet inverted and
�
0. For higher pumping strengths �i.e., larger � in Fig. 3�,
there appears a change in the signs of the population inver-
sion as well as of the friction coefficient. It turns out that Z

0 is, together with �
0, a main condition to achieve cool-
ing and, moreover, large atomic upper-state populations im-
ply low temperatures as we will see at the end of this section.

Similar to the light potential, also ��� shows a nonlinear
increase with the photon number. We can therefore expect
the cooling efficiency to be strongly enhanced for higher
laser intensities. Indeed, the mean kinetic energy of the atom
continuously decreases when more and more photons are
present in the cavity. This is demonstrated in Fig. 3�c�, where
we have plotted the atomic steady-state temperature in units
of the Doppler temperature TD=��. We clearly get sub-
Doppler cooling in the resonator field, which definitely
proves the important role of the cavity for cooling and is the
prerequisite to combine trapping and cooling.

So far, we have seen that the atomic motion can be effi-
ciently cooled when the atom is able to scatter ample pho-
tons into the resonator. An essential issue to achieve long-
term operation of such a device is strong particle localization
at antinodes. Figure 3�d� shows the ratio of the atomic ki-
netic energy E and the light potential V. Below threshold,
this ratio is much larger than unity, and the particle’s position
is almost evenly distributed along the cavity axis. For higher
photon numbers, E /V can drop well below 1, corresponding
to strong localization. This is in big contrast to free-space
Doppler cooling, where the average kinetic energy is shown
to be always larger than the optical potential depth.

Like in most other cavity cooling schemes, the pumping
strength has great influence on the trapping and cooling
rates. Large light intensities induce fast and strong localiza-
tion, while the final temperature remains mostly unaffected
there. However, in our system where the atom acts like a
gain medium inside the resonator, also the particle’s kinetic
energy shows strong dependence on the intracavity intensity.
This is demonstrated in Fig. 4 depicting the particle tempera-
ture and the ratio E /V vs maximum photon number N for
different values of �. The large correlation of the internal
dynamics and the atomic motion leads to situations where
the atom is glued to antinodes, thereby radiating light into
the resonator mode, which in turn carries away energy and
entropy from the system via the cavity mirrors, and thus
decreases the atomic temperature.

From Figs. 3 and 4 we see that our equations predict
simultaneous lasing, cooling, and trapping. This occurs par-
ticularly for large intensities and when the atom is far-red-

detuned from the lasing mode. In this parameter range,
though, the atomic upper state has to be strongly populated,
and a large pumping rate � is required, which appears to be
the central experimental bottleneck in this system. Naturally,
this suggests to simultaneously use two or more atoms for
gain. In this way, they can collectively emit into the lasing
mode, resulting in enlarged mode occupation without such
stringent pumping requirements. We thus expect not only the
threshold to appear at lower pumping strengths but also ad-
vanced cooling and trapping.

C. Comparison with numerical Monte Carlo simulations

Since the early days of quantum optics, much attention
has been paid to the development of laser theories at differ-
ent levels of sophistication. While most of the analytic mod-
els in the cavity-QED field were based on rate equations at
the beginning �26�, there has also been some work pointing
out the shortcoming of the factorization approximation.
More accurate models were introduced �27,28� that could be
applied in our case as well. We will, however, use a different
approach here and directly use numerical methods to solve
our original master equation without approximations. Some
first results on this were already published previously �1�.
Here we show a comparison with our analytical calculations
in Fig. 5. Obviously, in the regime where lasing together
with cooling coexists, we find a surprisingly good agreement
of the steady-state temperature and field expectation values.

D. Good-cavity limit

In an active system, the cavity field response time is no
longer simply given by the cavity decay rate � but gets dy-

FIG. 4. �a� Atomic temperature as a function of the maximum
cavity photon number N for different values of the pumping rate �.
The other parameters are �� ,g�= �10,50�� while the atom-field de-
tuning � was continuously adjusted. �b� Corresponding ratio E /V.
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namically modified. As � gives a lower limit on the kinetic
temperature of the atom for passive cavity cooling, one could
also expect changes here �20�. In the following, we will
study this in more detail and calculate the equilibrium tem-
perature in the limit of very small � �particularly ���� by
expanding friction and diffusion to first order in �. In order
to keep operating conditions comparable, we scale the rate of
photon emission into the resonator also linear in �—i.e.,

W = a� . �22�

Here, the parameter a determines the operating point of the
laser. Note the threshold condition �=W found in the classi-
cal model; hence, a
1 corresponds to the laser working
above threshold. To keep the final expression simple, we
further assume �	0. This leads to the following rather
simple expression for the atomic equilibrium temperature:

kBT = ��
2a2 + �a − 1�2y2

2ay
, �23�

which depends on a and the amount of pumping ratio y
=� /�. In Fig. 6�a� we have plotted T �in units of �� /kB� for
different values of y. We find that, for y
1/2, it can drop

below 1 and thus below the limit of passive cavity cooling.
The respective minimum temperature

kBT = ����y2 + 2 − y� , �24�

a monotonic decreasing function of y, is displayed in Fig.
6�b� �solid line�. Again, large pumping rates and hence large
values of Z result in low temperatures. In addition we show
the corresponding a parameter, which remains slightly below
1. In this regime, the system operates a bit below threshold
where the gain is not saturated. Therefore, the atom is mainly
in the excited state and the interaction energy is very large.

VI. CONCLUSIONS

We presented a simple self-consistent analytical model for
the coupled dynamics of an inverted atom, described as a
point particle, moving in the field of a single-mode resonator.
In good agreement with previously obtained predictions from
Monte Carlo simulations, we find that lasing, trapping, and
cooling can simultaneously occur in such a setup, when the
light mode is blue detuned from the atomic transition fre-
quency and the pumping is sufficiently strong. This surpris-
ing result turns out to be closely related to the fact that an
inverted atom is a high-field seeker for blue detuning. Blue
detuning is also a necessary condition for cooling, as the
missing photon energy in the stimulated emission process
has to be taken from the atomic kinetic energy. Luckily, this
dissipation of kinetic energy via the resonator mode results
in atomic equilibrium temperatures well below the Doppler
limit and overcompensates the extra heating from the in-
creased spontaneous emission of an inverted atom.

As a consequence, high photon numbers not only imply
stronger localization of the atom but also lower temperatures.
As an extra bonus, the atom as a gain medium can effectively
reduce the resonator field linewidth below the cavity line-
width, so that, under favorable conditions, temperatures even
below the limit of conventional cavity cooling �kBT=��� are
possible. This effect should definitely get more prominent for
a larger atom number in the cavity. Hence, even for larger
samples, stimulated cooling could be connected with lasing
in a combined atom-laser-photon-laser setup, providing for a
coherent atomic beam and light source.

Let us finally remark that the fact that lasing is not nec-
essarily connected to heating of the active medium, but
rather involves cooling, could also prove important in rather
different microlaser setups—e.g., on microchips—where
heat production is a major issue preventing future miniatur-
ization.
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FIG. 5. Atomic temperature as a function of the atom-field cou-
pling constant g for different values of the pumping rate where
�� ,��= �5,250��. The marks show the results obtained from Monte
Carlo wave function simulations.

FIG. 6. �a� Atomic temperature in units of �� /kB. For y
1/2, it
can fall below one which is the limit of passive cavity cooling. �b�
Minimum temperature �solid line� as a function of y=� /� and the
parameter a �dashed line�. The latter determines the operating point
of the system.
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APPENDIX A: CORRELATION FUNCTIONS
OF THE NOISE OPERATORS

The noise operators �i as well as �i contain only free
input field operators, and their expectation values vanish
when evaluated for the vacuum. The remaining nonzero cor-
relation functions are

��	�t��	
†�t − ��� = 2����� , �A1a�

����t���
†�t − ��� = 2����� , �A1b�

���
†�t����t − ��� = 2����� , �A1c�

��z�t��z�t − ��� = 4��1 + ��z������ + 4��1 − ��z������ ,

�A1d�

����t��z�t − ��� = 4���−����� , �A1e�

��z�t����t − ��� = − 4���−����� , �A1f�

���
†�t��z�t − ��� = − 4���+����� , �A1g�

��z�t���
†�t − ��� = 4���+����� �A1h�

and

����t����t − ��� = 2�N���� ,

����t����t − ��� = �2�P + 2��1 − P������ ,

��
�t��
�t − ��� = �2�P + 2�N + 2��1 + N������ ,

����t����t − ��� = ��
�t��
�t − ��� ,

����t����t − ��� = ����t����t − ��� = 0,

����t��
�t − �� + �
�t����t − ��� = 2��
����� ,

����t����t − �� + ���t����t − ��� = 2�������� ,

����t��
�t − �� + �
�t����t − ��� = 2�� − ���
����� ,

����t����t − �� + ���t����t − ��� = 2�� − ��������� ,

��
�t����t − �� + ���t��
�t − ��� = 0,

respectively.

APPENDIX B: FRICTION COEFFICIENT

From the solution of Eqs. �19� we obtain the somewhat
unhandy expression

� =
����G�

D3 †− G3��4�2�� + ��2� + G2�� + � − ��

���2 + �� + ��2Z�
��Z� + 2�„��2 + �2��G2

���3 − �� + ��3Z� − 2�2�� + ��2�
 + �G4�� − �� + ��Z�2

+ 2��� + ���2G2�� − �� + ��Z�…��G�‡ . �B1�

APPENDIX C: DIFFUSION COEFFICIENT

In the following, we give a brief description of the calcu-

lation of the diffusion coefficient. Writing F̂= �F̂�+�, defi-
nition �21� yields

2D���� = ��G�2���t���t − ��� , �C1�

since ���t��=0. Here we see that the momentum spread di-
rectly arises from the noise exhibited by the interaction of
the system with the environment via the operator �, which,
for quasistationary conditions, is given by

� =
1

D
��� + ���GZ�� + ��G�� + ��� + ����


+ ��� + ����� + G2�� − �� + ��Z���
 . �C2�

Inserting the correlation functions listed in Appendix A, we
find

D =
�G2��G�2

D3 �2�2�2�� − � + �� + ��Z�

��2��� + ��� + G2�� − �� + ��Z�


+ �2
„�2�� + ��2�2 + ���� + ��� + G2�� − �� + ��Z�
2

…

��1 +
�

W
− Z� + ���2G2�2��� �

W
− Z�

+ �2 + �� + ��2Z2�� . �C3�
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