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We discuss localized ground states of Bose-Einstein condensates (BEC’s) in optical lattices with attractive
and repulsive three-body interactions in the framework of a quintic nonlinear Schrddinger equation which
extends the Gross-Pitaevskii equation to the one-dimensional case. We use both a variational method and a
self-consistent approach to show the existence of unstable localized excitations which are similar to Townes
solitons of the cubic nonlinear Schrodinger equation in two dimensions. These solutions are shown to be
located in the forbidden zones of the band structure, very close to the band edges, separating decaying states
from stable localized ones (gap solitons) fully characterizing their delocalizing transition. In this context the
usual gap solitons appear as a mechanism for arresting the collapse in low-dimensional BEC’s in optical
lattices with an attractive real three-body interaction. The influence of the imaginary part of the three-body
interaction, leading to dissipative effects in gap solitons, and the effect of atoms feeding from the thermal cloud
are also discussed. These results may be of interest for both BEC’s in atomic chips and Tonks-Girardeau gas

in optical lattices.
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I. INTRODUCTION

Bose-Einstein condensates (BEC’s) in periodic potentials
are presently receiving a great deal of theoretical and experi-
mental interest due to the possibility to explore a whole class
of phenomena ranging from Bloch oscillations [1,2],
Landau-Zener tunneling [3], and solitons [4] to quantum
phase transitions of the Mott insulator type [5]. In the mean-
field approximation these systems are described by the
Gross-Pitaevskii equation (GPE) which is a cubic nonlinear
Schrodinger (NLS) equation with periodic potential in which
the cubic nonlinearity models the two-body interatomic in-
teractions appropriate for dilute gases. The presence of the
optical lattice (OL) allows interesting localization phenom-
ena such as the formation of gap solitons—i.e., localized
states with energies comprised in the gaps of the band struc-
ture of the underlying linear periodic problem—for both at-
tractive and repulsive interactions [6,7]. This is quite remark-
able because it is known that for two- (2D) and three- (3D)
dimensional NLS equations, in the absence of a periodic po-
tential, soliton solutions do not exist and for attractive inter-
actions the phenomenon of collapse in finite time appears. In
this last case only one localized solution is possible, the so-
called Townes soliton, existing for a single value of the norm
(number of atoms). This solution, however, is unstable
against norm variations; i.e., it collapses in a finite time for
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norms above the critical value and decays into the uniform
background for norms below the critical value. The presence
of the OL allows one to expand the range of the existence of
localized solutions from a single value to a whole interval of
norms below which the delocalizing transition occurs and
above which collapse takes place.

A description based on the GPE with cubic nonlinearity,
however, is adequate only at low densities. For higher den-
sities three-body interactions start to play a role and a de-
scription based on two-body interactions is no longer suffi-
cient [8—11]. In this regard we recall that condensate
densities limited by three-body inelastic collisions [12] have
indeed been achieved. In these regimes a more accurate treat-
ment of the mean-field energetics of a dense condensate will
need to account for both two- and three-body elastic colli-
sions.

Contribution of the three-body interactions can be en-
hanced by detuning to zero the cubic two-body term by
means of Feschbach resonances [12], this leading to a peri-
odic NLS equation with quintic nonlinearity. For appropriate
values of density and scattering lengths, however, the three-
body collisions could largely dominate the two-particle con-
tributions even in a very dilute regime. This occurs when the
so-called Efimov effect [13] becomes possible and the two-
body scattering length becomes much larger than the effec-
tive two-body interaction radius (this usually occurring near
a two-body resonance). In this case a very large number of
three-body bound states can be formed in the system and the
contribution of the three-body elastic collisions (cubic in the
density) to the energy may largely overcome the one arising
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from the two-body terms (quadratic in the density). In this
situation the condensate appears extremely dilute with re-
spect to the two-body collisions but somewhat dense with
respect to the three-body collisions [14].

Theoretical estimates of the three-body coefficient were
given in Refs. [15-18]. This term can be modeled by a quin-
tic nonlinearity in the GPE which for rubidium atoms is ex-
pected to be attractive [9]. The different types of instabilities
induced by the quintic term may lead to interesting dynami-
cal phenomena in 1D BEC’s similar to the Bose-Novae ef-
fect observed in the multidimensional case. On the other
hand, the presence of these instabilities restricts the possibil-
ity of BEC manipulations in atomic waveguides [9,10]. The
optical lattice, however, can suppress or delay some of these
instabilities, opening the possibility for new types of local-
ized excitations.

The 1D quintic NLS equation is also used to describe a
Bose gas with hard-core interactions in the Tonks-Girardeau
regime. Recent works have shown that this approach de-
scribes well the ground-state properties, the collective oscil-
lations in a parabolic trap [20], and the dynamics of shock
waves and dark solitons in the gas [21,22]. On the other
hand, interference phenomena generated with a small num-
ber of atoms (N=10) were shown to be not well accounted
for by the quintic NLS equation (the interference patterns
obtained from this equation are much more pronounced than
the experimental ones) [23]. For a larger number of atoms
and for weak density modulations, however, the description
of the nonlinear excitations in the Tonks-Girardeau regime
by means of a quintic NLS equation is expected to be valid.

The aim of the present paper is to study localized states of
the quintic nonlinear Schrédinger equation with a periodic
potential for both attractive and repulsive interactions. In this
regard we use a variational method, a self-consistent ap-
proach, and direct numerical integrations to show that the
presence of the optical lattice allows us to stabilize solitons
of the attractive quintic 1D NLS equation against collapse or
decay. In the case of repulsive interactions the optical lattice
is found to be crucial for the existence of stable bright matter
waves. The existence of localized excitations in this system
is shown to be associated with the existence of unstable lo-
calized solutions similar to the Townes soliton of the cubic
2D NLS equation (we refer to them as gap-Townes solitons).
These unstable solutions are found to be located in the for-
bidden zones of the band structure, very close to band edges
and separate decaying states from stable gap solitons. The
existence curve of these solutions characterizes the critical
threshold for the occurrence of the delocalizing transition,
and the existence of gap solitons appears to be a mechanism
for arresting collapse in 1D BECs in OLs with three-body
interactions. We also investigate dissipative effects in gap
solitons induced by the imaginary part of the three-body in-
teractions. We show that when the imaginary part of this
interaction is small compared to the real part, localized states
exist for very long times and their behavior is qualitatively
similar to the one of the undamped case. For moderate and
large damping, however, all localized states in the band gap
decay into the Bloch state at the band edge. We find it re-
markable that even in this case a reminiscence of the exis-
tence of gap-Townes solitons survives in focusing-
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defocusing cycles observed when the number of atoms is
close to the critical value for their existence. We also find
that these localized states can be stabilized into breatherlike
excitations by a linear amplification term modeling the feed-
ing of atoms in the condensate from the thermal cloud in the
presence of nonlinear damping.

We remark that in the absence of a periodic potential the
quintic 1D NLS equation has a behavior similar to the 2D
NLS equation with cubic nonlinearity. The interplay between
dimensionality and nonlinearity has indeed been used in the
past to investigate the collapse in lower-dimensional NLS
equations, the critical condition being D(n—1)-4=0 where
n is the order of the nonlinearity in the equation and D is its
dimensionality [24]. From this point of view the quintic NLS
equation can be viewed as a 1D model for the 2D GPE with
cubic mean-field nonlinearity and we expect that the results
discussed in this paper will apply also to this case.

The paper is organized as follows. In Sec. II we introduce
the 1D model and discuss the range of applicability to dif-
ferent physical situations. In Sec. III we study the quintic 1D
NLS equation with attractive interactions in both the absence
and presence of a periodic potential. The effectiveness of the
optical lattice to stabilize localized states of the GPE in the
presence of two-body and three-body interactions is investi-
gated by means of a variational analysis and by direct nu-
merical simulations. We use a self-consistent method to in-
vestigate gap solitons and band structures. The existence of
gap-Townes solitons is shown in Sec. IV, and the role of the
usual gap solitons in arresting collapse is discussed. In Sec.
V we investigate the case of repulsive interactions by means
of a variational analysis, self-consistent method, and numeri-
cal simulations. The existence of unstable Townes solitons
with energies above the band edges and their role in the
delocalizing transition is also investigated. In Sec. VI the
dissipative effects introduced by an imaginary part of the
three-body interaction on gap solitons are studied by both a
modified variational analysis and direct numerical simula-
tions. The effects of atoms feeding from the thermal cloud
are also considered. Finally, in the last section, the main
results of the paper are briefly discussed and summarized.

II. MODEL

Let us consider a BEC with two- and three-body interac-
tions immersed in an optical lattice and a highly elongated
harmonic trap. In the mean-field approximation the system is
described by the 3D GPE [10]

h2
ihu,=— —Vu+
2m

m
E(wip2 + w§x2) + V(X)) 1

+ gululPu+ goluf*u, (1)

with p denoting the radial distance, g, and g, the nonlinear
coefficients corresponding to the two- and three-body inter-
actions, respectively, w; and w, the radial and longitudinal
frequencies of the anisotropic trap (w, > ,), and V,,(x)
=V, sin?(kx) the optical lattice applied only in the longitudi-
nal direction. The coupling constant of the two-body interac-
tion is related to the s-wave scattering length a, and to the
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mass m of the atoms by the usual relation g,=47#h%a,/m. In
view of the strong anisotropy of the trap we can average the
three-dimensional interaction over the radial density profile
to reduce the problem to an effective one-dimensional one.
More precisely, we consider solutions of the form u(r,t)
_ (. 2 2 2 :
=¢o(p)p(x,1) where ¢y=(V1/ma?)exp(—p/2a’ ) is the
ground state of the radial linear equation

h* o m o 5
- %Vpd’o*‘ FYLP ¢o=hw, ¢. (2)

Multiplying both sides of the GPE by ¢, and integrating over
the transverse variable, we obtain the quasi-1D GP equation

[9]

. h’ m 22 )
i =— —¢ + | Tox"+ Vysin“(kx) | ¢
2m 2

81 2 &2 4
+_277ai|¢| ¢+—3ﬂ2ai|¢| 2 3)

For a discussion of the limits of applicability of this 1D
reduction see Ref. [25]. Introducing the dimensionless vari-
ables

Epg w)zc
v=—", a=—3,

h 497
we reduce Eq. (3) to the following normalized 1D GPE with
cubic and quintic nonlinearities:

ity == th + gl + x|+ ax’h— e cos(2x) g, (5)

where a,=a,g, with ay, the constant scattering length, g
e[~1,1], and Ex=A%k>/2m the recoil energy of the lattice.
In this normalization the wave function has been scaled ac-
cording to y— yYn2a,w, /v and the parameters & and y are
defined as £=V,/(2Eg) and x=g,(v/2a,w,)*/37hva’. In
the following we will be mainly interested in the case g=0
for which it is convenient to rescale the wave function as
—(go/ 3772aiER)”4</1. In this case the relation between the
dimensionless number of atoms, N, and the physical one, N,
is N,=[3m%a" Ex/(g,k*)]"*N (the values of N, are typically
in the range 4000-5000 for g,/A=~10"2%cm®s™!, a,
=2 um, A=8.23X 1077 m, and m=1.44 X 1072 kg).
Equation (5) is obtained from the Hamiltonian

(4)

n= | dx[|wx|2+§|w|4+§|¢|6+v<x>|¢|2, ©)

as iy,=O6H/ 8¢". This equation appears also in the context of
nonlinear photonic crystals [26]. The relevance of the two-
body interactions (cubic term) for the formation of localized
excitations of soliton type has been largely investigated in
the past decades in the field of nonlinear optics, and the
existence of bistable solitons in optical media with Kerr (cu-
bic) and saturable (quintic) nonlinearity was established for
the case of a channel waveguide with step potential [26].
The cubic-quintic NLS equation also appears as a model
for the propagation of optical pulses in double-doped optical
fibers [27] with an effective refraction index given by n
=n,+ny|E|*, where Ny=ng +Ng, Ny=Ny,, and n,, are the con-
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tributions of dopants to the refraction index (values and signs
can be changed by proper choice of dopants). Although
Townes solitons have been presently found only in connec-
tion with collapse of 2D elliptic-shaped intensive beams in
homogeneous focusing Kerr media [28], we expect gap-
Townes solitons to be observed also in double-doped fibers
with Bragg gratings, in the form of optical pulses, and in
photonic crystal fibers, in the form of spatial optical solitons.

Finally, we remark that a pure quintic NLS equation with
repulsive interactions also appears in connection with a
Tonks-Girardeau gas in the local density approximation [19].
In this context the field equation is

K2 h?
ifiy== bt Vbt ldf's,(T)
m 2m

also written in normalized form as
i, + ty, — ax’u + € cos(2x)u — [ul*u=0, (8)

which corresponds to the case g=0,x=1 in Eq. (5). Here
normalization has been made by introducing dimensionless
variables x=kx, t=tv, u= ¢\ mw/k, with fdx|¢|2=Np=N/Tr. In
the next sections we use the variational approach [29], the
self-consistent method [30], and direct numerical integra-
tions to study localized states of the quintic NLS in presence
of an optical lattice for both attractive and repulsive interac-
tions.

III. ATTRACTIVE INTERACTIONS

To obtain analytical predictions for the existence of stable
localized solutions of Eq. (5) with a=0 and for attractive
interactions [g, x<<0 in Eq. (5)], we use the variational ap-
proximation (VA) with a Gaussian ansatz for the fundamen-
tal soliton:

lx,t)=A exp(— it — %ax2> , 9)

with u denoting the chemical potential and A and a ampli-
tude and square root of the reciprocal width of the soliton,
respectively. Following the standard VA (see Ref. [29] for a
review) we derive the effective Lagrangian

_ AN# o« A2 At
L:—,_<I_L—_+8€_1/a—g_/——x_’r— N (10)
2Va 2 272 343

from which the stationary equations JL/da=dL/3A=0 for
parameters a and A are obtained as

_ z(l M)+ (z
w= 2 3324 e a
gN 2e

2N2X —1/a
33/2W+m——m=;e -1. (11)

N\"’Z
1>e'1/“+ & —,
2\2ar

Here the number of atoms has been expressed in terms of
a,A, as N=A>\m/a. Note that for £=0, g=0, Egs. (11) pre-
dict a maximum value of N for the existence of solitons
given by N,.=13*2m/(2x). This value should be compared
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FIG. 1. Early stages of the evolution toward collapse (left
curves) or decay (right curves) of the critical soliton (central curve)
in the absence of external potentials («=0, £=0). The critical soli-
ton in the center refers to the value y=-1 and N=2.7207, while the
collapse and decay evolution refer to y=—1.01 and y=-0.99, re-
spectively, with all other parameters unchanged. Snapshots were
taken at regular time intervals of 5.2 for collapse and of 10 for
decay. Plotted quantities are in normalized units.

with the critical norm N(Cf) =(/2)\3/|x| obtained for the ex-
act Townes soliton of Eq. (5) with £=0, g=0, =0 [31]:

_Guid)™

12
Veosh(2 ,ux) (12

hy=explipt)ih, =

We see that the VA value deviates from the exact one by only
5%. Notice that the above solution has zero energy and is
marginally stable (dN/du=0), so it exists only for the single
value of the norm N= N( Since for N >N © the solution
collapses in a finite time, Whlle for N <N )it decays into the
uniform background, it appears as the analog of the Townes
soliton of the cubic 2D NLS equation with attractive inter-
actions. In Fig. 1 we depict the early stages of the time evo-
lution toward collapse (decay) for an initial norm which is
slightly increased (decreased) with respect to N )

For ¢ #0, Eq. (11) shows that the number of particles
attains a minimum value Ny, =[67V 3(1 8ee™)]V? at a
=1/2;i.e., there exists a threshold value of the norm which is
necessary to create a soliton. The expression for Ny, shows
that the threshold exists for a relatively weak lattice and dis-
appears if & exceeds the value gy=e>/8~0.9236. From this
analysis it is clear that the optical lattice is quite effective to
stabilize solitons against decay when N is in the interval
Ny <N<N.,,. Collapse and decaying into extended states is
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expected for N>N, and N<Ny,, respectively. The VA
makes it possible to predict the stability of the solitons on the
basis of the Vakhitov-Kolokolov (VK) criterion [24], accord-
ing to which a necessary condition for stability is given by
du/dN<0. Notice that the above variational equations are
very similar to the ones derived in Ref. [32] for the 2D cubic
NLS equation (with exactly the same value of &), this being
a further confirmation of the analogy between the 1D quintic
NLS equation and the usual 2D GPE. We remark that, since
N,, does not depend on &, the prediction of the VA is that the
optical lattice does not affect collapse. We shall check these
results in the next section.

IV. GAP-TOWNES SOLITONS AND ARRESTING
COLLAPSE IN 1D BECs IN OLs

The existence of the exact Townes soliton (12) of the
quintic NLS equation with e=0 makes it natural to ask
whether this solution could exist also in presence of the OL.
In view of the analogies between the 1D quintic NLS equa-
tion and 2D GPE, the existence of this solution for £ #0
could shine some light on the role of the OL in controlling
collapse, as well as on the origin of the delocalizing transi-
tion observed in these systems [33]. In the following we use
a self-consistent approach [30] to determine the critical value
of N for the unstable solution to exist.

In Fig. 2(a) we report the band structure and localized
states obtained wih the self-consistent approach for the case
¢=0, a=0 in Eq. (5). We see that there are two bound-state
levels just below the band. The level closer to the band edge
(open circle) corresponds to an unstable localized state while
the other corresponds to a stable gap soliton. The corre-
sponding wave functions are depicted in Figs. 2(b) and 2(c),
respectively. We find that for a fixed value of & there is only
one value N for which the unstable state exists and its be-
havior resembles the one of the Townes soliton depicted in
Fig. 1. In this case, however, we have that for a slightly
overcritical value of N the unstable soliton starts to shrink
and its energy decreases as for collapsing solutions until it
reaches the gap soliton level below, at which the shrinking
stops. The transition from the unstable Townes soliton to the
stable gap soliton is represented in Fig. 2(a) by the lower
arrow. If the norm is slightly decreased below N, the un-
stable state completely delocalizes into the Bloch state at the
bottom of the band shown in Fig. 2(d) [this decay is repre-
sented in Fig. 2(a) by the upper arrow]. Due to this behavior,
we refer to the unstable state as a gap-Townes soliton, this
name being also justified by the fact that for e — 0 the critical
norm reduces to N¢, (see the left panel of Fig. 4). The decay-
ing property of the gap-Townes soliton is illustrated in Fig. 3
where the time evolution obtained from direct numerical in-
tegrations of Eq. (5) (with g=0, a=0) is shown. The left
(right) panel of this figure shows the decay into the extended
state (gap soliton) when the initial norm is slightly decreased
(increased) with respect to N,,.. Notice that the transition into
the gap soliton state is much more rapid than the decay into
the extended state, this being a reminiscence of the collapse
occurring at e=0. Since the energy of a slightly overcritical
gap-Townes solution should go to —c, as for any collapsing
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FIG. 2. (a) Lower band and localized bound
states of the quintic NLS equation with attractive
interactions for parameter values y=-1, €=5.
The arrows show the decay pattern of the gap-
Townes bound state (open circle) for N<N,, (up-
per arrow) and N>N,, (lower arrow). (b) Gap-
Townes soliton (thick line) corresponding to the
unstable bound state level (open circle) in panel

(a), with N=N,=0.4616 and E=-2.1576. (c)
Gap soliton [thick line and solid circle in panel
(a)] obtained from the unstable gap-Townes state

for a slightly above critical value of N (N
i =0.4657, E=-2.2177). (d) The Bloch state (thick
line) at the bottom of the band into which the
gap-Townes soliton decays for a slightly subcriti-
cal value of N (N=0.4586, E=—-2.1531). The OL
is depicted as a thin dotted line scaled by a factor
of 100 and shifted down by 0.05 in panels (b), (c)
and scaled by a factor of 10 in panel (d). Plotted
quantities are in normalized units.
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solution, we see that the existence of a stable localized state
which lies in energy below the unstable state is indeed a
mechanism for arresting collapse in the system. Also note
that a gap-Townes soliton appears as a separatrix between
localized and extended states. The fact that its energy lies
below the lower band edge implies the existence of a delo-
calizing threshold in the number of atoms below which lo-
calized state of the quintic GPE with OL cannot exist, this
being a remarkable difference between cubic and quintic
nonlinearities (in the cubic case the threshold exists only in
the higher-dimensional case [33]). In Fig. 4(a) the threshold
curve separating localized and extended states in the (N, ¢)
plane is depicted (this curve coincides with the norm of the
gap-Townes soliton as a function of &). Notice that for &

=0 the norm coincides with the exact value Nf‘;) of the solu-
tion in Eq. (12), suggesting that the family of gap-Townes
soliton for &€ # 0 originates from the Townes soliton state at
e=0.

Numerical investigations show that collapse occurs when
the strength of the optical lattice becomes small and the
number of atoms overcomes the critical threshold for the
Townes soliton at e=0. For larger values of N the width of
the soliton becomes small compared to the period of the
periodic potential and the OL becomes ineffective for arrest-
ing collapse. We find that solitons extended on several po-
tential wells are the ones which are better stabilized by the
optical lattice against collapse. An indication of the occur-
rence of collapse at small values of € is obtained from the

1000 M”\j}\bt 200 JI\ 140
A A
2 [
b e AAANAAANANAAANNAANA AN e 160
il
b AR AAAA e L300 120 JJ\N o
2 b 0 0o
£ I E A £
L400 80 60
e *
VY'Y VU | 4
b b ° b s
_ AAAAA I 1 — ’.\A“ ———L —s ’.\}\’\ —————10
0 20 40 60 80 100 120 0 20 40 60 8 100 120 O 20 40 60 8 100 120
x X X

FIG. 3. Time evolution of the gap-Townes soliton in Fig. 2 (central panel) compared with the one obtained from numerical integration
of the quintic NLS equation with two slightly different values of N: N=1.1N,, (right panel) and N=0.9N,,. (left panel). Parameters are fixed

as in Fig. 2, and plotted quantities are in normalized units.
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\‘\~,,

]

FIG. 4. Left panel: delocalizing transition
threshold obtained by direct numerical integra-
tions (solid circles) of the quintic [g=a=0 in Eq.
(5)] NLS equation with y=—1.0. The horizontal
dotted line corresponds to the critical threshold
for collapse in absence of the OL: N,
=(m/2)\V3/x. Right panel: energies versus & of
the gap soliton (bottom curve with open squares),
gap-Townes soliton (middle curve with solid
circles), and Bloch state at the bottom of the band
(top curve with open circles) for the quintic NLS

0 2 4 6 0 2

right panel of Fig. 4, in which we depict the energies of the
Bloch state at the bottom of the band, of the gap-Townes
soliton immediately below the band, and of the gap soliton,
reported as a function of €. We see that while the energies of
the Bloch state and of the gap-Townes soliton monotonically
increase with decreasing e; the energy of the gap soliton
reaches a maximum around =1 and then starts to decrease
as € —0. This behavior is consistent with the fact that a
collapsing solution with energy equal to —o should exist at
€=0. A study of collapse for small &, however, is numeri-
cally difficult to perform and requires more investigations. It
is interesting to note that besides stable gap soliton the OL
allows the existence of metastable states which are symmet-
ric around a maximum of the potential (instead of a mini-
mum as for the usual gap solitons). These intersite symmetric
states have higher energy than the on-site symmetric ones
and decay into the ground state after some time. Such states
can be used to delay the time of collapse for N> N,,. Indeed,
the collapse of these metastable states begins when their in-
stability sets in, as one can see from Fig. 5 (notice that the
matter moves first into a single potential well and then starts
to collapse).

V. REPULSIVE INTERACTIONS

To investigate the existence of localized states in the re-
pulsive quintic NLS equation with periodic potential we ap-
ply first a variational analysis based on the following ansatz
for the soliton wave form [33]:

sm(ax)

Plx,1) =A exp(—iput). (13)

Performing the same analysis as before, we get the averaged
Lagrangian

_ A% 2 1\ 11yA* gA?
Lz_ﬂ[ﬂ_a_ﬂ(l__)_L_g_, 14)
2a 3 a 60 3

from which the following equations for the soliton param-
eters are obtained:

11xN*a* gNa
+—+ ),
3 607> 3

6 equation with y=-1.0. Plotted quantities are in
normalized unit.

(15)

N2x 10gN 20(38 )
—= -1
2 llma 11\2

Using the fact that norm and soliton parameters are related
by N= 7A%/a, one can show that

B 30N e (6)
271Ny + 2072 |

i.e., the VA predicts the existence of a single set of soliton
parameters a,A for a given norm N and strength & of the OL.
This is similar to what obtained in Ref. [33] for the localized
solutions of the repulsive 2D GPE with OL. In the case of a
Tonks-Girardeau gas in the OL these parameters can be es-
timated as follows. From Egq. (16) we get that A
~(30Ne/22m)"%, and from the expression of N we get for
the soliton width w=1/a~[22N?/(3072¢)]". For a number

A
100
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FIG. 5. Time evolution of an intersite symmetric intrinsic local-
ized mode for the quintic NLS with y=-1, N=2.847 and €=0.1.
Notice that collapse starts after the mode has decayed into an on-
site symmetric one (ground state). The periodic potential is shown
together with the initial state at r=0. Plotted quantities are in nor-
malized units.
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of particles N=314 (corresponding in physical units to N,
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repulsive interaction and three slightly different values of number of atoms:

The band structure associated with gap solitons of the
repulsive quintic NLS equation has been investigated by
means of the self-consistent method. In Fig. 6(a) we show
the lower band and localized bound states for the case g=0,
a=0 in Eq. (5). We see that above the band edge there are
two bound-state levels, one immediately above (open circle)
corresponding to an unstable gap-Townes soliton, the other
more separated from the band edge corresponding to a gap
soliton. The wave functions of these bound states are de-
picted in Figs. 6(b) and 6(c). In analogy with the attractive
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FIG. 6. (a) Lower band and localized bound
states of the quintic [g=a=0 in Eq. (5)] NLS
equation with repulsive interactions for parameter
values y=1, £=2.0. The arrows show the decay
pattern of the gap-Townes bound state (open
circle) for N<N,, (upper arrow) and N>N,,
(lower arrow). (b) Gap-Townes soliton (thick
line) corresponding to the unstable bound state
level (open circle) in panel (a), with N=N,,
=1.5565 and E=-0.1047. (c) Gap soliton [thick
line and solid circle in panel (a)] obtained from
the unstable gap-Townes state for a slightly
above critical value of N (N=1.5965, E=0.2537).
(d) The Bloch state (thick line) at the bottom of
the band into which the gap-Townes soliton de-
cays for a slightly subcritical value of N (N
=1.5065, E=-0.1097). The OL is depicted as a
thin dotted line scaled by a factor of 20 and
shifted down by 0.05 in panels (b),(c) and scaled
by a factor of 10 in panel (d). Plotted quantities
are in normalized units.

case, we have that the unstable soliton exists only for a criti-
cal value N, of the norm and has a behavior similar to the
gap-Townes soliton described before. The decaying property

of the repulsive gap-Townes soliton is clearly illustrated in

direct nume

Fig. 7 where we show the time evolution, as obtained from

rical integrations of Eq. (5) (with g=0, a=0), of

the gap-Townes soliton in Fig. 6(b) (central panel). The left
and right panels of this figure show the decays into the ex-
tended (Bloch) and localized (gap soliton) states when the
norm of the initial condition is, respectively, slightly de-
creased or increased with respect to N.. Thus, also in this
case a gap-Townes soliton appears as a separatrix between
localized and extended states. We remark, however, that in
this case the existence of gap solitons is a direct consequence

900 At 200 i 140
ANAAAAAAAAAA AN AAAAAANAAAAAANN M i ﬂ ]\ A
4 S VI oo 120
ANAAAAAANAA A AAAAAAAAN Mvwm/\/‘v\ﬁ\/”\ /\A/\J\AWM ‘ w»
" 150 M
AN AN A~ GO0 VY. YOS A1 100
L A A A~ nmnn] SOV 7Y — ,,MMWM’W\ T L 0
AL £ '—W“W”W”\/VVWM—~-1OO il g
o AWM A A = \/V\’\/”\/\A/\ANU— QE> oMY ”ju\ Leo £
AMADAAR =
R .AN\/\/\/\/\/\/\/\/»/\/\N’\ /\/\/V\/\/vw\,\,\_- 300 A /\/\JV\/\/\/\/\AA ] =] o \ﬁ\\fmj\/\/\,\,w 40
_.VW\AN\/\;'\/J\N\/ "J\/\/\/\/\/\NW N\f/\/\/’l\\/\/\/\/‘/\/\ 50 , 1
T . VYA A e —— \\’ b‘.,\
YY1 oMM BT - 20
il g il g —ttililin
0 20 40 680 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
X X X

FIG. 7. Time evolution of the gap-Townes soliton in Fig. 6 as obtained from numerical integration of the quintic NLS equation with

N,=1.

5565 (central panel), N=1.05N,, (right panel), and N

=0.95N,, (left panel). Other parameters are fixed as in Fig. 6. Plotted quantities are in normalized units.
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localized

extended R 2

FIG. 8. Left panel: delocalizing transition
. threshold obtained by direct numerical integra-
tions (solid circles) of the quintic NLS equation
with y=1.0. Right panel: energies versus & of the
gap soliton (top curve with solid triangles), gap-
Townes soliton (curve with solid circles), and
Bloch state at the top of the band (curve with
open circles) for the quintic NLS equation with
x=1.0. Plotted quantities are in normalized units.

of the band structure (it could not exist without the OL). The
fact that the energy of the Townes soliton is slightly above
the upper band edge is consistent with the existence of a
threshold in the number of atoms (given by the critical norm
of the gap-Townes soliton) below which localized state of
the quintic GPE with OL cannot exist. In the left panel of
Fig. 8 we show the delocalizing curve in the plane (N,¢)
separating localized from extended states. This behavior is
very similar to what was reported for repulsive 2D solitons
of the GPE in optical lattices [33]. In the right panel of the
same figure we show the energies of the Bloch states at the
top of the band, of the Townes soliton immediately above the
band, and of the gap soliton, as a function of . In contrast
with the attractive case we see that all energies monotoni-
cally increase with decreasing . The absence of a maximum
in the energy curve of the gap soliton at small values of &
also indicates the absence of collapse in this case (compare
the right panels of Figs. 4 and 8).

VI. GAP-TOWNES SOLITONS IN THE PRESENCE
OF DISSIPATION

In the previous sections we have investigated the general
properties of localized states of 1D BECs in OLs with the
elastic three-body interactions modeled by a real quintic non-
linearity. It is known, however, that the three-body interac-
tion bears also an imaginary component corresponding to
inelastic collisions which can be modeled by a damping term
of the form —iy|¢//*i on the right-hand side of Eq. (5). Re-
cent theoretical studies [15-18] estimate for Rb a negative
value of the real part of the quintic nonlinearity of the order
of 10726~10727 cm®/s. From the experiment in Ref. [34] one
can deduce the imaginary part of the three-body interaction
for Rb to be of the order 1073° cm®/s. These numbers imply
a ratio between the imaginary and real parts of this interac-
tion of the order of 107—107*. Other data give values of the
damping constant of the order of 1072% cm®/s. Due to the
uncertainty intrinsic in some of these numbers (presently
there are no measurements of the real part of the three-body
interactions), in the following we take the damping constant
v to be a free parameter and investigate both the under-
damped and overdamped regimes.

The instability of gap-Townes solitons against small fluc-
tuations in the number of the atoms raises the question of
how the scenario of the previous sections changes in pres-

ence of dissipation. To answer this question we concentrate
on the case of attractive quintic interactions (qualitatively
similar results hold also for repulsive interactions) in the
presence of a quintic dissipation. The results are displayed in
Fig. 9. In the top three panels of this figure we depict the
time evolution of the gap-Townes soliton in Fig. 2 in the
presence of a small damping. We see that in spite of a slow
broadening of the Townes soliton (middle panel), the situa-
tion remains qualitatively similar to the undamped case de-
picted in Fig. 3. Notice that for an overcritical number of
atoms (right top panel) several focusing-defocusing cycles
between the gap-Townes soliton and the gap soliton occur
(these oscillations are induced by the slightly overcritical
starting value of N). From the left panel of this figure we also
see that for an undercritical number of atoms the decay into
the Bloch states occurs faster than for the zero-damping case.
At very long times the gap-Townes soliton in the middle
panel of Fig. 9 eventually decays into the Bloch state at the
edge of the band.

For larger damping the situation is different, as one can
see from the bottom three panels of Fig. 9. Notice that for an
overcritical value of N the gap-Townes soliton (right panel)
decays into an extended state after performing only one
focusing-defocusing cycle. In this case the dissipation com-
pletely suppresses collapse and localized states become un-
stable against decay into the lowest-energy Bloch state. It is
remarkable, however, that a signature of the existence of
gap-Townes solitons remains even for moderately large
dampings in the focusing-defocusing cycles observed when
the decreasing (due to dissipation) number of atoms crosses
the critical value for the existence of gap-Townes solitons.
This fact could indeed be used in experiments to detect the
existence of gap-Townes solitons in the presence of damp-
ing.

An analytical explanation of the existence of focusing-
defocusing cycles can be obtained by means of a modified
variational analysis [35,36] in which the damping is treated
as a small perturbation. In this approach we assume a time-
dependent localized state of the form

2
Yx,r)=A exp(—%+ibx2+i¢), (17)
w

with parameters 7,={A,w,b, ¢} also time dependent. The
equations of motion for these variables are obtained from the
averaged unperturbed Lagrangian of Eq. (5) with g=0,
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FIG. 9. Time evolution of gap-Townes soliton in Fig. 2 as obtained from numerical integration of the dissipative quintic NLS equation
with attractive interaction. The top three panels refer to three slightly different values of number of atoms: N,.=0.87248 (central panel),
N=1.1N,, (right panel), and N=0.9N,, (left panel) with a dissipation parameter y=0.00025. The bottom three panels are the same but for
v=0.01. Other parameters are fixed as y=—1, e=5. Plotted quantities are in normalized units.

- 1 2
L= T A% wih,+ 26, + —5 + 4w?h? — 2e¢™ + —2p* |,
2 w 3V3
as
d oL 2 F dx(RY, + R, (18)
————= X + ,
dtimn,, Jn J_. i i

where R=—iy{yf*1 and the subscript 7, denotes the deriva-
tive with respect to soliton parameters. From the above gen-
eralized Euler-Lagrange equation one derives the following
equations for the number of atoms N and soliton width w:
e
N, == 3 yﬁ_z >
w

Wiy = %(1 + XBN?) - 8ewe™, (19)
with 8=2/(33m).

In Fig. 10 we show the time evolution of the soliton width
for different values of the dissipation constant. We see that
for very low dampings the width oscillates around a constant
value, meaning that the localized state undergoes periodic

focusing-defocusing cycles in agreement with the right top
panel of Fig. 9. By increasing the damping we see that after
a certain number of cycles, the soliton width starts to grow
monotonically, signaling the decay of the gap soliton into an
extended state. Notice that even for relatively high dampings
there is one focusing-defocusing cycle, this being in good
qualitative agreement with what is observed in the bottom
right panel of Fig. 9. In the right panel of Fig. 10 we make a
quantitative comparison between the dynamics of the soliton
width as obtained from the VA and from the damped quintic
NLS equation. From this figure we see that although the
main feature of the phenomenon is correctly captured (i.e.,
the existence of only one focusing-defocusing cycle before
decay), the variational equations are not in good quantitative
agreement with numerical integration of the full system. This
may be due to the fact that the ansatz in Eq. (17) is more
appropriate for strongly localized states than for extended
gap-Townes ones. It is interesting, however, that for e=0 the
variational equations become similar in form to the ones con-
sidered for the 2D cubic NLS equation in the presence of a
cubic dissipation —iy{i/{> [37]. In this case one can show
that the equation for w reduces to a modified Airy equation
for which a focusing-defocusing cycle always exists. When
€# 0, Egs. (19) predict that for decreasing vy the number of
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FIG. 10. Top panel: time evolution of the width of the gap-
Townes soliton as obtained from Egs. (19) with e=2, y=-1, and
damping parameters increased by a factor of 10 going from the
bottom curve (y=0.0001) to the top one (y=0.1). The last three
curves have been shifted, respectively, by 2, 4, 6, to avoid overlap-
ping. The initial value of atoms was detuned from the critical value
N=1.254 corresponding to the unperturbed gap-Townes by 0.05.
Bottom panel: time evolution of the soliton width obtained from the
damped quintic GPE (solid line) and from the variational equations
(19) (dotted line). Parameter values are taken as e=2, y=-1, and
v=0.01. Comparison with the variational results was done by res-
caling the soliton width obtained from the GPE by a factor of 11.5
to have the same initial condition. Plotted quantities are in normal-
ized units.

focusing-defocusing cycles grows, this being in good agree-
ment with direct numerical simulations. Moreover, from the
left panels of Figs. 4 and 8 we see that the critical value of
the number of atoms for the existence of a gap-Townes soli-
ton decreases by increasing e, this meaning that in strong
optical lattices the effect of the quintic damping on gap-
Townes solitons is effectively reduced (due to the reduced

PHYSICAL REVIEW A 72, 033617 (2005)

norm), this being confirmed also by numerical simulations.

We remark that besides the decay phenomena induced by
the quintic dissipation one could also consider the feeding of
atoms in the condensate from the thermal cloud [38]. The
injection of matter in the BEC can be modeled with a linear
imaginary term (of sign opposite to y) in the NLS equation
of the form idy. This term can balance the damping and
stabilize localized states against decay even in the over-
damped regime, this leading to the formation of dissipative
gap solitons. We illustrate this phenomenon in Fig. 11 where
the time evolution of the slightly overcritical gap-Town soli-
ton shown in the bottom right panel of Fig. 9 is reported for
a linear amplification term of strength 6=8.95 X 10~*. From
this figure we see that the localized state, instead of decaying
into the Bloch state at the bottom of the band (see Fig. 9),
executes breatherlike oscillations (i.e., focusing-defocusing
cycles) with the emission of radiation. In terms of the band
picture this breathing state can be thought as a nonstationary
state with energy oscillating between the gap-Townes soliton
and the gap soliton in Fig. 2(a). We believe this is a general
mechanism for the existence of breatherlike excitations in
1D BECs in OLs in the presence of damping and amplifica-
tion.

VII. CONCLUSIONS

In this paper we have used the periodic 1D NLS equation
with quintic nonlinearity to investigate localized states in 1D
BECs in OLs with three-body interactions. The existence of
unstable solitons similar to the usual Townes soliton of the
cubic 2D NLS equation has been established. These states
have been shown to have energy located in the forbidden
zones of the band structure, very close to band edges, sepa-
rating decaying states from stable localized ones (gap soli-
tons). The existence of gap solitons appears to be a mecha-
nism for arresting collapse in attractive low-dimensional
BECs with three-body interactions in OLs, and the analysis
of gap-Townes solitons appears to be important for charac-
terizing the delocalizing transition in these systems. In this
regard we remark that the region of the existence of localized
states in the N,e plane is bounded by two limiting curves.
The first curve separates extended states from localized ones
and therefore characterizes the delocalizing transition. This
curve coincides with the curve of the existence of gap-

1\ 500
M}hM “0 701 FIG. 11. Left panel: time evolution of the
0651 gap-Townes soliton in the lower right panel of
mﬁﬁ/\m 300 0.60 Fig. 9 in the presence of quintic dissipation 7y
MAAN t fyl, 251 =0.01 and linear amplification of strength &
200 "o 50l =8.95X 107*. Right panel: time evolution of the
mjﬁfx 0451 gap-Townes soliton amplitude in the left panel.
J\M‘ 100 0.40] Plotted quantities are in normalized units.
, ' ,}AA , 1, 0.354 -
o 20 40 e0 80 1o 120 0 100 200 300 400 500 600 700
X t
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Towenes solitons. For the 1D quintic NLS equation with
periodic potential the delocalizing transition exists for both
attractive and repulsive interactions. Delocalizing curves
have been investigated in Figs. 4 and 8. A similar behavior is
expected to be valid also for the standard GPE with periodic
potential in higher dimensions [39]. The second curve sepa-
rates the localized solutions from the collapsing ones, giving
an upper bound for the existence of gap solitons. This curve
obviously exists only for attractive interactions (for repulsive
interactions a negative effective mass, although producing an
attraction among atoms which leads to the formation of gap
solitons, is usually insufficient to induce collapse). Due to
the numerical difficulties involved in the study of collapsing
solutions, the threshold curves for collapse have not been
investigated in this paper. For this it will be useful to develop
an analytical approach to provide estimates of the critical
values for collapse [40].

We have also investigated the influence of a dissipative
imaginary part of the three-body interaction on gap-Townes
solitons. In particular, we have shown that the damping in-
troduces effects which are important when the ratio between
the imaginary and real parts of the three-body interaction is
not small. For the case of rubidium this ratio is expected to
be small and the situation described for the underdamped

PHYSICAL REVIEW A 72, 033617 (2005)

case should be qualitatively valid. We find remarkable, how-
ever, that even for moderate large damping a signature of the
existence of gap-Townes solitons remains in the focusing-
defocusing cycles observed when the number of atoms
crosses the critical value for their existence.

Finally, we have shown that the presence of a small linear
amplification term in the damped quintic NLS equation,
modeling the feeding of atoms from the thermal cloud, can
stabilize gap solitons into breatherlike excitations even in
presence of large damping.

The results of this paper suggest the possibility to experi-
mentally observe gap-Townes solitons in low-dimensional
BEC’s.
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