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We investigate the dynamics of matter-wave solitons in the presence of a spatially varying atomic scattering
length and nonlinearity. The dynamics of bright and dark solitary waves is studied using the corresponding
Gross-Pitaevskii equation. The numerical results are shown to be in very good agreement with the predictions
of the effective equations of motion derived by adiabatic perturbation theory. The spatially dependent nonlin-
earity is found to lead to a gravitational potential, as well as to a renormalization of the parabolic potential
coefficient. This feature allows one to influence the motion of fundamental as well as higher-order solitons.
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I. INTRODUCTION

Recent years have seen enormous progress with respect to
our understanding and the controlled processing of atomic
Bose-Einstein condensates (BEC’s) [1] both in theory and in
experiment. In the case of nonlinear excitations, specifically
solitons, the experimental observation of dark [2], bright
[3.4], and gap [5] solitons has inspired many studies on
matter-wave solitons in general. Apart from a fundamental
interest in their behavior and properties, solitons are potential
candidates for applications since there are possibilities to co-
herently manipulate them in matter-wave devices, such as
atom chips [6]. Moreover, the formal similarities between
matter-wave and optical solitons indicate that the former may
be used in future applications similarly to their optical sib-
lings, which have a time-honored history in optical fibers and
waveguides (see, e.g., the recent reviews [7,8]).

Typically dark (bright) matter-wave solitons are formed in
atomic condensates with repulsive (attractive) interatomic
interactions—i.e., for atomic species with positive (negative)
scattering length a. One of the very interesting aspects for
tailoring and designing the properties of (atomic or molecu-
lar) BEC’s is the possibility to control the interaction of
ground-state species by changing the atomic collision dy-
namics and consequently changing either the sign or magni-
tude of the scattering length. A prominent way to achieve this
is to apply an external magnetic field which provides control
over the scattering length because of the rapid variation in
collision properties associated with a threshold scattering
resonance being a Feshbach resonance (see Refs. [9-11] and
references therein). For low-dimensional setups a comple-
mentary way of tuning the scattering length or the nonlinear
coupling at will is to change the transversal confinement in
order to achieve an effective nonlinearity parameter for the
dynamics in, e.g., the axial direction. In the limit of very
strong transversal confinement this leads to the so-called
confinement-induced resonance at which the modified scat-
tering length diverges [12]. A third alternative approach uses
the possibility of tuning the scattering length with an opti-
cally induced Feshbach resonance [13]. Varying the interac-
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tions and collisional properties of the atoms was crucial for a
variety of experimental discoveries such as the formation of
molecular BEC’s [14] or the revelation of the BEC-BCS
crossover [15]. Recent theoretical studies have predicted that
a time-dependent modulation of the scattering length can be
used to prevent collapse in higher-dimensional attractive
BEC’s [16] or to create robust matter-wave solitons [17].

Given the increasing degree of control with respect to the
processing of BEC’s it is nowadays “not only” possible to
change the scattering length in the same way for the com-
plete ultracold atomic ensemble—i.e., it can be tuned
globally—but it is possible to obtain a locally varying scat-
tering length thereby providing a variation of the collisional
dynamics across the condensate. According to the above, this
can be implemented by a (longitudinally) changing transver-
sal confinement or an inhomogeneity of the external mag-
netic field in the vicinity of a Feshbach resonance. Very few
investigations of condensates have addressed the presence of
such an inhomogeneous environment [18,19].

To substantiate the above, let us specify in some more
detail the case of a magnetically tuned scattering length. The
behavior of the scattering length near a Feshbach resonant
magnetic field By is typically of the form a(B)=a[1-A/(B
—By)], where a is the value of the scattering length far from
resonance and A represents the width of the resonance (see,
e.g., [20]). Let us consider a quasi-one-dimensional (quasi-
1D) condensate along the x direction exposed to a bias field
B, sufficiently far from the resonant value B, in the presence
of an additional gradient € of the field; i.e., we have B=B,
+ex (without loss of generality we take €>0), such that B
>By+A or B;<By—A. Assuming ex/(B,—-Bg) <1 for all
values of x in the interval (=L/2,L/2), where L is the char-
acteristic spatial scale on which the evolution of the conden-
sate takes place, it is readily seen that the scattering length
can be well approximated by the spatially dependent form
a(x)=ap+a,x, where ay=all-A/(B,—-By)] and a,
= €A/ (B,—By)*. In the following we will assume that a,, and
a; are of the same sign.

This opens the perspective of studying collisionally inho-
mogeneous condensates. In this work, we provide a first step
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in this direction by investigating the behavior of nonlinear
excitations, specifically bright and dark matter-wave solitons
in attractive and repulsive quasi-1D BEC’s, in the presence
of a spatially dependent scattering length and nonlinearity.
We investigate the soliton dynamics in different setups and
analyze the impact of the spatially varying nonlinearity by
numerically integrating the Gross-Pitaevskii (GP) equation
as well as in the framework of adiabatic perturbation theory
for solitons [21,22]. Being the first of its kind, the present
work demonstrates that trapped condensates in an environ-
ment with spatially varying collisional interactions show a
variety of different behaviors and properties. A prominent
such example is the generation of a gravitational effective
potential, as well as the renormalization of the harmonic po-
tential prefactor, which may, in turn, lead to expulsive effec-
tive potentials for the solitary waves, even under trapping
conditions. We believe that this study may pave the way for
further investigations and emergent properties and applica-
tions of such settings that will be substantially different from
the ones of collisionally homogeneous condensates.

The paper is organized as follows: In Sec. II the effective
perturbed nonlinear Schrodinger (NLS) equation is derived.
In Sec. III fundamental and higher-order soliton dynamics
are considered and Bloch oscillations in the additional pres-
ence of an optical lattice are studied. Section IV is devoted to
the study of dark matter-wave solitons, and in Sec. V the
main findings of this work are summarized.

II. PERTURBED NLS EQUATION

It is widely known that at sufficiently low temperatures
the evolution of a BEC is governed by the GP equation [1]
2
e e G L R At
ot 2m
where i(r,t) is the macroscopic wave function of the con-
densate, V(r)=(m/2)(w2lri+wix2) (with ri=y2+zz) is the
trapping potential, and m is the atomic mass, while w, and
w, are the trapping frequencies in the transverse and longi-
tudinal directions, respectively. Finally, the parameter g
=47h%a/m characterizes the two-particle interaction, with a
being the s-wave scattering length, which is positive (nega-
tive) for repulsive (attractive) condensates consisting of, e.g.,
»Na or *Rb (**Rb or "Li) atoms. Assuming a highly aniso-
tropic (“cigar-shaped”) trap with w, < |, we seek solutions
of Eq. (1) in the form [23]

r,1) =W (x,t)D(r Jexp(-iyr), (2)

where ®(r) is a solution of the auxiliary problem for the
quantum harmonic oscillator,
h® s L5,

—ﬂvl®+5mwiri®—7@:0, (3)
which, in the ground state, takes the form ®(r))
=71, exp(=r? /2I*), where [, =\h/mw, is the trans-
verse harmonic oscillator length. Substituting Eq. (2) into
Eq. (1) and averaging the resulting equation in the r, direc-
tion (i.e., multiplying by ®* and integrating with respect to
r,), we finally obtain the 1D GP equation
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where the nonlinearity coefficient g has an effective 1D
form—namely, g=g/2mF =2haw, and V(x)=(1/2)mw’x>.

As discussed in the Introduction we assume a collisionally
inhomogeneous condensate—i.e., a spatially varying scatter-
ing length according to a(x)=ay+a;x where a, and a, are
both positive (negative) for repulsive (attractive) conden-
sates. Thus, the function a(x) can be expressed as a(x)
=sA(x), where A(x)=|ay|+|a,|x is a positive definite func-
tion (for —L/2 <x<<L/2, where L is the characteristic length
for the evolution of the condensate) and s=sgn(ay)==1 for
repulsive and attractive condensates, respectively. We can
then reduce the original GP equation (4) to a dimensionless
form as follows: x is scaled in units of the healing length &
=h/\nygym, t in units of &/¢ (where c=\nyg,/m is the Bo-
goliubov speed of sound), the atomic density n=|W|? is res-
caled by the peak density n(, and energy is measured in units
of the chemical potential of the system p=_gyng; in the above
expressions g, =2hayw, corresponds to the constant (dc)
value a, of the scattering length. This way, the following
normalized GP equation is readily obtained:

d 15

vl )
where  V(x)=(1/2)Q%> and the parameter ()
= (2agny) "(w,/w,) determines the magnetic trap strength.
Additionally, g(x)=1+ &x is a positive definite function and
5=eA{(B,-By)(B,—By—A)]"! is the gradient.

Let us provide experimental parameters for a quasi-1D
condensate, confined in a cigar-shaped trap, with the ratio of
the confining frequencies, w,/w,, of order O(1072) (typi-
cally | ~ 100w, ~ 27X 1500 Hz). In such a case, we may
assume that the condensate contains N~ 10° atoms, with a
peak atomic density ny=~ 108 m~!. Then, taking the scattering
length a to be of the order of nanometer (e.g., @=—21.2 nm
or @=2.75 nm for a ®Rb or *Na condensate), it turns out
that the normalized trap strength () is typically of order
O(1072). Let us consider the particular case of the attractive
%Rb condensate, in which the Feshbach resonant magnetic
field is By=155 G and the width of the resonance is A
=11.6 G [11]. Assuming a bias magnetic field B;=175 G
and a field gradient e~ 1 G/um, the spatially dependent
scattering length a(x)=ay+a,x is characterized by the val-
ues ay=-8.9 nm and a;=-0.6X1073. In such a case, the
characteristic length L for the evolution of the condensate is
allowed to be ~20 um, so that the approximation ex/(B,
—By) <1 will be valid. In the framework of the normalized
GP equation (5), the spatially dependent nonlinearity coeffi-
cient takes the form g(x)=1+d, with 6~0(107%) and
s=—1. On the other hand, in the case of the repulsive Na
condensate, in which B;=907 G and A=1 G [10], we may
assume that the bias field and the gradient are B;=885 G and
€~3 G/ um, respectively. In such a case, the respective val-
ues of the above-mentioned physical parameters are a
=2.87nm, a;=0.17x10" L~10 um, and &6~ O0(107?).
Similar setups can also be achieved for other condensate spe-
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cies, such as the attractive 'Li or the repulsive *’Rb (see,
e.g., a relevant discussion in Sec. IIT).

According to the above estimations based on typical ex-
perimental values of the physical parameters, it is clear that
for sufficiently small values of the field gradient e, the result-
ing normalized field gradient ¢ is also small and is of the
order of the dimensionless magnetic trap strength (). Thus, ()
and ¢ are the natural small parameters of the problem.

We now introduce the transformation =u/\g to rewrite
Eq. (5) in the following form:

u 1 u )

15+5$—s|u| u=R(u). (6)
Apparently, Eq. (6) has the form of a perturbed NLS equa-
tion (of the focusing or defocusing type, for s=—1 and
s=+1, respectively), with the perturbation R(u) being given

by

d  r~ou 1| d& -
R(u) = V(x)u+ — In(\g)— + =| — In(/
(u) = V(x)u o n(vg) P 2{ P n(vg)

2
_ (i 1n(vE>) ] )

The last two terms on the right-hand side of Eq. (7) are of
higher order with respect to the perturbation parameter &
than the second term and will henceforth be ignored (this
will be discussed in more detail below). We therefore exam-
ine the soliton dynamics in the presence of the perturbation
including the first two terms of Eq. (7).

III. BRIGHT MATTER-WAVE SOLITONS
A. Fundamental solitons

In the case s=—1 and in the absence of the perturbation,
Eq. (6) represents the traditional focusing NLS equation,
which possesses a commonly known family of fundamental
bright soliton solutions of the form [24]

u(x,7) = 77 sechl 7(x — xo) Jexpli(kx — ¢(1))], (®)

where 7 is the amplitude and inverse spatial width of the
soliton, x, is the soliton center, the parameter k=dx,/dt de-
fines both the soliton wave number and velocity, and finally
d(t)=(1/2)(kK*=7))t+ ¢, is the soliton phase (¢h, being an
arbitrary constant). Let us assume now that the soliton width
7! is much smaller than "2 and &' [namely, the charac-
teristic spatial scales of the trapping potential and the func-
tion g(x)] or, physically speaking, the potential V(x) and
function g(x) vary little on the soliton scale. In this case, we
may employ the adiabatic perturbation theory for solitons
[21] to treat analytically the effect of the perturbation R(u)
on the soliton (8). According to this approach, the soliton
parameters 7, k, and x, become unknown, slowly varying
functions of time ¢, but the functional form of the soliton [see
Eq. (8)] remains unchanged. Then, from Eq. (6), it is found
that the number of atoms, N=[*|u|?dx, and the momentum
P=(i/2)[*u(du*/ dx) —u*(du/ dx)]dx, which are integrals of
motion of the unperturbed system, evolve, in the presence of
the perturbation, according to the equations

PHYSICAL REVIEW A 72, 033614 (2005)

dN B

—=-2Im Ru dx |, 9)
dt w

dP o

— =2Re R—dx|. (10)
dt w  Ox

We remark that the true number of atoms, [*7|¢|?dx, is con-
served for Eq. (5) but the transformation leading to Eq. (6)
no longer preserves that conservation law, leading, in turn, to
Eq. (9).

We now substitute the ansatz (8) (but with the soliton
parameters being functions of time) into Egs. (9) and (10);
furthermore, we use a Taylor expansion of the second term of
Eq. (7), around x=x, (keeping the two leading terms). The
latter expansion is warranted by the exponentional localiza-
tion of the wave around x=x;. We then obtain the evolution
equations for 7(r) and k(z),

dn 1%

— =kp— In(g), 11

™ n(g) (11)
dk vV o 9
T T T T g, (12)
d[ a.X() 3 &XO

To this end, recalling that dx,/dt=k, we may combine Eqs.
(11) and (12) to derive the following equation of motion for
the soliton center:

dxy__ V. 70 (‘E)

=+ 13
dr axg  6g%0)\ axg (13)

where 7(0) and g(0)=g(x,(0)) are the initial values of the
amplitude and function g(x), respectively. Notice that the
above result indicates that the main contribution from the
spatially dependent scattering length comes to order &
[while the contribution of the last two terms in Eq. (7) would
have been O(&°) and is neglected]. It is clear that in the
particular case where g(x)=1+ dx, Eq. (13) describes the mo-
tion of a unit mass particle in the presence of the effective
potential

1
Ver(o) = 5 @306 = Bxo, (14)

where the parameter 8 is defined as

7(0)8

ETET O "
and
wps= V0> - 58 (16)

is the oscillation frequency of the bright soliton. In the ab-
sence of the spatial variation of the scattering length (5=0),
Eq. (13) actually expresses the Ehrenfest theorem, implying
that the bright soliton oscillates with a frequency w,,={) in
the presence of the harmonic potential with strength (). Nev-
ertheless, the presence of the gradient modifies significantly
the bright soliton dynamics as follows: First, as seen by the
second term on the right-hand side of Eq. (14), apart from
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the harmonic trapping potential, an effective gravitational
potential is also present, which induces an acceleration of the
initial soliton towards larger values of x, (for 6>0); i.e., it
shifts the center of the harmonic potential from xy=0 to x,
=p/ wis. Second, the oscillation frequency of the bright soli-
ton is modified for 8§+ 0, according to Eq. (16). Moreover,
depending on the initial values of the parameters—namely,
for S6=()’—an interesting situation may occur, in which
the effective harmonic potential, instead of being purely at-
tractive, can effectively disappear or be expulsive.

The solution to Eq. (13) in the variables y,=x,— 8/ wj, is,
of course, a simple classical oscillator

Y0(0)

Wy

yo(t) = yo(0)cos(wygt) + sin(wygt), (17)

which is valid for “’13.;>0- For wis<0 the trigonometric
functions have to be replaced by hyperbolic ones. In the case
wis=0, the resulting motion (to the order examined) is the
one due to a uniform acceleration with xy(¢) =x,(0)+x,(0)7
+(1/2) Bt

The above analytical predictions have been confirmed by
direct numerical simulations. In particular, we have system-
atically compared the results obtained from Eq. (13) with the
results of the direct numerical integration of the GP equation
(5). In the following, we use the trap strength 1=0.03, initial
soliton amplitude 7(0)=1, initial location of the soliton
x0(0)=0, and different values for the normalized gradient &.
The above values of the parameters may correspond to a 'Li
condensate containing N=4000 atoms, confined in a
quasi-1D trap with frequencies w,=27X 14 Hz and w,
=100w,. Note that these values correspond to a scattering
length a(y=-0.21 nm (pertaining to a magnetic field of
425 G), a value for which a bright matter-wave soliton has
been observed experimentally [4].

In Fig. 1(a), the original harmonic trapping potential V(x)

(dotted line, 6=0) is compared to the effective potential
modified by the presence of the gradient for 6=(1/2)()
(dashed line) and 6=v2Q (solid line). In these cases, the
effective harmonic potential is attractive and the gradient dis-
places the equilibrium point to the right. Figure 1(b) shows
the case 6=v3() (dashed line) for which the effective har-
monic potential is canceled, resulting in a purely gravita-
tional potential. Also, upon suitably choosing the value of &,
e.g., for =20 (solid line) the effective potential becomes
expulsive. The dynamics of the bright matter-wave soliton
pertaining to the above cases are shown in Figs. 1(c) (for the
attractive effective potential) and 1(d) (for the gravitational
or expulsive effective potential). In particular, in Fig. 1(c), it
is clearly seen that the evolution of the soliton center x is
periodic, but with a larger amplitude and smaller frequency
of oscillations, as compared to the respective case with &
=0. The analytical predictions of Eq. (13)—(17) [triangles for
6=1\2Q and dots for 6=(1/2)Q)] are in perfect agreement
with the respective results obtained by direct numerical inte-
gration of the GP equation (5). On the other hand, as shown
in Fig. 1(d), in the case of a gravitational or expulsive effec-
tive potential, the function x,(7) is monotonically increasing,
with the analytical predictions being in excellent agreement
with the numerical simulations. For a purely gravitational or
expulsive effective potential, Eq. (11) shows that the ampli-
tude (width) of the soliton increases (decreases) monotoni-
cally as well, which recovers the predictions of Ref. [18].
This type of evolution suggests that the bright soliton is com-
pressed adiabatically in the presence of the gradient.

Before proceeding further, it is worth mentioning that, in
principle, apart from the evolution of the soliton parameters
(derived in the framework of the adiabatic approach in the
perturbation theory for solitons), there also exists a radiation
part contributed by the perturbation R(u), which also needs
to be considered. Nevertheless, generally speaking, it is
known [21] (see also the more recent work [25]) that if the
perturbation R(u) is of the order of a small parameter—e.g.,
e—then the density of the corresponding radiation part
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FIG. 2. (Color online) Spatiotemporal contour plots of the soli-
ton densities for 8= y2€ (top panel) and 6=13€ (bottom panel) up
to a scale 107* (densities of 10™* or greater are presented in dark
red). In both cases 1=0.05. These contour plots correspond to an
attractive or a gravitational effective potential respectively (see also
Fig. 1). One can clearly observe the presence of the radiation emit-
ted, which is detectable on a scale of 1074,

(which can be obtained in the second-order approximation of
the perturbation theory) is of the order €. In our case, as the
respective small parameter ({2 or 8) is of the order O(1072),
the density of the pertaining radiation is of the order of
0(107%). This has been verified in our simulations, as is
shown in Fig. 2. There, spatiotemporal contour plots of the
soliton density, in the cases where the effecpive potential is
either attractive (left panel of Fig. 2 for 6=2()) or gravita-
tional (right panel of Fig. 2 for 6=3()), demonstrate that the
radiation is indeed detectable on a scale of 10™*. Note that
the radiation is always confined due to the presence of the
trapping potential and it is stronger in spatial regions where
the soliton is wider: In such a case the soliton experiences in
a stronger manner the presence of the inhomogeneity of the
scattering length. According to the above discussion, it is
clear that for such weak inhomogeneous perturbations the
radiation emitted by the matter-wave soliton can safely be
neglected. Finally, the above arguments also explain the ex-
cellent agreement between the analytical results based on the
adiabatic approach of the perturbation theory and the direct
numerical integration of the GP equation. Clearly, a system-
atic study of the the full problem concerning the evolution of
the soliton and concomitant radiation is beyond the scope of
this work.
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FIG. 3. (Color online) Spatiotemporal contour plot of the soliton
density for Q=0.075, 5=v3Q, and an optical lattice with V,
=0.25 and k=0.5. One can clearly discern the presence of Bloch
oscillations in the evolution of the density, whose period is in very
good agreement with the corresponding theoretical prediction.

Let us consider another setup which combines the “effec-
tive” linear potential with an external harmonic and a peri-
odic trap:

1
V(x) = 592)(2 + V, sin?(kx). (18)

The periodic potential in Eq. (18) can be obtained experi-
mentally by superimposing two counterpropagating laser
beams. It is well known that the dynamics in the combined
presence of a (effective) linear and a periodic potential re-
sults in the so-called Bloch oscillations (for a recent discus-
sion of the relevant phenomenology and bibliography see,
e.g., [26]). These oscillations occur due to the interplay of
the linear and periodic potential with a definite period T
=2«/B [26]. We have examined numerically this analytical
prediction in the presence of an optical lattice potential with
Vp=0.25 and k=0.5. The numerical evaluation of the period
of the soliton motion in the combined potential is 7=22.15,
less than 4% off the corresponding theoretical prediction.
The time-periodic evolution of the soliton is shown in the
spatiotemporal contour plot of Fig. 3.

B. Higher-order solitons

Apart from the fundamental bright soliton in Eq. (8), it is
well known [27] that specific N-soliton exact solutions in the
unperturbed NLS equation [Eq. (6) with s=—1 and R=0] are
generated by the initial condition u(x,0)=A sech(x) (for 7
=1), and the soliton amplitude A is such that A—1/2<N
<A+1/2 to excite a soliton of order A. The exact form of
the AV soliton is cumbersome and will not be provided here;
nevertheless, it is worth noticing some features of these so-
lutions: First, the number of atoms of the Afth soliton is A2
times the one of the fundamental soliton and second, for any
N, the soliton solution is periodic with the intrinsic fre-
quency of the shape oscillations being w;,,=47°. We now
examine the dynamics of the A-soliton solution in the pres-
ence of the spatially varying nonlinearity.
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We have performed numerical simulations in the case of
the so-called double (A/=2) bright soliton solution with ini-
tial soliton amplitude A=2.5. In the absence of the gradient
(6=0), if the soliton is placed at the trap center (x,=0, with
Xo being the soliton center), it only executes its intrinsic os-
cillations with the above-mentioned frequency wj,,. On the
other hand, if the soliton is displaced (x,# 0), apart from its
internal vibrations, it performs oscillations governed by the
simple equation iy+(%x,=0, in accordance to the Kohn
theorem (see [28,29] for an application in the context of
bright matter-wave solitons). Nevertheless, for §#0, the
double soliton (initially placed at the trap center), contrary to
the previous case, splits into two single solitons, with differ-
ent amplitudes due to the effective gravity discussed in the
case of the fundamental soliton. Due to the effective gravi-
tational force, the soliton moving to the right (see, e.g., Fig.
4) is the one with the larger amplitude (and velocity) and is
more mobile than the one moving to the left (which has the
smaller amplitude).

As each of these two solitons is close to a fundamental
one, their subsequent dynamics (after splitting) may be un-
derstood by means of the effective equations of motion de-
rived in the previous section. In particular, depending on the
values of the relevant parameters involved in Eq. (14) [%(0)
is now the amplitude of each soliton after splitting] the soli-
tons may both be trapped, or may escape (either one or both
of them), if the effective potential is expulsive. In the former
case, both solitons perform oscillations (in the presence of
the effective attractive potential) and an example is shown in
Fig. 4 (for Q2=0.1, §=0.01). Note that the center of mass of
the ensemble oscillates with a period T=27/=62.8 (which
is in accordance with Kohn’s theorem). During the evolution,
as each of the two solitons oscillate in the trap with different
frequencies, they may undergo a head-on collision (see, e.g.,
bottom panel of Fig. 4 at 1=55). It is clear that such a col-
lision is nearly elastic, with the interaction between the two
solitons being repulsive.

Importantly, for smaller values of the trap strength (), we
have found that it is possible to release either one or both
solitons from the trap: In particular, for 2=0.05 and &
=0.025, we have found that the large-amplitude soliton es-
capes the trap, while the small-amplitude one performs os-
cillations. On the other hand, for the same value of the trap
strength but for 6=0.05 both solitons experience an expul-
sive effective potential and thus both escape from the trap. It
is therefore in principle possible to use the spatially varying
nonlinearity not only to split a higher-order bright soliton to
a chain of fundamental ones, but also to control the trapping
or escape of the resulting individual fundamental solitons.

IV. DARK MATTER-WAVE SOLITONS

We now turn to the dynamics of dark matter-wave soli-
tons in the framework of Eq. (5) for s=+1 (i.e., the defocus-
ing case of condensates with repulsive interactions). First,
we examine the equation governing the background wave
function. The latter is taken in the form =®(x)exp(—iur)
(u being the chemical potential) and the unknown back-
ground wave function ®(x) satisfies the real equation
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FIG. 4. (Color online) Evolution of a double soliton with initial
amplitude A=2.5 initially placed at the trap center (x=0) with a
strength (2=0.1 in the presence of a gradient 6=0.01. Top panel:
spatiotemporal contour plot of the density. Bottom panels: snap-
shots of the evolution of the density are shown for =0 (top left
panel), =10 (top right panel), /=30 (bottom left panel), and =60
(bottom right panel), covering almost one period of the oscillation.
Dashed lines correspond to the trapping potential.

2
1do + V()P + g(x)D. (19)

d=-
K 2 dx?

To describe the dynamics of a dark soliton on top of the
inhomogeneous background satisfying Eq. (19), we intro-
duce the ansatz (see, e.g., [30])

th=P(x)exp(= iut)ux,1) (20)

into Eq. (5), where the unknown wave function v(x,) repre-
sents a dark soliton. This way, employing Eq. (19), the fol-
lowing evolution equation for the dark soliton wave function
is readily obtained:
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d dv
i— +~— - g®* (> - Dv=——In(®)—. (21
o8 (v - Dv 2 (@)= (21)

Taking into account that in the framework of the Thomas-
Fermi (TF) approximation [1] a simple solution of Eq. (19) is

expressed as
d(x) = \/max{ﬂg(—)‘:)(x),OJ, (22)

Eq. (21) can be simplified to the defocusing perturbed NLS
equation

v 1dv

j — + - = 2 _ 1 = , 23

s =l - Du= 0 23)
where the perturbation Q(v) has the form

1 dVov d

0 =1 =)oV + — = —

—._.dv
+ S mGeZ, (24
2(u—V) dx dx dx[ n(\g)]&x @4

and higher-order perturbation terms have once again been
neglected. In the absence of the perturbation, Eq. (23) repre-
sents the completely integrable defocusing NLS equation,
which has a dark soliton solution of the form [31] (for u
=1)

u(x,f) = cos ¢ tanh { + i sin ¢, (25)

where {=cos ¢[x—(sin ¢)¢], while cos ¢ and sin ¢ are the
soliton amplitude and velocity, respectively, ¢ being the so-
called soliton phase angle (|¢p|</2). To treat analytically
the effect of the perturbation (24) on the dark soliton, we
employ the adiabatic perturbation theory devised in Ref.
[22]. As in the case of bright solitons, according to this ap-
proach, the dark soliton parameters become slowly varying
unknown functions of ¢, but the functional form of the soliton
remains unchanged. Thus, the soliton phase angle becomes
¢— (1) and, as a result, the soliton coordinate becomes ¢
— {=cos o(1)[x—xy(t)], where

xo(t)=f sin ¢(¢")dt’ (26)
0

is the soliton center. Then, the evolution of the parameter ¢,
governed by the equation [22]

do 1 M '
Foo———Re| | QW)—-dx|. (27)
dt 2cos” ¢sin @ o ot

leads (through similar calculations and Taylor expansions as
for the bright soliton case) to the result

d 1oV 19
—d):—cosgo ——+—-—1In(g)|. (28)
dt 2 (9)(0 3 (9)(:0
To this end, combining Egs. (26) and (28), we obtain the
corresponding equation of motion for the soliton center,
d’x 1oV 14
=S n(g), (29)
dt 2 &XO 3 ﬂX()
in which we have additionally assumed nearly stationary
dark solitons with cos ¢=1. As in the case of bright solitons,
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the validity of Eq. (29) does not rely on the specific form of
g(x), as long as this function (and the trapping potential) are
slowly varying on the dark soliton scale (i.e., the healing
length). In the particular case with g(x)=1+ dx, Eq. (29) de-
scribes the motion of a unit mass particle in the presence of
the effective potential

1 1
Weg(xo) = meg +3 In(1 + &xp). (30)

For 6=0, Eq. (29) implies that the dark soliton oscillates
with a frequency Q/\2 in the harmonic potential with
strength () [30,32-34]. However, in the presence of the gra-
dient and for sufficiently small &, Eq. (30) implies the fol-
lowing: First, the oscillation frequency wy of the dark soli-
ton is downshifted in the presence of the linear spatial
variation of the scattering length, according to

/1 1
Wys = 592—552. (31)

Additionally to the effective harmonic potential, the dark
soliton dynamics is also modified by an effective gravita-
tional potential (~ &xy/3), which induces an acceleration of
the soliton towards larger values of x, (for §>0). It should
be noted that as dark solitons behave as effective particles
with negative mass, the effective gravitational force pos-
sesses a positive sign, while in the case of bright solitons
(which have positive effective mass) it has the usual negative
sign [see Egs. (14) and (30)].

Direct numerical simulations confirm the above analytical
findings. In particular, we consider an initially stationary
dark soliton [with cos ¢(0)=0], placed at x,=0, on top of a
TF cloud [see Eq. (22)] characterized by a chemical potential
u=1 (the trapping frequency is here =0.05). In the ab-
sence of the gradient such an initial dark soliton should be
purely stationary. However, considering a gradient with &
=0.01, it is clear that the TF cloud will become asymmetric,
as shown in Fig. 5(a), and the soliton will start performing
oscillations. The latter are shown in Fig. 5, where the ana-
lytical predictions (points) are directly compared to the re-
sults obtained by direct numerical integration of the GP
equation (solid line). As is seen, the agreement between the
two is very good; additionally, we note that the oscillation
frequency found numerically is 277/ 177, while the respective
theoretical prediction is 27/180.7, with the error being
~3%.

As discussed and analyzed above, the presented adiabatic
perturbation theory is able to describe quite accurately the
evolution of the dark soliton parameters. Nevertheless, as in
the case of the bright solitons, this approach does not take
into regard the radiation, in the form of sound waves, emitted
by the soliton due to the presence of the inhomogeneity (in
both the TF background and the nonlinearity coefficient). In
the case considered above, the radiation is clearly visible in
Fig. 5(c). Analytical results for the inhomogeneity-induced
radiation of dark solitons oscillating on top of the TF cloud
have been obtained in [33], but for small-amplitude dark
solitons that can be described by an effective Korteweg—de
Vries equation. However, such an approximation cannot be
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FIG. 5. (Color online) (a) Two snapshots of the density of the
dark soliton (at =0 and t=90) on top of a Thomas-Fermi cloud.
The chemical potential is w=1, the trap strength is 1=0.05, and the
gradient is 6=0.01. (b) The motion of the center of a dark soliton.
Solid line and dots correspond to the numerical integration of the
GP equation and analytical predictions [see Eq. (29)], respectively.
(c) Spatiotemporal contour plot of the reduced condensate
density—i.e., the actual density (density of the Thomas-Fermi cloud
with the dark soliton) minus the Thomas-Fermi density—
demonstrating the radiation, in the form of sound waves, emitted by
the dark soliton. The radiation is detectable on a scale of 1072.

adopted in our case, as we deal with nearly black solitons
moving in a vicinity of the center of the condensate. In prin-
ciple, the analytical treatment of the radiation emitted by
dark solitons of arbitrary amplitude, also in the presence of
the inhomogeneous nonlinearity coefficient, can be given by
means of a systematic asymptotic multiscale expansion
method, recently devised in [35]. Note that in this latter
work, it was shown that if the perturbation Q(v) [see Eq.
(23)] is of the order €, then the density of the corresponding
radiation part is of the same order €; this means that the
radiation emitted by the dark soliton is stronger as compared
to the one for the bright soliton case. This result has been
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verified in the simulations, as shown in Fig. 5(c), where the
radiation density is indeed detectable on a scale of 1072 (for
0=0.05 and 6=0.01). The approach of [35] may also be
used to study the reflections of the soliton and the concomi-
tant energy loss, as observed in other analytical [36] and
numerical [37] studies. Although the study of the above is-
sues is quite interesting in its own right, it clearly goes be-
yond the scope of this paper.

V. SUMMARY

We have analyzed the dynamics of bright and dark matter-
wave solitons in quasi-1D BEC’s characterized by a spatially
varying nonlinearity. The formulation of the problem is
based on a Gross-Pitaevskii equation with a spatially depen-
dent scattering length induced, e.g., by a bias magnetic field
near a Feshbach resonance augmented by a field gradient.
The GP equation has been reduced to a perturbed nonlinear
Schrodinger equation, which is then analyzed in the frame-
work of the adiabatic approximation in the perturbation
theory for solitons, treating them as quasiparticles. This way,
effective equations of motion for the soliton centers (together
with evolution equations for their other characteristics) were
derived analytically. The analytical results were corroborated
by direct numerical simulations of the underlying GP equa-
tions.

In the case of bright matter-wave solitons initially con-
fined in a parabolic trapping potential, it is found that (de-
pending on the values of the gradient and the initial soliton
parameters) there is a possibility to switch the character of
the effective potential from attractive to purely gravitational
or expulsive. It has been thus demonstrated that a bright
soliton can escape the trap and be adiabatically compressed.
On the other hand, considering the additional presence of an
optical lattice potential, it has been shown that in the case
where the effective potential is purely gravitational, Bloch
oscillations of the bright solitons are possible. Higher-order
bright solitons have been shown to typically split in the pres-
ence of a spatially varying nonlinearity into fundamental
ones, whose subsequent dynamics is determined by the prop-
erties of the resulting single-soliton splinters. In the case of
dark matter-wave solitons, the relevant background—i.e., the
Thomas-Fermi cloud—is modified by the inhomogeneous
nonlinearity. The dynamics of the dark solitons follows a
Newtonian equation of motion for a particle with a negative
effective mass, and the oscillation frequency of the dark soli-
tons has been derived analytically. The latter is always down-
shifted as compared to the oscillation frequency pertaining to
a spatially constant scattering length. Thus, generally speak-
ing, the presented results show that a spatial inhomogeneity
of the scattering length induced, e.g., by properly chosen
external magnetic fields is an effective way to control the
dynamics of matter-wave solitons.
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