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We study an ultracold Bose-Fermi atomic mixture in a one-dimensional optical lattice. When boson atoms
are heavier then fermion atoms the system is described by an adiabatic Holstein model, exhibiting a Peierls
instability for commensurate fermion filling factors. A bosonic density wave with a wave number of twice the
Fermi wave number will appear in the quasi-one-dimensional system, due to the opening of a gap at the Fermi
energy in the fermion spectrum.
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The realization of Bose-Fermi mixtures �BFM’s� of ultra-
cold atoms �1–5� is very promising for studying strong cor-
relation phenomena, with Bose fields replacing lattice
phonons in condensed-matter models. Virtual exchange of
boson excitations induces fermion-fermion attractive interac-
tions �6–9�, leading to Cooper-like pairing �10–12� and en-
hancing the transition to fermion superfluidity. Furthermore,
novel phenomena are predicted, such as the formation of
composite fermionic pairs �13–15� and their subsequent pair-
ing into quartets �13�.

BFM’s in optical lattices �5,14–19� open the way to the
realization of various discrete models. For electrons confined
to a quasi-one-dimensional �Q1D� electric conductor, cou-
pling to bosonic phonons leads to the Peierls instability to-
wards a charge density wave �CDW� with twice the Fermi
wave number kF �20�. The instability originates in the break-
down of electronic translational symmetry and the conse-
quent opening of a gap � in the electronic spectrum due to
the CDW modulation of the phonon distribution. When the
modulation wave number is 2kF, this gap opens precisely at
the Fermi momentum and the Peierls theorem �20� states that
a minimal value of the energy is always attained for some
finite value of the gap parameter.

The corresponding instability for a BFM in an harmonic
trap was recently predicted �21�. Whereas Ref. �21� considers
a Bose-Fermi mixture in a Q1D configuration without ex-
plicit periodic confinement, here we study a system subject
also to an optical lattice potential. The underlying physics of
the two models is quite different. In our model the coupling
to bosonic atoms modifies the on-site energy of the fermions.
Therefore in our model the Peierls instability for the Q1D,
heavy-boson–light-fermion lattice is well described by an
adiabatic Holstein model. The resulting CDW, depicted sche-
matically in Fig. 1, consists of both a fermionic density wave
and a spatial modulation in the bosonic density, with twice
the Fermi wavelength. Fermionic atoms and bosonic modu-
lations will either be positioned in alternate sites �Fig. 1�a��
or in the same sites �Fig. 1�b�� depending on the sign of
fermion-boson interactions.

We consider a mixture of Nc spin-polarized fermionic at-
oms and Na bosonic atoms in a Q1D optical lattice with M
sites �Fig. 1�. For sufficiently tight traps, only the lowest
Bloch band needs to be considered and one can expand
boson- and fermion-field operators in terms of the one-mode-
per-site Wannier basis set �22�, thus obtaining the Hubbard
model,
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where the operators ĉj and âj annihilate a spin-polarized fer-
mion and a boson, respectively, in the jth site. The density
operators n̂j

c= ĉj
†ĉj and n̂j

a= âj
†âj are the fermionic and bosonic

densities, respectively. The fermion and boson atomic
masses and hopping amplitudes are mc, tc and ma , ta, respec-
tively. The collisional terms gaa and gac correspond to the
on-site boson-boson interaction which will be assumed posi-
tive �repulsive� throughout the paper, and on-site fermion-
boson interaction, respectively. The last term on the right-
hand side �RHS� of Eq. �1� is the harmonic trap potential
where �0 is the relevant oscillator frequency and � is the
lattice spacing.

We will consider the case where the bosonic atoms are
heavier than the fermionic atoms—e.g., 6Li-87Rb
mixture—to the extent that they are in an insulating Mott
phase with a vanishingly small number fluctuations �i.e., site-
number states�. This should be contrasted with Ref. �21�
which takes the bosons to be in the superfluid regime �i.e., in
a coherent state� and the masses to be comparable. Since the

FIG. 1. �Color online� Peierls instability in a lattice BFM: �a�
repulsive fermion-boson interactions and �b� attractive fermion-
boson interactions. The shaded part depicts the bosonic mean-field
density whereas solid circles denote fermionic atoms.
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tunneling terms depend exponentially on the atomic mass
and as the dynamic polarizability of the larger boson atoms is
greater than the polarizability of the fermions leading to
effectively deeper traps for the bosons �Fig. 1�, we have
tc , gaa� ta �23�. For a Q1D gas, boson-number fluctuations
at the limit of small ta scale linearly with ta /gaa. Therefore,
we replace the bosonic density n̂j

a in Eq. �1� by its c-number
expectation value nj

a= �âj
†âj�. The obtained results will thus

be subject to the self-consistent condition that the predicted
CDW be larger than boson density fluctuations.

When tc� ta the system can be described by an adiabatic
Holstein model, wherein its ground state is found by solving
the “fast” fermionic problem

Hef f
c ��ni

a	� = − �
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treating the bosonic densities nj
a as fixed parameters and then

adding the resulting fermion energy �parametrically depen-
dent on �nj

a	� as an effective potential to the “slow” bosonic
Hamiltonian,
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†âk +
gaa

2 �
j

�nj
a�2 +

ma�0
2�2

2 �
j

j2nj
a. �3�

Boson hopping in Eq. �3� can be neglected provided that
ta /��1 �24�. In what follows, we shall assume that ta=0
and impose self-consistency by restricting our results to the
case where the CDW modulation is larger than the boson
hopping energy.

For �0=0, the adiabatic Holstein model is known to ex-
hibit a Peierls instability �20�, with respect to bosonic collec-
tive excitations with wave number k=2�Nc /M, correspond-
ing to twice the Fermi wave number kF=�Nc /M �25�.

The 1D translation symmetry is reduced by enlarging the
effective unit cell. For example, for Nc /M =1/2 the unit cell
doubles, opening a gap in the fermionic spectrum at the zone
boundary of the folded Brillouin zone. We note that unlike
the standard Su-Schrieffer-Heeger �SSH� model �26� wherein
the coupling to the bosonic degrees of freedom affects the
hopping probability, the bosonic CDW in our system couples
to the fermions through on-site interactions.

In order to demonstrate the Peierls instability we will
study how the energy of the system is affected by spatial
bosonic modulations of the form

nj
a = n̄j

a + �nj
acos�kj� , �4�

with k=2�k̃ /M and k̃ integer. The density n̄j
a

= ��− �ma�0
2j2 /2�� /gaa, with � denoting the chemical poten-

tial of the bosons, is the Thomas-Fermi density profile which
minimizes the fixed Na bosonic energy Hef f

a +��� jn̂j
a−Na�, in

the absence of fermion-boson interactions. The density
modulation depth �nj

a� n̄j
a is generally a function of j,

varying slowly compared to the modulation wavelength. Un-
der this ansatz, the fermion Hamiltonian �2� takes the form
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where K= m̄��0��2 /2 with m̄=mc− �gac /gaa�ma and � j

=gac�nj
a. The mutual trapping of fermions and bosons can

only take place when gac /gaa�mc /ma or fermion atoms will
scatter out of the trap by the Bose mean field. In what fol-
lows we shall assume that this condition is satisfied. In Fig. 2
we plot the fermion spectrum 	q as a function of the fermi-
onic wave number q, obtained from direct diagonalization of
the Hamiltonian �5� for constant � j =�. In Fig. 2�a� we set
�0=0, whereas the effect of the trap is demonstrated in Fig.
2�b� by fixing the modulation frequency to k=� and plotting
the spectrum for various values of �0. It is evident that the
effect of the trap is to modify the fermion dispersion away
from the gap from quadratic to linear. The bosonic modula-
tion distorts the periodicity of the lattice, thereby opening a

gap at q= k̃ /2. For k=2kF�k̃=Nc� the gap coincides with the

Fermi momentum, so that all the states with �q� /M � k̃ /2M
=kF /2� whose energy is lowered are full and all the states

with �q� /M 
 k̃ /2M =kF /2� which increase in energy are
empty. Consequently, the fermionic energy is minimized for

k
2�k̃ /M =2kF, as depicted in Fig. 3 where we plot the
fermionic ground-state energy Ec obtained by integration
over the fermion spectrum up to the Fermi energy, as a func-
tion of the wave number of the spatial modulation in the
boson field. Sharp minima are attained, as expected, for
k=2�Nc /M =2kF. Further local minima of the energy,

FIG. 2. �Color online� Fermionic spectrum for various bosonic
modulations with �0=0 �a� and as a function of �0 for a fixed
modulation with k=� �b�.
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corresponding to smaller gaps opening at the Fermi momen-
tum, also appear for k=2kF / j with j integer.

The total energy of a half-filled system with

k=��k̃=M /2� is plotted in Fig. 4�a�, as a function of the
modulation depth �. The boson contribution to the
total energy, Ea=ETF+ �gaa /2gac�� j� j

2cos2�kj� �where ETF

= �5/7��Na is the Thomas-Fermi energy�, increases quadrati-
cally with the modulation depth. Hence, minimal total energy
Etot=Ec+Ea will be attained at some finite modulation am-
plitude, indicating the formation of a CDW. The optimal
modulation depth decreases as tc increases since linear fer-
mionic dispersion is attained at decreasingly small values of
the gap.

The resulting CDW can be detected by means of Bragg
spectroscopy �27� which probes the dynamic structure factor
S�q ,�� of the system. For a periodic system S�q ,�� is maxi-
mized for q corresponding to the periodicity of the system.
Since the Peierls instability involves a density modulation
with wave number equal to 2kF, there should be a strong q
=� /� signature in the Bragg spectrum for bosonic as well as
fermionic atoms, though the maximum will appear for dif-
ferent �.

Further insight is gained by employing the commonly
used continuum model �28�. For simplicity, we will focus, in
what follows, on the half-filling case Nc /M =1/2 where the
bosonic order parameter minimizing Ec is of the form nj

a

= n̄j
a+�nj

acos��j�. A similar treatment can be applied for
other commensurate fermion filling factors. In the continuum
limit, applicable when the lattice correlation length �
=2ltc /� is greater than the lattice constant l, the fermionic
Hamiltonian �5� is rewritten as

Hc =� dx�†�x��−
1

2m

0

�2

�x2 − ı�vF
3
�

�x
+ ��x�
2

+ 
0V�x����x� , �6�

where

��x� 
 
�1�x�
�2�x�

�
is the spinor representation of the fermionic field in terms of
right- and left-moving atoms, 
i are Pauli matrices, 
0 is the
identity matrix, and m is the effective atomic mass. The con-
tinuum limit for the trap potential is V�x�=m�0

2x2 /2, and the
gap parameter is � j→��x�. We note that in the Takayama-
Lin-Liu-Maki �TLM� model �28� which is the continuum
limit of the SSH model, there is no confining potential and
the dispersion is linearized. Moreover 
1 appears for the cou-
pling between left and right movers because the TLM cou-
pling to phonons modifies the off-diagonal hopping rate,
whereas in our case the coupling to the bose field modifies
the diagonal self-energy terms.

The fermion spectrum is obtained by Bogoliubov–de
Gennes �BdG� diagonalization of the fermionic Hamiltonian.
It may appear that due to the harmonic trapping potential the
1D translation symmetry for the fermionic atoms is lost �29�,
thereby inhibiting the Peierls instability. To demonstrate that
the Peierls instability will appear even in systems with re-
duced translation symmetry, we follow a similar method to

FIG. 3. �Color online� Ground-state fermionic energy as a func-
tion of the modulation wave number for various fermion filling
factors: Nc /M =1/2 �solid line�, Nc /M =1/4 �dashed line�, and
Nc /M =1/8 �dash-dotted line�. The external trap force constant is
KM2=0.1tc, and the bosonic amplitude modulation is set equal to tc.
Arrows indicate bosonic modulation wave numbers minimizing Ec.

FIG. 4. �Color online� Total system energy as a function of � for
various values of tc �a� and optimal gap values as a function of tc

�b�. The dashed line depicts the strong-coupling behavior of Eq.
�13�.
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the one used by Anderson to calculate the excitation spec-
trum of a superconductor with local disorder �30�. In this
technique, which is essentially equivalent to a local density
approximation �LDA�, the fermionic spectrum is calculated
by spatial averaging over spectra with different local order
parameters. We expand the field operators �1,2�x� as

�1�x� = �
n

�n�x�und̂n, �2�x� = �
n

�n�x�vnd̂n, �7�

where d̂n are fermionic mode annihilation operators and
�n�x� are harmonic oscillator eigenfunctions. Substituting

Eq. �7� into Eq. �6� and requiring that Hc=�n	nd̂n
†d̂n, we

obtain two coupled BdG equations.
The above expansion in harmonic oscillator eigenfunc-

tions eliminates the trapping potential from the BdG equa-
tions. One can now proceed by calculating the off-diagonal
matrix elements—i.e., expand � in terms of the asymptotic
expansion of the harmonic oscillator functions �21�. Below
we use a more general approach which is useful for any
arbitrary trapping potential and can be equally applied to
treat local potential fluctuations. In the framework of the
LDA, we diagonalize the BdG equations for a local order
parameter �. The functions �n�x� diagonalize the spatial part
of the BdG equations which simplify to

�	n − En�un = − ı�vn, �	n + En�vn = ı�un. �8�

Diagonalization of Eqs. �8� results in the local fermionic
spectrum 	n=�En

2+�2 in terms of the oscillator’s energy
En= �nF−n+1/2��0 measured with respect to the Fermi en-
ergy EnF

= �nF+1/2��0. This spectrum compares well with
the numerical spectra of Fig. 2�b� at the continuum limit. In
the limit �0→0, we have n�0→vFq, where vF=2tc� is the
Fermi velocity �with � set equal to 1� and q is the wave
number for the plane-wave solution of the nonconfined prob-
lem, so that the well-known spectrum for a cos��j� modula-
tion 	q= ±��qvF�2+�2 is reproduced.

Having found the fermionic local spectrum, the total
energy functional of the system is given as the sum Etot
=Ec+Ea. The fermion energy Ec is given within the LDA as

Ec = �
n=1

Nc � dx��n�x��2�En
2 + ��x�2 � �

n=1

Nc

�En
2 + �0

2, �9�

where �0 is a constant order parameter whose value is the
spatial average of ��x�. The boson contribution Ea is given
by

Ea =
1

2��vF
� ��x�2dx , �10�

where �=gac
2 / �2�gaatc� is the dimensionless fermion-boson

coupling constant. For a constant ��x�=�0 we have Ea

= �gaa /2gac
2 �M�0

2. Minimizing Etot by setting its variation

with respect to ��x� to zero, we obtain a self-consistent gap
equation for ��x�,

��x� =
��0

2 �
n=1

Nc

��n�x��2
�0

�En
2 + �0

2
, �11�

similar to the gap equation obtained by Anderson �30�.
For sufficiently wide traps, ��n�x��2 can be replaced by its

average value, thus restoring the familiar gap equation

1 = vF��
0

�

dq��vFq2 + �0
2�−1, �12�

where �=� /2� is a momentum cutoff of the order of the
fermionic bandwidth. Equation �12� is valid as long as one
can replace the fermionic density of states by its average
value. This criterion, which also applies to the Anderson
theorem, is satisfied in the continuum limit �31�, where the
coherence length is much greater than the lattice spacing
�� l �32�.

In the weak-coupling regime vF���0, Eq. �12� is solved
by �0=vF��=gac

2 /2gaa, whereas in the strong-coupling re-
gime vF���0 we have the well-known solution

�0 = 2vF� exp�− 1/�� . �13�

Our numerical results agree well with these continuum pre-
dictions as demonstrated in Fig. 4. The weak-coupling limit
is confirmed by the low tc curves in Fig. 4�a�, which attain a
minimum at �0=��tc=vF��. The strong-coupling behavior
is depicted in Fig. 4�b� where the minimum-energy gap �0 is
shown to precisely follow Eq. �13� �dashed line� for suffi-
ciently large tc.

To conclude, we have shown that a lattice BFM with
heavy bosons and light fermions can be described by an
adiabatic Holstein model. The ground state of the system at
T=0 is a Peierls CDW. At finite T, the CDW could only be
observed provided that T��0. The fermionic excitation
spectrum depends exponentially on the ratio T /�0 so that the
number of excited fermionic atoms is exponentially small.
However, since the bosonic spectrum does not contain a fi-
nite gap, the considerations on the critical temperature Tp for
obserbving a Peierls CDW due to the bosonic site-number
fluctuations are much more elaborate. It should also be men-
tioned that for the realistic case of finite bosonic hopping one
should expect, for a strong enough interaction between the
fermionic and bosonic atoms, a fermionic polaron phase
�18�. As for quantum fluctuations, it has been shown �24,25�
that for a critical fermion-boson coupling strength above
which �
 ta the ground state of the system is a Peierls CDW
state.
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