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Coherent population trapping �CPT� signals can be optimized with amplitude-modulated pumping light. As
shown theoretically and experimentally in this paper, the optimum wave forms produce strong CPT signals at
both low buffer-gas pressures, where the hyperfine structure �HFS� splitting of the optical absorption lines is
well resolved, and also at high buffer-gas pressures, where the HFS is no longer optically resolved due to
pressure broadening. On the other hand, CPT resonances from frequency-modulated waves are severely de-
graded for these high-pressure conditions. High buffer-gas pressures may offer advantages for miniature fre-
quency standards and magnetometers, including suppression of diffusion losses in miniature cells, suppression
of light shifts, and less stringent requirements for frequency stability of the pumping light sources.
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I. INTRODUCTION

Resonant light, modulated at the Bohr frequencies of tran-
sitions between certain ground-state sublevels of atoms, can
induce coherences between the sublevels and cause the light
absorption to change �1,2�. These coherent population trap-
ping �CPT� resonances �3,4� have potential advantages for
optically pumped frequency standards and magnetometers
because they eliminate the need for an oscillating magnetic
field �5�.

For CPT applications in atomic clocks, the carrier fre-
quency �c of the pumping light is chosen to be nearly equal
to the optical resonance frequency �o for the D1 or D2 ab-
sorption lines of alkali-metal atoms. The light is usually
modulated by an electro-optic crystal or by modulating the
current of a diode laser. The modulation frequency �m is
often chosen to be half the Bohr frequency � for the transi-
tion �the “clock resonance”� between the two ground-state
sublevels with azimuthal quantum numbers mf =0. Denote
the corresponding Bohr period by T=2� /�. The light has
nearly pure frequency modulation �FM� and can be charac-
terized by an FM modulation index m, such that the side-
bands at the frequencies �c+q�m have amplitudes Jq�m�,
where Jq is the Bessel function of order q=0, ±1, ±2, . . . .

The modulated light enters a cell containing alkali-metal
atoms and a buffer gas of sufficiently low pressure such that
the pressure-induced damping rate �o of the optical coher-
ence is smaller than �. Assuming phase modulation at the
frequency �m=� /2, an FM modulation index m=1.84
maximizes the power in the first-order sidebands at the fre-
quencies �c±�m. The sideband frequencies are approxi-
mately equal to the resonant absorption frequencies �o±� /2
of ground-state alkali-metal atoms in the upper and lower
sublevels of the clock resonance. Under these conditions,
coherent, resonant Raman scattering of photons between the
first-order sidebands generates a coherent superposition be-
tween the initial and final energy sublevels of the clock reso-
nance. The superposition state is called a dark state if the
opacity of the atoms, averaged over a few optical cycles, is
less than that of unpolarized atoms.

Many experiments �4,6� have confirmed that the ampli-
tudes of CPT resonances generated by FM light decrease as
�o grows with increasing buffer-gas pressure. At low pres-
sures, where �o��, the instantaneous frequency of the light
can sweep through resonance at times when atoms in the
superposition state have minimum polarizability and, there-
fore, absorb little light. At higher pressures where �o��, an
FM wave with maximized first-order sidebands will produce
a barely visible CPT resonance, since the excursion of the
instantaneous frequency remains within the pressure-
broadened linewidth.

As a quantitative measure of the strength of CPT reso-
nances we define the saturation S by

S = 1 −
Pd

Pu
. �1�

The quantity measured by the saturation can be understood
with reference to Fig. 1. As shown in the top panel �a�, an
atomic vapor is pumped by light modulated at the pth sub-
harmonic of the Bohr frequency �. For frequency-modulated
light, it is convenient to choose p=2. The response time of
the detector is not fast enough to detect power fluctuations at
optical or microwave frequencies, but we assume that the
detector is fast enough to detect much slower transient
changes in the opacity of the vapor, due to the relaxation
times of CPT resonances. In the middle panel �Fig. 1�b��, the
top trace P= P0 denotes the transmitted power for the light
that is well detuned from optical resonance, ��c−�o���o,
and for which the absorption by the vapor is negligible. The
lower trace shows the transmitted power for the optically
resonant light with �c=�o. From time t0 to t1, the modula-
tion frequency is well detuned from the CPT resonance —
that is, �p�m−����, where � is the relaxation rate of the
CPT resonance. No coherence is induced within the ground-
state sublevels of the vapor, although optical pumping by the
light may introduce some steady-state population imbal-
ances. We denote the power absorbed by these noncoherent
atoms by Pu.
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At time t1, the modulation frequency is switched to CPT
resonance, so that p�m=�. After a transient time on the
order of 1 /� �not to scale in the figure�, the atoms are
pumped into a superposition state oscillating in phase with
the modulated light. The power Pd absorbed by the atoms is
minimized. This is the dark state, and we say that the pump-
ing light is modulated as a dark wave for this superposition
state.

Imagine that a time delay of half a Bohr period T /2 is
suddenly introduced into the modulation pattern of the
pumping light at the time t2, leading to an instantaneous
modulation phase shift shown in Fig. 1�c�. Immediately fol-
lowing this phase shift, the relative phase between the oscil-
lating superposition state and the modulated light is such that
the absorbed power Pb is at a maximum. This bright-state
absorption is only transient. After a time on the order of 1 /�
the atoms are optically pumped into a new dark state that
differs by 180° in phase from the original dark state. The
absorbed power again becomes Pd.

The saturation S of Eq. �1� is a useful parameter for speci-
fying the strength of the CPT resonance since it is nearly
independent of the cell optical depth for optically thin cells.
The saturation S can be measured or calculated for light with
an arbitrary distribution of sidebands.

In Sec. II we begin our discussion of CPT with a fully
classical model, a dipole antenna that rotates in space at the
frequency � /2. In Sec. III we show that the CPT response of
the easy-to-visualize antenna of Sec. II is nearly equivalent
to the CPT response of alkali-metal atoms to circularly po-
larized D1 pumping light. The correspondence is exact for
buffer-gas pressures just large enough that the hyperfine
splitting of the excited 2P1/2 state is no longer optically re-
solved. Insights gained from the response of the classical

antenna of Sec. II are therefore quantitatively transferrable to
the CPT signals for alkali-metal atoms.

The connection between the classical antenna and the at-
oms can be understood by considering the optical absorption
cross sections of both systems. For a nonrotating dipole an-
tenna, with the axis pointing along the unit vector u, the
classical absorption cross section for light with a linear po-
larization vector e=E /E and an optical frequency � is

	 = 2	0�e · u�2, �2�

where the mean cross section for random orientations of u
and e in the plane normal to the direction of propagation of
the light is

	0 =
2�recf�o

��o − ��2 + �o
2 . �3�

Here, re=e2 /mec
2 is the classical electron radius, c is the

speed of light, �o is the optical coherence damping rate, and
�o is the resonant absorption frequency. The oscillator
strength, which is the mean value of �e ·u�2, is f =1/2.

The quantum-mechanical cross section for optical absorp-
tion of D1 light by nonrotating alkali-metal atoms �that is,
atoms with no hyperfine structure and no externally applied
magnetic fields� is �7�

	 = 	0�1 − 2s · �S�� , �4�

where the photon spin is

s = ie 
 e*. �5�

The expectation value of the electron spin is �S�, and 	0 is
given by Eq. �3� with f �1/3.

Although the cross-section expressions in Eqs. �2� and �4�
look different, they are completely equivalent. Consider a
Cartesian coordinate system with orthonormal unit vectors x,
y, and z. Let the light propagate along z, and let both u and
e be linear combinations of x and y. The Poincaré pseu-
dospin operators �8� for the xy plane can be chosen as

PJ� =
1

2
�xx − yy� ,

PJ� =
1

2
�xy + yx� ,

PJ
 =
1

2i
�xy − yx� . �6�

Dot products of Poincaré dyadics behave like spin-1 /2 op-

erators: for example, PJ� · PJ
− PJ
 · PJ�= iPJ� and 	�PJ� · PJ�

=S�S+1��xx+yy�, with S=1/2. In Poincaré space, the cross
section of Eq. �2� becomes

	 = 	0�1 − 2sP · �S�P� , �7�

an expression formally identical to Eq. �4�. The electron
pseudospin,

FIG. 1. �a� A CPT gedanken experiment. �b� Transmitted optical
powers: P0 for light detuned from the optical absorption line, ��c

−�o���o, and Pr for optically resonant light with �c−�o=0. �c�
Light modulation format, taken to be amplitude modulated for clar-
ity, on the same time scale as �b�. The long modulation period is a
microwave period, and the short period �not to scale� represents an
optical period.
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�S�P = u · PI · u , �8�

is determined by the orientation direction u of the antenna.
The photon pseudospin

sP = − 2e · PI · e �9�

is determined by the linear polarization vector e of the light.
One should remember, however, that the orthogonal axes �,

, and � of Poincaré space are not the same as the orthogonal
axes x, y, and z of ordinary space.

Cross sections like those of Eqs. �2� and �4� have nulls for
certain orientations of the antenna �or the atomic spin� with
respect to the light and, therefore, correspond to systems
with the maximum possible CPT signals. For example, the
antenna cross section of Eq. �2� vanishes when e ·u=0. This
is because the polarization e of the electric field must have
some projection along the antenna axis u for the field to
drive current. It is common knowledge that the absorption
cross section 	 of a short dipole antenna vanishes if the
direction u of the antenna axis is perpendicular to the direc-
tion e of the received field. For example, one can orient a
transistor radio with a ferrite, magnetic dipole antenna to
cancel out the reception of most of amplitude-modulated
�AM� stations, which usually have magnetic fields that are
approximately linearly polarized in a direction parallel to the
ground.

The cross section �Eq. �4�� of the atom has a null when
2s · �S�=1 — that is, when the spin of the photon has its
maximum magnitude �s�=1 and is parallel to the expectation
value �S� of the electron spin, which also has its maximum
magnitude ��S��=1/2, so that �S�=s /2. If the D1 photon
were absorbed, the electronic angular momentum of the ex-
cited atom would be �J�=s+ �S�=3s /2 with magnitude
��J��=3/2. But the maximum electronic angular momentum
for the 2P1/2 upper state of the D1 transition is ��J��=1/2, so
there is no way to accommodate the angular momentum of
the absorbed photon. The null in the cross section of Eq. �4�
thus comes from the conservation of angular momentum.

A nonrotating antenna or atom that is oriented to have a
null in its directive gain for an unmodulated wave is in a
static dark state for that wave. The unmodulated wave can
be called a static dark wave for the static dark state. An
example of static dark states and dark waves is an antenna
and a wave for which e ·u=0, with both e and u time inde-
pendent. If the antenna rotates or if the atom has nuclear
hyperfine interactions or is exposed to an externally applied
magnetic field, the direction of the null in the directive gain
also rotates. CPT is a way to exploit these periodic nulls with
modulated waves, or periodic dark waves, that have peak
amplitudes or exactly resonant frequencies when the direc-
tive gain has a null. There is very little absorption of the dark
waves by the rotating antenna or atom. The corresponding
state of the antenna or atom is a periodic dark state.

As indicated in Fig. 1, if we delay the periodic dark wave
by half a modulation period, the antenna or atom in the origi-
nal periodic dark state will extract maximum power and will
be in a periodic bright state with respect to the delayed
wave. The wave will have its maximum amplitude or the

exact resonance frequency when the antenna axis is parallel
to the electric field or when the spins of the photon and atom
are antiparallel. In Sec. III, we use these facts to explain why
AM light of fixed modulation index continues to give good
CPT signals at high gas pressures, whereas the CPT signals
from FM light of fixed modulation index become impracti-
cally small as the gas pressure increases.

The cross section for optical absorption of D2 light by
alkali-metal atoms with no hyperfine structure is �7�

	 = 	0�1 + s · �S�� , �10�

where 	0 is given by Eq. �3�, with f �2/3. There is no rela-
tive orientation of the photon spin s and the electron spin �S�
that reduces the cross section in Eq. �10� to zero. There are
no true dark states for D2 pumping, and the best one can do
is to obtain a factor of 3 in the ratio of maximum to mini-
mum absorption rates.

In Sec. IV we show that there are unique dark waves that
minimize the required laser power and maximize the satura-
tion of 0-0 CPT resonances excited with circularly polarized
D1 light. For low gas pressures, where �o��, this optimum
wave consists of two monochromatic waves, with frequen-
cies differing by �. One frequency resonantly excites atoms
in the upper sublevel of the 0-0 state, and the other frequency
resonantly excites atoms in the lower sublevel. For buffer-
gas pressures that are high enough so that �o��, the opti-
mum is a series of pulses, modulated with nearly Gaussian
envelopes. The required number of sidebands of the pulse
train is proportional to the square root of the gas pressure.

In Sec. V we show that the optimum CPT waves can be
converted into optimum waves for push-pull pumping �9�, by
splitting the light into two beams, delaying one beam by half
a hyperfine period T /2, polarizing the two beams to opposite
circular polarizations, and recombining them. This makes the
circular polarization of the exciting light alternate at the fre-
quency � and ensures that atoms are not pumped to the end
states, which is a serious problem �10� for the conventional
approaches using a fixed �nonalternating� circular polariza-
tion. For low gas pressures, where �o��, the two frequency
components of the combined wave are linearly polarized at
right angles to each other. This low-pressure, optimum wave
has been called “lin-�-lin” by Zanon et al. �11�, and it is the
same as the modulation format used by Jau et al. in their first
report of push-pull pumping �9�. For higher pressures, where
the optimum CPT wave has many sidebands, the correspond-
ing sidebands of the push-pull wave have alternating linear
polarizations.

In Sec. VI we present the data that validate the previous
discussions. We report measurements of CPT signals from
five Rb cells of varying buffer-gas pressure, using both AM
and FM light. As expected, the CPT saturation decreases
with higher buffer-gas pressure. The degradation of the satu-
ration due to pressure broadening is far more pronounced
with FM light than it is with AM. With AM light, good CPT
signals can be detected in cells with two atmospheres of
buffer gas pressure, where the optical broadening far exceeds
the hyperfine splitting.
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II. CLASSICAL DIPOLE ANTENNA

As the simplest antenna, we consider an elastically bound
electron with charge −e and mass me. The electron is con-
strained to move along the direction of the unit vector

u = x cos��t/2� + y sin��t/2� . �11�

Here x and y are the fixed orthonormal basis vectors. The
electron is connected to two springs with fixed end points
and a resonant frequency of �o, as sketched in Fig. 2. At time
t=0, u=x, and u is rotating with angular velocity � /2 in the
xy plane. Taking the unit vectors of Poincaré space to be �,
�, and � we find that the electron pseudospin, Eq. �8�, of the
antenna rotates about the axis 
 at twice the frequency of the
antenna in real space,

�S�P =
1

2
�� cos �t + � sin �t� . �12�

From Newton’s second law, the motion of the electron is
determined by the differential equation

me
d2r

dt2 = − kr − 2�ome
dr

dt
− eEu, �13�

where r=ru is the displacement of the electron from the
central equilibrium point, the restoring force constant is k,
and the damping coefficient is �o. For a real dipole antenna,
�o would be determined by a combination of the radiation
resistance and the coupling of the antenna to the receiving
circuit. For atoms, which we discuss in the next section, the
damping rate �o is normally due to pressure broadening of
the optical absorption line of the atoms by the buffer gas.

We write Eu=E ·u �the projection of the externally ap-
plied electric field along u� and r as Fourier integrals:

Eu = 

−�

�

d�Ẽu���e−i�t, r = 

−�

�

d�r̃���e−i�t. �14�

Substituting Eq. �14� into Eq. �13� gives the Fourier ampli-
tude of r,

r̃��� =
− eẼu���

k − 2i�ome� − me�
2 . �15�

The dipole moment of the antenna is

� = − er = − eru = �uu . �16�

The Fourier amplitude of �u is

�̃u = − er̃ = �Ẽu. �17�

From Eqs. �15� and �17� we see that the polarizability � is

���� =
− e2

me�� − �o + i�o��� + �o + i�o�

� � rec
2f

�o
� 1

�o − � − i�o
. �18�

The “one-pole” approximation to � on the second line of Eq.
�18� is excellent for conditions of interest to us, where �o
��o and � is close to the resonant frequency:

�o =
 k

me
− �o

2. �19�

The mean oscillator strength for the dipole antenna is f
=1/2.

Consider a monochromatic electric field of carrier fre-
quency �c polarized along the x axis. Then E=Exx, where

Ex = E�0�e−i�ct. �20�

Since the polarization of the field is e=x, the photon pseu-
dospin, Eq. �9�, is

�s�P = − � . �21�

The projection Eu=u ·xEx will have frequencies �c±� /2
and will induce corresponding frequency components of the
dipole moment, in accordance with Eq. �17�. The projection
of the rotating dipole on the x axis will therefore have three
frequency components: the original carrier frequency �c and
two sidebands with frequencies �c±�. So the projection of
the dipole moment induced by the monochromatic wave of
Eq. �20� along the x axis can be written as

�x = �xx��c,t�E�0�e−i�ct, �22�

where the xx component of the time-dependent polarizability
tensor is

�xx��,t� =
��� + �/2�

4
�1 + e−i�t� +

��� − �/2�
4

�1 + ei�t� .

�23�

From inspection of Eq. �23� we find that the polarizability
vanishes at times when �t= ±� , ±3� , ±5� , . . . . These are
the times when u= ±y and the directive gain of the antenna
vanishes.

FIG. 2. Dipole antenna, modeled as an electron driven to oscil-
late along an axis u by an electric field E�t�. The electron is at-
tached to two springs, the ends of which are fixed on a rigid frame
rotating in the xy plane with angular velocity � /2, such that the
angle between the frame axis u and the x axis is given by �t /2.
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By modulating the monochromatic wave of Eq. �20� such
that it has peak amplitudes �AM� or exactly resonant fre-
quencies �FM� at the null times, we can make dark waves for
the rotating antenna. We write the modulated wave as

Ex = 	
q

E�q�e−i�qt. �24�

The sideband index is q=0, ±1, ±2, . . ., Ẽ�q� is the Fourier
amplitude, and the sideband frequency is

�q = �c + q�/2. �25�

Combining Eq. �24� with Eq. �17� we find the induced dipole
moment

�x = 	
q

�xx��q,t�E�q�e−i�qt. �26�

The mean power absorbed by the dipole is

P = �Ex
*d�x

dt
� + c.c. �27�

The angular brackets denote a time average over one modu-
lation period, and “c.c.” denotes a complex conjugate. Sub-
stituting Eqs. �24� and �26� into Eq. �27� we find

P =
�o

2 	
q

����q��E�q+1� + E�q−1��2, �28�

where ����q� denotes the imaginary part of Eq. �18�.
As a specific example, consider a resonant, phase-

modulated wave for which Eq. �24� can be written as

Ex = Ke−i��ct+m cos���t−t0�/2��, �29�

where K is a constant amplitude. The instantaneous fre-
quency,

� = �c −
m�

2
sin���t − t0�/2� , �30�

which is the rate of change of the phase of Eq. �29�, is equal
to the resonant frequency �o when t= t0. We can think of t0
as an adjustable delay time that can be used to transform a
dark wave to a bright wave or vice versa.

From the generating function of Bessel functions �12� we
find that the sideband amplitudes of Eq. �29� are

E�q� = KJq�m�eiq��t0−��/2, �31�

where Jq�m� is a Bessel function of order q and argument m,

and E�q� was defined in Eq. �24�.
For a typical phase modulator, such as an electro-optic

modulator based on LiNbO3, the modulation index m will be
a real parameter that is proportional to the peak modulating
voltage and the length of the crystal. In this case, the phase
modulator produces pure frequency modulation and the in-
stantaneous frequency � of Eq. �30� is real. It oscillates be-
tween the bounds �c±m� /2 at the modulation frequency
� /2. We will generalize the concept of phase modulation by
assuming that m can be an arbitrary complex number, m

=m�+ im�. A purely real modulation index m=m� describes
FM, and a purely imaginary modulation index m= im� is a
good approximation for AM.

For light with its carrier tuned to the optical resonance
frequency ��c=�o� and for generalized phase modulation,
with sideband amplitudes given by Eq. �31�, the absorbed
power Eq. �28� becomes

P = A	
q

�Jq+1ei�t0/2 − Jq−1e−i�t0/2�2

�q�/2�2 + �o
2 = Pu + P1 cos��t0 + �� .

�32�

The coefficient A is

A =
rec

2f�o�K�2

2
. �33�

The phase � of Eq. �32� depends on the modulation index
m and the ratio �o /� of the optical damping rate to the
resonance frequency �. Expressions for the mean power
Pu�0 absorbed by an unpolarized ensemble of antennas,
oriented at random in the xy plane, and the phase-dependent
power P1�0 can readily be found from the first line of Eq.
�32�. The bright and dark powers, discussed in Fig. 1, are
Pb= Pu+ P1 and Pd= Pu− P1. The saturation defined in Eq. �1�
is

S = 1 −
Pd

Pu
=

P1

Pu
. �34�

For the low-pressure limit �when �o���, the terms in the
sum of Eq. �32� with q�0 can be neglected and the sum is
well approximated by

P = 4A�J1�m�cos��t0/2��2/�o
2. �35�

In this case Pu= P1=2A�J1�m��2 /�o
2 and �=0. If one varies

the time delay t0 of the pumping wave from Eq. �29�, the
absorbed power will oscillate between a maximum value
Pb= Pu+ P1=4A�J1�m��2 /�o

2 for the bright wave and a mini-
mum value Pd= Pu− P1=0 for the dark wave. Almost any
nonzero modulation index m will work at low gas pressure:
FM with m=m*� j1,s, where j1,s is one of the zeros �12� of
J1; AM with m=−m*; or some combination when m has both
real and imaginary parts. The saturation approaches the limit
S=1.

We can also sum Eq. �32� for high gas pressures where
�o� �m��. Since Jq�m� rapidly approaches zero for q� �m�,
we can make the replacement �o

2+ �q� /2�2→�o
2 for those

values of q where the Bessel functions in the numerator are
not negligibly small. Then Eq. �32� becomes

P =
A
�o

2	
q

��Jq+1�2 + �Jq−1�2 − Jq+1Jq−1
* ei�t0 − Jq+1

* Jq−1e−i�t0�

=
2A
�o

2 �J0�i2m�� − J2�i2m��cos��t0�� , �36�

where the imaginary part of the modulation index is
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m� =
1

2
�m − m*� . �37�

In evaluating Eq. �36� we made use of the identity

	
q

Jn+q�m�Jq�m*� = Jn�m − m*� , �38�

which can be verified by considering the Bessel expansion of
eim sin ��eim sin ��*. We also noted that J2 has negative real
values and J0 has positive real values for arguments along
the imaginary axis. Using Eq. �36� in Eq. �34� we find that
the saturation for a fixed modulation index in the high-
pressure limit is

S = −
J2�i2m��
J0�i2m��

. �39�

For FM light m is real, m�=0, J0�0�=1, and J2�0�=0, so Eq.
�39� becomes S=0.

In deriving Eq. �39� we assumed a fixed modulation index
m. If the modulation index m=m* for FM light increases
with pressure, one can limit the loss of saturation. For AM
light with a fixed imaginary value of m, the saturation never
falls below that given by Eq. �39�. For example, if we take
m�=1 in Eq. �39�, we find that the saturation never falls
below S=0.302, no matter how much line broadening there
is.

More insight into the pressure dependence of CPT signals
for FM and AM waves can be gained from a detailed con-
sideration of a few representative cases. The electric fields
�Eq. �31�� of dark �solid line� and bright �dash-dotted line�
FM waves with m=1 are illustrated in Fig. 3�a�. The phases
�t0 /2 of the bright and dark waves differ by � /2. The an-
tenna is assumed to have relatively little damping, with
�o /�=0.2. Figure 3�b� shows the resulting antenna currents,
the time derivatives of the dipole moments given by Eq.
�26�. Figure 3�c� plots the absorbed powers of Eq. �27�,
which are the products of the curves in panels �a� and �b�.
Figure 3�d� illustrates the relative deviation ��−�c� /�o of
the instantaneous frequency of Eq. �30� from the carrier fre-
quency �c=�o. It is superimposed on a series of arrows in-
dicating the orientation of the antenna at successive times.
When u is pointing along the horizontal direction �parallel or
antiparallel to x�, the antenna absorbs maximum power from
the bright wave, for which the instantaneous frequency � of
Eq. �30� is exactly equal to the resonant frequency �o of the
nonrotating antenna. Much less power is absorbed from the
dark wave, for which the instantaneous frequency � has
maximum detuning. The detuning greatly limits the amount
of power that can be absorbed from the dark wave because
the resonance line is much narrower than the maximum fre-
quency excursion, m� /2=� /2. Half a modulation cycle
later, when the instantaneous frequency of the dark wave is
on resonance, the antenna is perpendicular to the electric
field direction, and the field is unable to drive current, even
though it has the exact resonant frequency. The bright wave
is also not absorbed, both because of the orthogonality of the
antenna to the field and because the frequency of the bright
wave has maximum detuning at such times. Immediately af-

ter the antenna is oriented perpendicularly to the field, the
power pulses are negative. This represents transfer of power
stored in the antenna oscillations back into the field. The
average power over any modulation period, 2� /�, remains
positive. The saturation is S=0.595, somewhat less than the
narrow-line limit S=1, because the damping rate �o is 20%
of � and is not completely negligible.

All parameters of Fig. 4 are the same as those of Fig. 3,
except that the modulation index is m= i rather than m=1 as
for Fig. 3. As can be seen in Fig. 4�a�, there are now bright
and dark AM waves, delayed by half a hyperfine cycle with
respect to each other. The real part of the instantaneous fre-
quency in Eq. �30� is constant and equal to the resonant
frequency �o of the nonrotating dipole at all times. However,
the amplitude of the bright wave is maximum when the field
and antenna are parallel, so the antenna can respond most
efficiently. For the dark wave, the field is maximum when the

FIG. 3. CPT at low buffer-gas pressure with FM light. The elec-
tric fields Ex of the dark �solid� and bright �dash-dotted� waves are
shown in �a�. Panel �b� shows the corresponding antenna currents
d�x /dt; the dissipated power Ex ·d�x /dt is shown in �c�. Panel �d�
has sketches of the antenna orientations at various times. Horizontal
orientations are parallel to the driving field Exx, and vertical orien-
tations are perpendicular. Also shown in �d� are the instantaneous,
relative frequency detunings ��−�c� /� of the bright and dark
waves, compared to the absorption profile of the antenna �thick
solid line plotted vertically�. Panel �e� shows the average electronic
spin �Sz� of an alkali-metal atom rotating at �. The electronic spin
�solid line� is equal to the Poincaré spin �S��P of the antenna �ver-
tical arrows�. The D1 cross section of the alkali atoms has nulls at
�Sz�=1/2, which occur at the same times as the antenna nulls. The
relative absorption-line broadening is �o /�=0.2, the phase modu-
lation index is m=1, and the resulting CPT saturation is S=0.595.
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field and antenna are perpendicular, so it is not possible to
drive any current at that point. There is therefore less exci-
tation of the antenna with the dark wave than with the bright
wave. The saturation is S=0.662, a bit larger than that for the
FM wave of Fig. 3, but less than the narrow-line limit S=1,
because the damping rate is not completely negligible.

All parameters of Fig. 5 are the same as those of Fig. 4
except that there is relatively fast damping with �o /�=2.
The saturation has dropped from S=0.662 in Fig. 4 to S
=0.316, nearly to the infinite broadening limit, 0.302 of Eq.
�39� for m= i. The signal saturation for AM waves does not
have a strong dependence on �o. The ratio of bright-wave
power to dark-wave power is smaller for Fig. 5 than for Fig.
4 because the broader absorption cross section allows for
more absorption of dark-wave light when the antenna is not
quite perpendicular to the field. We note that as m�→�,
−J2�i2m�� /J0�i2m��→1, so for high gas pressure we can re-
cover 100% saturation by using AM light that is modulated
as a series of pulses that are very short compared to the
rotation period of the spring. If the pulses of the dark wave
arrive just as the dipole and antenna are perpendicular, al-
most no power will be absorbed. However, the pulse of the
bright wave arrives at the antenna when it is parallel to the
electric field, so much more power will be absorbed.

All parameters of Fig. 6 are the same as in Fig. 5 except
that m=1, rather than m= i. There are FM bright and dark
waves, just like those of Fig. 3. However, since the relative
line broadening is large ��o /�=2�, the relative frequency

detuning from resonance is too small for the dark wave
�when the field is parallel to the antenna� to make much
difference in the absorption. This can be seen in panel �d� of
Fig. 6. Both the bright and dark waves have instantaneous
frequencies close to the center of the broad resonance re-
sponse curve at all times, and they have nearly the same
absorptions. The saturation drops to S=0.016, a very serious
loss.

III. QUANTUM-MECHANICAL POLARIZABILITY

Here we show that the response of an alkali-metal atom to
circularly polarized D1 light is formally identical to the re-
sponse of a classical dipole antenna to linearly polarized
light, the details of which we discussed in the previous sec-
tion. In analogy to Eq. �26�, the expectation value of the
dipole moment ��̃�� , t�� induced in the alkali-metal atom at

time t by the Fourier component Ẽ��� of the electric field of
the light is

��̃�t�� = 

−�

�

d���J��,t�� · Ẽ��� . �40�

The polarizability dyadic is the expectation value of the po-
larizability operator with respect to the ground-state density
matrix �=��t� of the atoms,

FIG. 4. CPT at low pressure with AM light. The quantities plot-
ted in each panel are the same as those of Fig. 3. The relative
absorption-line broadening is �o /�=0.2, the phase modulation in-
dex is m= i, and the resulting CPT saturation is S=0.662.

FIG. 5. CPT at high pressure with AM light. The quantities
plotted in each panel are the same as those of Fig. 3. The relative
absorption-line broadening is �o /�=2, the phase modulation index
is m= i, and the CPT saturation is S=0.316.
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��J��,t�� = Tr��J�����t�� . �41�

The matrix elements between ground-state sublevels ��� and
��� of the polarizability operator are time independent and
given by �7�

�J����� =
1

�
	

k

��k�k�

�k� − � − i�o
. �42�

The energies of the ground-state sublevels are E� and E�,
while k denotes the excited-state sublevels �k� with energies
Ek. The Bohr frequencies are

�k� =
Ek − E�

�
. �43�

The optical coherence between the ground and excited states
damps exponentially at the rate �o as a result of spontaneous
radiative decay and collisions with other atoms. For very low
buffer-gas pressures one has to account for Doppler broad-
ening of the absorption line due to the velocity distribution
of the atoms. But for most miniature atomic clocks the
buffer-gas pressure is high enough �more than a few tens of
Torr� so that the pressure broadening exceeds the Doppler
broadening. We will therefore ignore Doppler broadening,
although it is quite straightforward to include it �7�.

It will be convenient to define a dimensionless excitation
operator A† and a deexcitation operator A, given by

Ak�
† =

�k�

�* , A�k =
��k

�
. �44�

The amplitude of � is defined by

���2 =
2�rec

2f

�o
, �45�

where f is the oscillator strength �13� of the absorption line
and �o is the mean optical resonance frequency. The oscilla-
tor strength of the D1 line of an alkali-metal atom corre-
sponding to excitation of the 2P1/2 state is f �1/3 and the
oscillator strength for the D2 line, corresponding excitation
of the 2P3/2 state, is f �2/3. With these definitions the po-
larizability in Eq. �42� becomes

�J����� =
2rec

2f

�o
	

k

A�kAk�
†

�k� − � − i�o
. �46�

Now consider the polarizability of a coherent superposition
state for the important 0-0 clock transition between an upper
sublevel ���= �a0� and a lower sublevel ���= �b0�. Here the
total angular momentum quantum numbers of the upper and
lower states are f = I+1/2=a and f = I−1/2=b; the azimuthal
quantum numbers of both states are m=0. The density matrix
is

� =
1

2
������� + ������ + ������e−i�t + ������ei�t� . �47�

The clock frequency is

� =
E� − E�

�
. �48�

Combining Eqs. �47� and �46� in Eq. �41�, we find

��J��,t�� =
rec

2f

�o
	

k
�A�kAk�

† + A�kAk�
† e−i�t

�k� − � − i�o

+
A�kAk�

† + A�kAk�
† ei�t

�k� − � − i�o
� . �49�

For buffer-gas pressures exceeding a few hundred Torr, the
pressure broadening of the optical absorption line is so large
that ��kl���o for any pair of Ek and El of the excited state. In
this limit, we can neglect the dependence of �k� or �k� on k
and write the frequency denominators of Eq. �49� as

�k� = �o − �/2, �k� = �o + �/2, �50�

where �o is the mean frequency of the optical absorption
line. Then the summation on k in Eq. �49� can be dropped by
closure, and we can write

��J��,t�� = ��� + �/2�����AA†��� + ���AA†���e−i�t�

+ ��� − �/2�����AA†��� + ���AA†���ei�t� .

�51�

The coefficients ���±� /2� were defined by the second line
of Eq. �18�. The dimensionless operator AA† for both the D1
line �J=1/2� and the D2 line �J=3/2� of alkali-metal atoms
has a simple form �14�

FIG. 6. CPT at high buffer-gas pressure with FM light. The
quantities plotted in each panel are the same as those of Fig. 3. The
relative absorption-line broadening is �o /�=2, the phase modula-
tion index is m=1, and the CPT saturation is S=0.0016.
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AA† =
IJ

4
−

�− 1�J−S

�J�
S · sI. �52�

The unit dyadic is

IJ= 	
k

xkxk. �53�

The projections of photon spin operator on the Cartesian
axes k=1,2 ,3 are

sJk = 	
lm

�klmxlxm

i
. �54�

Here the antisymmetric unit tensor �klm=xk · �xl
xm� is zero
if any two of the indices klm are equal; it has the value +1 if
klm is an even permutation of 123 and it is −1 if the permu-
tation is odd.

The projections in Eq. �54� satisfy the usual commutation
relations for spin operators,

�sJk,sJl� = i	
m

�klmsJm. �55�

One can also verify that �ksJk ·sJk=S�S+1�II, with S=1. The
true photon spin of Eq. �5� is

s = 	
k

xk�e* · sJk · e� . �56�

We can choose the phases of ��� and ��� such that the
matrix elements needed to evaluate Eq. �51� are

���S��� = ���S��� =
z

2
, �57�

from which we conclude that the expectation value of the
electron spin for the superposition state, Eq. �47�, is

�S� = Tr��S� =
1

2
z cos �t . �58�

Using Eqs. �57� and �52� to evaluate Eq. �51�, we find

��J��,t�� =
��� + �/2�

4
�IJ−

2�− 1�J−S

�J�
sJze

−i�t�
+

��� − �/2�
4

�IJ−
2�− 1�J−S

�J�
sJze

i�t� . �59�

For optical pumping with circularly polarized light, it is
often more convenient to use the spherical basis vectors �m
rather than the Cartesian basis vectors xi. The spherical basis
vectors are given by

�±1 =
x1 ± ix2

�
2
=

x ± iy

�
2
, �0 = x3 = z . �60�

In terms of these two bases, the longitudinal component of
the photon spin operator, Eq. �54�, can be written as

sJz =
1

i
�xy − yx� = �1�1

* − �−1�−1
* . �61�

Using Eq. �61� to take the matrix elements of Eq. �59� for
light of polarization �−1 �photon spin antiparallel to the z
axis�, the polarizability matrix element for D1 light with J
=1/2 becomes

�−1
* · ��J��,t�� · �−1 =

��� + �/2�
4

�1 + e−i�t�

+
��� − �/2�

4
�1 + ei�t� . �62�

This is precisely the same form as Eq. �23�, the polarizability
for a classical dipole antenna excited by light polarized along
the x axis. So Figs. 3–6 can also be interpreted as the re-
sponse of an alkali-metal atom in the pure superposition state
�47� to modulated, negative-helicity light, with the polariza-
tion vector e=�−1 and s=−z. The atom has no response at
times when 2s · �S�=1, since it cannot conserve angular mo-
mentum if it absorbs light at those times.

For D2 light with J=3/2, the matrix element is

�−1
* · ��J��,t�� · �−1 =

��� + �/2�
4

�1 −
e−i�t

2
�

+
��� − �/2�

4
�1 −

ei�t

2
� . �63�

As mentioned in the Introduction, there is no possibility of
getting a true dark state for D2 pumping, since the factors
�1−e±i�t /2� of Eq. �63� have no nulls as a function of time.
At best, one can get “dim” states. The superiority of circu-
larly polarized D1 light over D2 light for the pumping of
alkali-metal atoms has long been known �15� and has re-
cently been demonstrated experimentally for CPT pumping
�16�.

IV. OPTIMAL CPT WAVE FORMS

In Figs. 3–6 we showed detailed examples of how the
saturation of CPT signals depends on the broadening of the
optical absorption lines. For alkali-metal atoms, the broaden-
ing is mainly due to the buffer gas that is used to prevent the
atoms from diffusing to the cell walls too quickly. In this
section, we show that for systems such as the linear antenna
of Sec. II or such as alkali-metal atoms in the 0-0 superpo-
sition state of Eq. �47�, there is an optimal, pressure-
dependent modulation format that minimizes the required
optical power and maximizes the resonance saturation.

We write the electric field of the light as the product of a
carrier wave of frequency �o and time-independent ampli-
tude K and a periodic, dimensionless envelope E:

E = Ke−i�otE . �64�

The envelope is the Fourier series

E = 	
�

����e−i��t. �65�

As can be seen from Eq. �28�, the time-averaged power ab-
sorbed by bright or dark waves depends on the constructive
or destructive interference of sideband amplitudes spaced by
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� in the frequency domain. We therefore include sidebands
spaced by � in Eq. �65�, rather than those spaced by � /2 in
the analogous expansion of Eq. �24�. In Secs. IV and V,
Greek summation indices such as � or � will always denote
positive and negative half-integers—for example, �
= ±1/2 , ±3/2 , ±5/2 , . . .—while Latin summation indices
such as q will always denote positive and negative integers
and 0. Because of the half-integer summation indices �, the
periodicity of Eq. �65� is

E�t + qT� = �− 1�qE�t� . �66�

Using Eqs. �18� and �65� to evaluate �� in Eq. �28�, we
write the mean power absorbed by the antenna �or atom� as

P =
2A
�o

2 	
�

����� + ���+1��2

2 + �� + 1/2�2r2 , �67�

where we define the resolution parameter by

r =
�
2

�o
�68�

and A was defined in Eq. �33�. The mean absorbed power
�67� will vanish if the sideband amplitudes ���� have alter-
nating signs and equal magnitudes. We therefore define the
ideal dark wave with amplitudes that alternate between i and
−i by

�d
��� = e−i��. �69�

The envelope of Eq. �65� defined by Eq. �69� is

Ed�t� = 	
�

e−i���t+T/2� = Te−i��t+T/2�/2	
�

��t − �T� . �70�

The ideal dark wave, Eq. �70�, is not absorbed because the
�-function pulses reach the antenna or the atoms when the
polarizabilities in Eqs. �23� and �62� are exactly zero.

If we delay the envelope �70� by T /2, we get the envelope
of the ideal bright wave,

Eb�t� = Ed�t − T/2� = 	
�

e−i��t = Te−i�t/2	
q

��t − qT� .

�71�

The sideband coefficients of the bright wave are evidently

�b
��� = 1 = ei���d

���. �72�

Using the amplitudes of Eq. �72� in Eq. �67�, we find that the
power absorbed from the ideal bright wave is

Pb =
8A
�o

2 	
q

1

2 + q2r2 = 2�recf�coth���o/���
dS

d�
, �73�

where the sum in the first line of Eq. �73� extends over the
integers q=0, ±1, ±2, . . . . The time-independent amplitude
K is related to the spectral density dS /d� of power carried by
the light �units: erg s−1 cm−2 Hz−1� by

cK2 = �
dS

d�
. �74�

The sum in Eq. �73� can be evaluated from the well-known
partial-fraction expansion �17� cot x=	qx / �x2−q2�2�.

The waves given in Eqs. �70� and �71� are impractical
idealizations, but they are a good introduction to optimal
CPT waves which can be produced with practical modulation
schemes. We assume that the sideband amplitudes �b

��� of the
optimal bright wave depend on � and are normalized to
unity,

	
�

��b
����2 = 1. �75�

The mean absorbed power �67� from the optimal bright wave
can be written in matrix format

Pb = P0	
��

�b
���* ���b

���, �76�

where the characteristic power is

P0 =
rec

2fK2

2�o
=

�recfS

�o
. �77�

Here S=cK2 /2� is the flux �units: erg s−1 cm−2� of the wave.
The nonzero elements of the power-absorption matrix  of
Eq. �76� are

 �,�±1 =
2

2 + �� ± 1/2�2r2 �78�

and

 � =  �,�+1 +  �,�−1 =
2

2 + �� + 1/2�2r2 +
2

2 + �� − 1/2�2r2 .

�79�

In accordance with Eqs. �72� and �76�, the mean power ab-
sorbed by the optimal dark wave is

Pd = P0	
jk

�d
���* ���d

��� = P0	
��

�b
���* ���b

����− 1��−�.

�80�

The difference between the powers absorbed by the optimal
bright and dark waves is

Pb − Pd = P0	
jk

�b
���*!���b

��� = P0��b�!��b� . �81�

The only nonzero elements of the power-difference matrix
are

!�,�±1 = 2 �,�±1 =
4

2 + �� ± 1/2�2r2 . �82�

In analogy to Eq. �81�, we find that the sum of the powers
absorbed by the optimal bright and dark waves is

Pb + Pd = P0	
��

�b
���*����b

��� = P0��b����b� . �83�

The only nonzero elements of the power-sum matrix are
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��� = 2 �� =
4

2 + �� + 1/2�2r2 +
4

2 + �� − 1/2�2r2 . �84�

The saturation �34� of the optimal wave is therefore

S =
Pb − Pd

Pb + Pd
=

��b�!��b�
��b����b�

. �85�

One might think that the criterion for the optimal wave
would be the wave for which the saturation �85� reaches its
maximum value S=1. But we have already found the solu-
tion that maximizes S: namely, the ideal bright wave in Eq.
�71�. Such waves are not practical to produce; nor would
they be practical in use, since essentially all of the light
would be off resonance and the fraction of power absorbed
from the ideal bright wave would be vanishingly small. CPT
resonances observed by changes in laterally scattered atomic
fluorescence would be overwhelmed by instrumentally scat-
tered, off-resonant light. CPT resonances observed as
changes in the transmitted light would also be vanishingly
small. A practical criterion for the optimal wave is the wave
that maximizes the power difference of Eq. �81�, the numera-
tor of Eq. �85�.

Since the power difference �Eq. �77�� is the expectation
value of the Hermitian power-difference operator !, finding
the optimum wave consists of finding the solution to the
eigenvalue equation

!��n� = �n��n� , �86�

with the largest eigenvalue �b��n for all eigenvalues �n. The
Fourier amplitudes of the optimal bright wave are the eigen-

vectors �b
���. We set the phase of the amplitudes by taking

them to be real with �b
�1/2��0. Since ! is Hermitian, all of its

eigenvalues �n are real. In terms of the amplitudes �� ��n�
=�n

��� of ��n�, Eq. �86� is equivalent to the infinite set of
coupled equations

4�n
��+1�

2 + �� + 1/2�2r2 +
4�n

��−1�

2 + �� − 1/2�2r2 = �n�n
���. �87�

There are useful symmetries to the solutions of Eq. �87�.
First, since the coefficients of the coupled equations in Eq.
�87� are real, the eigenvector amplitudes �n

��� can be chosen
to be real.

Let ��n� be an eigenvector of Eq. �87� with eigenvalue �n.
Consider the reflected vector 	��n� with the amplitudes

���	��n� = �− ���n� = �n
�−��. �88�

Substituting Eq. �88� into Eq. �87� we see that !	��n�
=�n	��n�, so the reflected vector 	��n� is also an eigenvector
of ! with the same eigenvalue �n as ��n�. If there are no
degenerates, we conclude that 	��n�=�n��n�, where �n is an
eigenvalue of 	. Two reflections cancel, so 	2=1 and �n
= ±1. We conclude that a nondegenerate eigenvector ��n�,
must be even or odd under the reflection operation 	��n�
= ± ��n�. The reflection operator commutes with the operators
! and � — that is, 	!−!	=0 and 	�−�	=0.

The bright wave is even, and its envelope is given explic-
itly by

Eb�t� = 	
�

�b
���e−i��t, �89�

where the real amplitudes have the reflection symmetry
�b

�−��=�b
���. The same symmetries imply that the envelope is

an even function of time, so

Eb�− t� = Eb�t� . �90�

Evaluating the envelope in Eq. �89� at t=T /2 we find that

Eb�T/2� = 	
j

�b
���e−i�� = 0. �91�

The sum in Eq. �91� is zero because ei��=−e−i�� for the
half-integer summation indices � and because �b

���=�b
�−��.

From Eqs. �66� and �91�, we see that the envelope Eb will
have zero crossings at T /2+qT, where q=0, ±1, ±2, . . . is
any integer.

Turning now to a second symmetry of Eq. �87�, we define
the antiphase wave "��n� corresponding to ��n� by the ele-
ments

���"��n� = e−i������n� = e−i���n
���. �92�

Substituting Eq. �92� into Eq. �87� we see that !"���
=−�n"��n�, so "��n� is also an eigenvector of ! with eigen-
value −�n. The antiphase operator " anticommutes with ! —
that is, "!+!"=0. It commutes with � — that is, "�−�"
=0. Note that "2=−1.

The antiphase operator shifts the time origin of envelopes
by −T /2,

"E�t� = E�t + T/2� . �93�

Applying the antiphase operator " to a bright wave produces
the corresponding dark wave, �d

���=e−i���b
���.

The eigenvalue spectrum of ! is plotted as a function of
�o /� in the upper panel of Fig. 7, and the saturation S of Eq.
�85� is plotted on the same horizontal scale in the lower
panel. For low buffer-gas pressures, the bright wave corre-
sponds to the eigenvalue �b=2, and the corresponding enve-
lope has only two nonzero sidebands with �= ±1/2. The
corresponding envelopes are

Eb�t� = 
2 cos��t/2� ,

Ed�t� = − 
2 sin��t/2� . �94�

The saturation is S=1 for the low-pressure limit. The an-
tiphase, dark wave has the only other nonzero eigenvalue
�d=−2. At low pressure, all eigenvalues except those of the
bright and dark waves are zero. These correspond to waves
for which the resonant sidebands �n

±1/2 have zero amplitude.
All of these high-resolution results can be verified with a
perturbation-theory solution of Eq. �87�.

In the high-pressure limit with r�1, large numbers of
nonzero eigenvalues evolve from those that were zero in the
low-pressure limit. The eigenvalue of the bright state ap-
proaches the limit �b=4 as �o /�→�. Because of the broad
optical absorption linewidth, the bright wave has many side-
bands. For the �o /�→� limit, one can verify that the side-
band amplitudes approach the limiting value
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�b
��� � � r

�
�1/4

e−r�2/2, �95�

where r=
2� /�o. Substituting the amplitudes of Eq. �95�
into Eq. �65� we find the low-resolution approximation to the
bright-wave envelope,

Eb = �4�

r
�1/4

	
q

�− 1�qe−�2�t − qT�2/�2r�. �96�

The low-resolution envelope is a train of well-resolved
Gaussian functions of alternating sign. One could imagine
generating such a wave by passing a monochromatic laser
beam with the frequency �o through a phase modulator with
the purely imaginary modulation index

m =
i

r
=

i�o

�
2
. �97�

Optimal wave forms for low- and high-pressure p are
shown in Fig. 8. The three pairs of plots represent three
different pressure scenarios: low pressure at the top, where
�o��; intermediate pressure in the middle, where �o��;
and very high pressure at the bottom, where �o��. The
frequency-domain plots on the left show the sideband ampli-
tudes of the optimal bright wave and the atomic �or antenna�
absorption profile. On the right the optimal bright wave en-
velope is plotted as a function of time. As the pressure in-

creases, the number of sidebands needed for the optimal
wave increases with the square root of the pressure. The
temporal width of the envelope pulses is inversely propor-
tional to the square root of the pressure.

V. OPTIMUM PUSH-PULL WAVES

The optimal CPT waves of the previous section must
serve two purposes: �a� the saturation S of Eq. �85� must be
as close to unity as possible to give strong resonance signals,
and �b� the wave must efficiently pump the atoms into the
0-0 superposition state of Eq. �47� by “burning out” other

FIG. 7. �a� Eigenvalue spectrum of the power-difference matrix
! of Eq. �77� and �b� the saturation S of Eq. �85� for the optimal
CPT wave, Eq. �89�, plotted versus the buffer-gas pressure �o di-
vided by the hyperfine splitting �. There is a quasicontinuum of
eigenvalues �n with values close to zero, corresponding to waves
with mostly off-resonant sidebands. The eigenvalue �b of the bright
wave is the topmost line in panel �a�. For the low-pressure limit
�r→�� we see that �b→2. In the high-pressure case �r→0� we see
that �b→4. In both limits S→1, the saturation approaches its maxi-
mum possible value.

FIG. 8. Optimal bright waves in the frequency domain �left� and
time domain �right�. The sideband frequencies are ��=�o+��,
where �= ±1/2 , ±3/2 , . . . . Also shown in the left panel are the
pressure-broadened optical absorption cross sections. The wave of
the top panels is for low buffer-gas pressure where the atoms have
well-resolved hyperfine structure � /�o=10. The wave has two
strong frequencies, spaced by the resonance frequency �. Other
sidebands have negligible amplitudes. The wave of middle panel is
for intermediate pressure, with � /�o=1, just enough for the hyper-
fine splitting to be unresolved. The wave has several strong frequen-
cies, and the time-domain envelopes are narrowed. The wave of the
bottom panel is for high pressure, with � /�o=0.1, where the opti-
cal line broadening is much greater than the hyperfine splitting. The
optimal wave has many frequencies, and the time-domain enve-
lopes are very narrow.
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states which absorb light more strongly. Unfortunately, ex-
cept for the impractical “ideal dark wave” of Eq. �70�, the
0-0 superposition state absorbs a small, but nonzero amount
of optical power, while the end states �= �a , ±a��a , ±a� for
photon spin sz= ±1 absorb no light at all, since their polar-
izabilities are identically zero. Therefore pumping with
modulated light of fixed circular polarization eventually
transfers all of the atoms into the end states �10�, the stable
dark states for light of fixed circular polarization. To avoid
this “trapping” the intensity of the CPT pumping light must
be limited, so that collisional damping prevents all of the
atoms from accumulating in the end state. This severely lim-
its the size of the CPT resonance signals.

By using D1 light with modulated circular polarization or
push-pull pumping, Jau et al. �9� have shown that it is pos-
sible to make the 0-0 state the only dark state of the system.
A simple way to make an optimum push-pull wave is to split
an optimal CPT wave �89� into two waves with an optical
beam splitter to reverse the polarization of one of the waves
and advance or retard it in time by T /2 before recombining it
with the other wave. The superposed waves will pump the
atoms into the 0-0 state.

Let the two waves have orthogonal circular polarization
vectors �±1 defined by Eq. �60�. The photon spins corre-
sponding to these two waves are

s±1 = i�±1 
 �±1
* = ± z . �98�

Noting that Eb�t+T /2�=Ed�t� we see that an optimal opti-
mum push-pull wave is

E =
e−i�ot


2
��−1Eb�t� − �1Ed�t�e−i�oT/2�

=
e−i�ot


2
	
�+

�b
��+�e−i�+�t��−1 − �1e−i2#+�

+
e−i�ot


2
	
�−

�b
��−�e−i�−�t��−1 − �1e−i2#−�

= e−i�o�t+T/4��E+�t�e+ + E−�t�e−� . �99�

As indicated in Eq. �99� it is convenient to partition the half-
integer summation indices �= ±1/2 , ±3/2 , ±5/2 into the
two subsets �±= ±1/2+2q, where q=0, ±1, ±2, . . . is any
integer. We note that e−i�±�=e�i�/2. The phases are

#± = ��oT ± ��/4. �100�

The linearly polarized unit vectors are

e± = x cos #± + y sin #±. �101�

These vectors are at right angles to each other. The dot and
cross products are

e− · e+ = 0, e− 
 e+ = z . �102�

The push-pull envelope functions are

E±�t� = e�i�/4	
j±

�b
��±�e−i�±�t. �103�

Since the summation indices �± are equal and opposite and
since �b

�−��=�b
���, the envelope functions are complex conju-

gates of each other, E+�t�=E−
*�t�.

From inspection of Eq. �100� we find that

E±�t − qT/2� = �±i�qE±�t� , �104�

where q=0, ±1, ±2, . . . is any integer. From inspection of the
push-pull envelopes in Eq. �103� we find that we can write
the envelopes for the optimum CPT bright and dark waves as

Eb�t� = ei�/4E+�t� + e−i�/4E−�t� �105�

and

Ed�t� = e−i�/4E+�t� + ei�/4E−�t� . �106�

Conversely, we can write

E±�t� =
e�i�/4Eb�t� + e±i�/4Ed�t�

2

=
e�i�/4Eb�t� + e±i�/4Eb�t + T/2�

2
. �107�

As can be seen from the first line of Eq. �99�, the optimum
push-pull wave consists of two pulse trains of opposite cir-
cular polarization. The trains are interleaved so the intensity
of right-circularly polarized light is maximum when the in-
tensity of left-circularly polarized light is minimum. The
pulse repetition frequency for each sense of circular polar-
ization is �.

Alternately, the last line of Eq. �99� shows that the opti-
mum push-pull wave can be thought of as overlapping pulse
trains of orthogonal linear polarizations e− and e+. The rep-
etition frequency for the linearly polarized pulses is 2� since
the sidebands in the envelopes of Eq. �103� are spaced by
2�. The peaks of the pulse envelopes coincide, and the
phases are such that the combined waves have pure circular
polarization at their peaks. The sign of the circular polariza-
tion alternates from pulse to pulse. In the frequency domain,
the polarizations of the sidebands alternate between the or-
thogonal linear polarizations e− and e+.

In the high-resolution �low-pressure� limit, we can use Eq.
�94� with Eq. �107� to show that

E±�t� =
e�i��t+T/4�/2


2
. �108�

The optimal push-pull wave of Eq. �99� is then

E = e−i�ot��−1 cos��t/2� + �1 cos��t/2�e−i�oT/2�

=
1

2
�e+e−i��o+�/2��t+T/4� + e−e−i��o−�/2��t+T/4�� . �109�

Optimum push-pull waves and their corresponding spec-
tra are plotted in Fig. 9. The sideband frequencies are
��=�o+��, where the sideband indices are �
= ±1/2 , ±3/2 , . . . . Also shown in the left panels are the
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pressure-broadened optical absorption cross sections. The
wave of the top panels is for low buffer-gas pressure where
the atoms have well-resolved hyperfine structure � /�o=10.
The wave has two strong frequencies, spaced by the reso-
nance frequency � and of orthogonal linear polarizations.
Other sidebands have negligible amplitudes. There is sub-
stantial overlap in time of the pulses of alternating circular
polarization, so the polarization changes smoothly from cir-
cular to elliptical to linear, etc. The wave of middle panel is
for intermediate pressure, with � /�o=1, just enough for the
hyperfine splitting to be unresolved. The wave has several
sidebands, of alternating linear polarization. There is little
overlap in time of the pulses of alternating circular polariza-
tion, so the polarization changes more abruptly between rela-
tively pure states of circular polarization. The wave of the
bottom panel is for high pressure, with � /�o=0.1, where the
optical line broadening is much greater than the hyperfine
splitting. The optimal wave has many sidebands of alternat-

ing linear polarization. In the time domain, the light consists
of well resolved pulses of alternating circular polarization.

According to the first line of Eq. �109� we can think of the
optimum push-pull wave as the superposition of two
amplitude-modulated waves of opposite circular polariza-
tions �±1, both having the carrier frequency �o. Alternately,
according to the second line of Eq. �109�, we can think of the
optimal push-pull wave as two monochromatic waves of fre-
quencies �o±� /2 and of orthogonal linear polarizations e±.
Zanon et al. �11� show that one can mode-lock two mono-
chromatic lasers with orthogonal linear polarizations, such
that their frequencies differ by � and are resonant for exci-
tation from the upper and lower sublevels of the superposi-
tion state �47�. They describe this modulation as
“lin-�-lin.” Of course, “lin-�-lin” waves can also be gener-
ated with AM light from a single laser, as discussed above
and as demonstrated by Jau et al. �9�. For higher pressures,
where the optimal push-pull waves require many frequency
components, modulation with time delays and circular polar-
ization reversals may be more practical, although it would
also be possible to simultaneously amplitude-modulate lasers
of orthogonal linear-polarizations and with carrier frequen-
cies separated by � in a “lin-�-lin” pumping scheme to
make the optimal envelopes E± of Eq. �99�.

VI. EXPERIMENT

For experimental validation, push-pull CPT signals with
both FM and AM light were examined using cells of varying
buffer-gas pressure. The experimental arrangement is shown
in Fig. 10. The laser beam, functioning both as a pump and a
probe beam, was generated by a Toptica external cavity di-
ode laser centered on the D1 line of Rb �795 nm�. Different
modulators provided frequency and amplitude modulation. A
single LiNbO3 electro-optic crystal generated FM light, and
the AM light was generated by a modulator that is described
below.

In the theoretical section of this paper, we found it con-
venient to discuss both FM and AM light in terms of a gen-
eralized phase modulator, for which the modulation index m
could be an arbitrary complex number. CPT signals for FM
and AM light were modeled with purely real and purely
imaginary values of m in Sec. II. In our experiments, AM

FIG. 9. Optimal bright push-pull waves in the frequency domain
�left� and time domain �right�. Sideband amplitudes with the linear
polarization e+ of Eq. �99� are shown as solid lines in the left
panels, and amplitudes with the orthogonal linear polarization e−

are shown as dashed lines. The right panels show the intensity W
= �Eb�2 of light of circular polarization �−1 �dotted line� and the
intensity W= �Ed�2 of light of the orthogonal circular polarization �1

�dash-dotted line� from the optimal push-pull wave of Eq. �99�.

FIG. 10. Schematic diagram of the experimental apparatus.
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light was produced with a commercial Mach-Zehnder modu-
lator. A Mach-Zehnder modulator works by splitting the light
into two beams with real, positive electric-field amplitudes
K1 and K2, with unbiased phases �1 and �2, and with electri-
cally adjustable bias phases ±#. The microwave modulation
voltage introduces equal and opposite phase retardations
m cos���t− t0� /2� to the two beams, so the amplitude of the
recombined beam is

E =
e−i�ct

2
�K1ei��1+#+m cos���t−t0�/2�� + K2ei��2−#−m cos���t−t0�/2��� .

�110�

Using the generating function of Bessel functions �12�, we
find that the sideband amplitudes of Eq. �24� become

E�q� =
eiq�t0/2

2
Jq�m��K1ei��1+#+q�/2� + K2ei��2−#−q�/2�� . �111�

Our experimental conditions are similar to those of a
Mach-Zehnder modulator with perfect amplitude balance—
that is, with K1=K2=K, with a mean, unbiased phase retar-
dation �= ��1+�2� /2, and with a bias phase chosen for zero
transmission with no microwave drive power, ��1−�2� /2
+#=−� /2. Then Eq. �111� becomes

E�q� = ei�q�t0/2+��KJq�m�sin�q�/2� . �112�

The carrier and every even sideband �q=0, ±2, ±3, . . . � are
missing from the spectrum.

To provide data that could be most readily interpreted
with the analysis of earlier sections of this paper, we used the
push-pull pumping method �9�. For sufficiently intense light
and for modulation formats close to those of the optimal
waves discussed in Sec. V, push-pull pumping can concen-
trate most of the atoms in the superposition state of Eq. �47�.
For push-pull pumping, the circular polarization of the on-
resonance light must alternate at a frequency �m very close
to the hyperfine frequency � of the alkali-metal atom. As in
Ref. �9�, we used a Michelson interferometer to split the light
into two beams and to delay the phase of one with respect to
the other. After emerging from the linear polarizer of Fig. 10,
the FM or AM light was split into two beams, initially with
the same polarization. One of the two beams was simply
reflected by a mirror back to the beam splitter, while the
other underwent a � /2 change in polarization, so the recom-
bined beams from the two arms had orthogonal linear polar-
ization. A round-trip path length difference of $ /2=�c /�
=2.2 cm ensured that the recombined light beams were de-
layed by half a modulation period with respect to each other.
The light then passed through a quarter-wave plate with its
fast and slow axes oriented at 45° to the linear polarizations
of the recombined beams. As discussed in Secs. II and III,
the resonant light arrived at times when the absorption cross
section of the atoms in the superposition state of Eq. �47�
was nearly zero.

An Agilent microwave source supplied a 3.4-GHz signal
to the modulators. The Mach-Zehnder modulator also re-
quired a dc bias voltage, which controlled the phase # of Eq.
�111�. The bias was adjusted to maximize the power in the
first two sidebands. Fabry-Perot spectra of the FM and AM

modulation schemes are shown in Fig. 11. The modulator
parameters were adjusted to maximize the power in the two
first order sidebands and to minimize the power in the carrier
wave, which is undesirable because it does not participate
with the first-order sidebands in generating coherence. Un-
fortunately, because of the amplitude imbalance �K1�K2�
for the Mach-Zehnder modulator, it was not possible to
eliminate the carrier with the dc bias voltage.

In Fig. 12 we show raw data, the photodetector signal of
Fig. 10. The bottom trace B was taken with the laser fre-
quency tuned to the maximum of the optical absorption line.
The horizontal scale is a measure of the relative tuning of the
amplitude modulation frequency of the laser from the CPT
resonance frequency. More light reaches the photodetector at
resonance, corresponding to a partial dark state, with a sub-
stantial fraction, but not all of the atoms, in the superposition
state of Eq. �47�. The top trace T of Fig. 12 is the same
experiment with the frequency of the laser slightly detuned
from the optical resonance line. The laser power incident on
the cell is nearly the same for both traces. With reference to
Fig. 1, we see that the difference T−B is very nearly propor-

FIG. 11. Optical spectra of AM and FM pumping light, taken
with the Fabry-Perot spectrum analyzer depicted in Fig. 10. The
modulation indices m for the FM and AM light were about m
=1.7 and m=1.3, respectively.

FIG. 12. CPT resonance data trace. In the lower trace, the fre-
quency of the microwave generator is swept linearly through the
resonance, covering a range of 40 kHz per second. The upper trace
T is a measure of the light transmitted when the laser is detuned
from the D1 optical resonance.
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tional to Pu and !D is proportional to Pd. The saturation of
Eq. �1� is therefore

Sexp = 1 −
Pd

Pu
= 1 −

!D

T − B
. �113�

The data of Fig. 12 were uploaded to a computer, the CPT
resonances were fit to Lorentzian lineshapes, and values of T,
B, and !D were evaluated. Data were taken with cells con-
taining room-temperature buffer-gas pressures of 20, 80,
200, 730, and 1470 Torr of N2. The experimental saturations
Sexpt from Eq. �113� are plotted in Fig. 13 as squares for AM
light and circles for FM light. With AM light, CPT signals
could be detected in a cell with nearly two atmospheres of
N2 buffer gas. By contrast, signals with FM light could only
be detected in cells containing less than 0.3 atm.

The two curves plotted as dashed and dotted lines in Fig.
13 are ideal saturations discussed in Sec. II and given by Eq.
�34� as

S =
P1

Pu
. �114�

The horizontal axis is proportional to the optical line broad-
ening �o of Rb atoms by buffer gas. Measurements by Ro-
malis et al. �18� show that �o / p=5
1010 s−1 atm−1 for N2
gas of pressure p at temperatures on the order of 100 °C.
The FM saturation falls off much more quickly with increas-
ing pressure than AM. Both saturations reach their maximum
value of 1 at zero pressure, since a pure superposition state
was assumed in their derivation.

As can be seen from the discussion of Sec. II the mean
power for FM light is

Pu = A	
q

Jq+1
2 + Jq−1

2

�q�/2�2 + �o
2 , �115�

and the phase-dependent power is

P1 = − 2A	
q

Jq+1Jq−1

�q�/2�2 + �o
2 . �116�

The Bessel functions Jq±1=Jq±1�m� are summed over all in-
tegers q=0, ±1, ±2, . . . for the FM modulation index m
=1.7. A is the coefficient from Eq. �33�.

To find the CPT saturation expected from an AM wave
produced by an ideal Mach-Zehnder modulator, we use the
sideband amplitudes of Eq. �112� in Eq. �28� to find the mean
power

Pu = A	
q

J2q+1
2 + J2q−1

2

�q��2 + �o
2 �117�

and the phase-dependent power

P1 = − 2A	
q

J2q+1J2q−1

�q��2 + �o
2 . �118�

Only Bessel functions J2q±1=J2q±1�m� with odd indices
2q±1 occur in the sum over all integers q=0, ±1, ±2, . . . .
The modulation index is m=1.3.

The experimentally measured saturations Sexpt are sub-
stantially smaller than the ideal saturations. As shown in �9�,
the main reason is that the existing experimental setup for
push-pull pumping does not concentrate all atoms into the
0-0 superposition state of Eq. �47�, due to imperfect circular
polarization, various spin relaxation mechanisms of the
ground-state atoms, low optical pumping power, and the ab-
sence of pulse modulation. The most important relaxation
mechanisms �19� which need to be considered along with the
optical pumping are spin-exchange collisions between pairs
of alkali-metal atoms, S damping, Carver damping �20� due
to collisions between alkali-metal atoms and buffer gas at-
oms or molecules, and polarization losses due to diffusion to
the cell walls. Increasing the buffer-gas pressure speeds up
all of these relaxation mechanisms �except the last one� and
also decreases the optical pumping rate because of the pres-
sure broadening of the optical absorption line. Theoretical
fits from models that take all of these effects into account are
shown in the bottom two traces of Fig. 13. The fits agree well
with the data.

VII. CONCLUSIONS

We have shown theoretically that the pressure dependence
of 0-0 CPT resonances in alkali-metal atoms, pumped by D1
light, is equivalent to the absorption of a wave by a classical
dipole antenna that rotates at half the 0-0 frequency. As the
damping rate �o of the optical oscillations of the dipole or
the atom increases with increasing buffer-gas pressure, CPT
resonances with FM light of fixed modulation index m suffer

FIG. 13. CPT saturation versus buffer-gas pressure. As dis-
cussed in the text, the top two curves �dashed and dotted lines�
assume that all atoms are in the superposition state of Eq. �47�. The
decrease in the saturation with increasing pressure comes from the
optical line broadening. The CPT saturation of the experimental
data �squares for AM, circles for FM� is smaller and decreases more
rapidly with increasing buffer-gas pressure than for the top two,
ideal curves. The two curves through the data points are from a
detailed computer model that accounts for the decrease in the frac-
tion of atoms in the superposition state and for the decrease in the
optical pumping rates with increasing pressure.
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significant degradation. CPT resonances with AM light de-
grade much less quickly with increasing pressure. Optimal
AM waves exist that minimize the required optical power
and maximize the resonance saturation for every gas pres-
sure. In miniature cells, high buffer-gas pressure has many
advantages, including the suppression of diffusion rates and
less stringent requirements on the frequency stability of the
pumping light. The use of AM light offers a way to increase

the buffer-gas pressure while maintaining strong CPT reso-
nances.
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