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Multielectron giant dipole resonances of atoms in crossed electric and magnetic fields are investigated.
Stationary configurations corresponding to a highly symmetric arrangement of the electrons on a decentered
circle are derived, and a normal-mode and stability analysis are performed. A classification of the various
modes, which are dominated by the magnetic field or the Coulomb interactions, is provided. Based on the
MCTDH approach, we carry out a six-dimensional wave-packet dynamical study for the two-electron reso-
nances, yielding in particular lifetimes of more than 0.1 �s for strong electric fields.

DOI: 10.1103/PhysRevA.72.033416 PACS number�s�: 32.60.�i, 32.10.�f, 32.30.�r

I. INTRODUCTION

Interactions of atoms with strong electric and magnetic
fields, in particular crossed fields, have long been the focal
point of various research efforts �1–7�. The conflicting sym-
metries inherent in the electronic motion in atomic and ex-
ternal fields make for a rich variety of phenomena. In this
light they are not only interesting from a theoretical stand-
point, such as the hydrogen atom, which constitutes a para-
digm for a chaotic system �8–12�. Their study also had a
major impact on a number of other fields, ranging from semi-
conductor physics to astrophysics.

However, for a long time theoretical investigations did not
go beyond the stage of treating the nucleus as frozen, the
so-called infinite-mass approximation. The model underlying
this picture is the concept that the atomic motion could be
separated into that of the center of mass and the one relative
to it. While this is perfectly justified for translationally in-
variant systems—going along with the conservation of the
total momentum—it ceases to be true in the presence of
magnetic fields. Nonetheless, a weaker version of this proce-
dure can be established in the case of �neutral� atoms in
homogeneous fields �9,13–15�. In this pseudoseparation, a
conserved quantity termed pseudomomentum—the total mo-
mentum plus a field-dependent compensation—allows to ob-
tain a Hamiltonian that depends on the relative coordinates
only. However, that relative motion strongly depends on the
center of mass via the pseudomomentum. This coupling
gives rise to some new and interesting effects, such as cha-
otic diffusion of the center of mass �16,17�, or dynamical
self-ionization �18,19� for the case of ions.

Yet one of the most prominent among these finite-mass
effects is the existence of giant dipole states, where the elec-
trons can be decentered from the nucleus by many 10 000
atomic units �20,21�. The systematic base for this was the
gauge-independent generalized potential first derived for hy-
drogen by Dippel et al. �22� and extended to arbitrary atoms

by Schmelcher �23�. It has been applied extensively to study
giant dipole states in the two-body case; e.g., hydrogen �22�
and positronium �24,25�, where the large interparticle dis-
tance prevents annihilation for up to several years. By con-
trast, the extension to the multielectron case has attracted
only limited attention. There have been indications for two-
electron quasistable giant-dipole states based on a local
semiclassical analysis �23�. The aim of this paper is to both
provide a local analysis of general N-electron system and
investigate the stability of the full quantum-mechanical sys-
tem. In order to first analyze the N-electrons case analyti-
cally, we look for stationary points of the so-called general-
ized potential of the effective relative motion �the giant-
dipole configuration� so as to carry out a normal-mode
analysis about these points. Equipped with this insight into
the local behavior, we study the exact system N=2 numeri-
cally using wave-packet propagation. Here we resort to the
MCTDH method �multiconfiguration time-dependent Hartree�
�26–28�.

This paper is organized as follows. In Sec. II, the theoret-
ical framework of the pseudoseparation is reviewed and ap-
plied to derive the generalized potential of the relative mo-
tion. Section III then deals with the stationary points of the
generalized potential as a base for the analysis of giant dipole
resonances. In the subsequent section, the normal-mode
analysis for N electrons is carried out. To this end, the local
equations of motion are derived �Sec. IV A�, whose eigen-
modes and eigenvectors are computed numerically �Sec.
IV B� as the solutions of a quadratic eigenvalue problem.
Section V contains a wave-packet dynamical study of the
two-electron system based on the MCTDH method. Results on
the stability, spectral properties and lower bounds for the
lifetimes of the resonances are presented.

II. THE N-ELECTRON ATOM IN CROSSED ELECTRIC
AND MAGNETIC FIELDS

The Hamiltonian of an atom, consisting of N electrons �of
mass m� and a nucleus �mass M0� interacting via the Cou-
lomb potential V, reads in the laboratory frame,
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H =
1

2m
�
i=1

N

�pi − eA�ri���
2 +

1

2M0
�p0 + ZeA�r0���

2 − e�
i=1

N

E · ri�

+ ZeE · r0� + V .

Here an electron �index i�N� has the electric charge
e=−�e�; the atomic number Z equals the number of electrons
N in the neutral case treated here. We consider static electric
and magnetic fields, which are accounted for by the electro-
static potential ��r�=−E ·r and the vector potential A�r�,
whose gauge is not fixed here.

In the field-free case, the translation invariance of the
system—going along with the conservation of the total
momentum—guarantees a complete separation of the center-
of-mass and the relative motion. The vector potential now
breaks that symmetry. For the special case of homogeneous
fields, though, it was shown that a so-called pseudosepara-
tion of the center-of-mass motion is possible. The key is that
even though the total momentum is not conserved, the total
pseudomomentum Kª�a=0

N ka defined in terms of the one-
particle pseudomomenta,

ki ª mvi − eri� � B ,

and likewise for the nucleus, is constant by construction
�9,14,15�. It can be thought of as the kinetic center-of-mass
�c.m.� momentum plus a magnetic-field-dependent compen-
sation, which trivially reduces to the total momentum in the
case B=0. Moreover, its components �K�� mutually com-
mute for a neutral system, making them commensurable con-
stants of motion. This is crucial in performing a gauge-
independent pseudoseparation of the c.m. motion �22,23�,
which consists of the following steps:

�1� Transformation to c.m. and coordinates relative to the
nucleus, �Rc.m. ,ri�, yielding Hc.m. and Kc.m..

�2� Choose the total wave function to be a simultaneous
eigenstate of the pseudomomentum with eigenvalue K,
�Kc.m.−K��K=0. The result is of the form

�K�Rc.m.,�r j�� = U�Rc.m.,�r j�����r j�� , �1�

where � is an arbitrary function of the relative coordinates,
and U denotes a unitary operator.

�3� Finally reduce the full Schrödinger equation to an ef-
fective one for the relative coordinates via

�H − E�� = 0, with UHU−1 = Hc.m.. �2�

It must be emphasized that gauge independence is an essen-
tial quality of the pseudoseparation scheme outlined here. A
major drawback inherent in any fixed-gauge approach is that
one cannot identify gauge-independent terms in the effective
Hamiltonian �2�, making the analysis less systematic.

In order to derive this effective Hamiltonian in a gauge-
invariant way, we decompose the vector potential according
to

A�r� = 1
2B � r + �	�r� .

The transform U and hence the effective Hamiltonian
H=T+V is then determined only up to some 	-dependent

function f��r j�� of the relative coordinates which vanishes by
construction for �	=0 �23�,

T =
1

2m
�
i=1

N 	pi −
e

2
B � 
ri − 2

m

M
�
j=1

N

r j� + e�i f�2

+
1

2M0
	�

j=1

N 
p j −
q

2N
B � r j + e� j f��2

�3�

V =
1

2M

K − eB � �

j=1

N

r j�2

− e�
i=1

N

E · ri + V , �4�

with q=Ne�M0−Nm� /M.
T represents the �gauge-dependent� kinetic energy of the

relative motion; it depends on the gauge via f . As opposed to
that, the generalized potential V is manifestly gauge indepen-
dent and is therefore identified as an effective potential for
the electronic motion at a given value of the total pseudomo-
mentum. Beyond the usual Coulomb potential and the Stark
terms due to the external electric field, we have an expres-
sion corresponding to the c.m. kinetic energy,

1

2M

K − eB � �

j=1

N

r j�2

=
K2

2M
+

e2

2M

B � �

j=1

N

r j�2

− e
K � B

M
��

j=1

N

r j . �5�

The first term, the analogue of the field-free c.m. energy, is
merely a constant. The second expression is a diamagnetic
term, which acts as a confining harmonic potential on the
electrons’ center of mass, �1/N�� j=1

N r j, with a frequency
�c.m.
NeB /M perpendicular to the magnetic field. Most no-
tably, the center of mass—unlike in the field-free case—
actually couples to the electrons �i.e., to their center of mass�
via the motional electric field EMªK�B /M. For crossed
fields, it is therefore inviting to combine the Stark terms
arising from both the external and the motional electric field
and account for them by defining the effective pseudomo-
mentum,

K� ª K + M
E � B

B2 
 K − Mu ,

u being the classical drift velocity. The Hamiltonian then
reads �22,24�

H�K,E� = H�K�,0� + K · u − 1
2 Mu2.

We have thus reduced our problem of crossed fields to a
purely magnetic one. In what follows, we will always deal
with H�K� ,0� for simplicity.

The generalized potential derived above gives rise to
many effects, among the most prominent ones being the ex-
istence of giant dipole states �GDS�. The concern of the fol-
lowing two sections is to derive stationary points of that
potential which accomodate these states, and to classify their
normal modes.
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III. STATIONARY CONFIGURATIONS OF THE
GENERALIZED POTENTIAL

With the gauge-independent generalized potential at hand,
we can now start our search for decentered stationary points,
which we will identify as candidates for giant dipole reso-
nances. To facilitate the search for stationarities, we will first
choose convenient coordinates �Sec. III A� which present a
suitable extension of the case N=2 �23�. We will then derive
and solve the stationarity conditions by an educated guess in
Sec. III B.

A. The electronic center of mass frame

As we know from the studies on the one-electron case
�22–24�, it is the c.m.-kinetic energy �5� that is responsible
for the decentered states. It was pointed out after Eq. �5�
already that this term depends on the combination
R= �1/N�� j=1

N r j, which we refer to as the electronic center of
mass �e.c.m.�. It is thus natural to introduce the e.c.m. as a
new coordinate. In addition, we will choose N−1 vectors
relative to the e.c.m., i.e., to decompose ri=R+si, where the
�si� only account for all but one �say, the Nth� electron’s
relative position,

�r1, . . . ,rN� � �R;s1, . . . ,sN−1�

R ª

1

N
�
i=1

N

ri

si ª ri −
1

N
�
j=1

N

r j �i = 1, . . . ,N − 1� .

Introducing the conjugate momenta P=−i�� /�R�,
� j =−i�� /�s j�, the Hamiltonian H=T+V becomes �with
f =0 for simplicity�

T =
1

2�N

P −

q

2
B � R�2

+
1

2m
�
i
N


�i −
1

N
�
k
N

�k −
e

2
B � si�2

+
1

2m
 1

N
�
i
N

�i −
e

2
B � �

i
N

si�2

, �6�

V =
1

2M
�K� − eB � NR�2 − Ze2�

a=1

N
1

ra
+ e2 �

a
b�N

1

sab
, �7�

where we introduced the shorthand

sN 
 rN − R = − �
i=1

N−1

si,

ra 
 �ra� = �R + sa� ,

sab 
 �sa − sb� �a 
 b � N� ,

as well as the reduced mass �N
−1= �Nm�−1+M0

−1. It is reassur-
ing that the kinetic energy can be shown to have the intuitive
form

T =
1

2
�NṘ2 +

1

2�
a=1

N

mṡa
2.

B. Existence of stationary points

Given the advantageous form of the Hamiltonian �6� and
�7�, we are now ready to look for stationary points of the
potential. If we define Q= �R ,s1 , . . . ,sN−1�T�R3N, then we
seek some Q0 such that

�V
�Q

�Q0� = 0.

This stationarity condition leads to the rather intricate set of
equations,

0 =
�V
�R

�Q� =
NeB

M
� �K� − NeB � R�

+ Ze2	R
�
i
N

1

ri
3 +

1

rN
3 � + �

i
N

si
 1

ri
3 −

1

rN
3 �� ,

�8�

0 =
�V
�si

�Q� = Ze2	R
 1

ri
3 −

1

rN
3 � +

si

ri
3 −

sN

rN
3 �

− e2	si
 �
k
N

k�i

1

sik
3 +

1

siN
3 � − �

k
N

k�i

sk

sik
3

+ �
k
N

sk
 1

siN
3 +

1

skN
3 + �

j
N

1

sjN
3 �� . �9�

�Throughout this section, the subscript in Q0 is omitted for
mnemotechnical reasons.�

Equations �8� and �9� constitute a 3N-dimensional nonlin-
ear system of equations that has little hope of being solved
analytically in complete generality. However, one can try to
find special solutions by an educated guess. For instance, one
immediately sees that Eq. �8� simplifies considerably if
ri=rN for all i. At that stage, all electrons are distributed on
the shell of a sphere centered around the nucleus. It is tempt-
ing to go one step further and require R�si so as to de-
couple the two types of coordinates. This motivates our set
of assumptions I:

ri = rN ¬ r, R · si = 0 ∀ i 
 N . �10�

Before summarizing the immediate consequences, let us
specify a basis �� ,� ,�� such that the magnetic field points
along the � direction,
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� = B/B ,

� = K�/K�,

� = � � �/�� � �� .

�For convenience, we assume ��K� ,B�=90° in addition to
the premise of crossed fields. This may be achieved by pre-
paring a state with K�0 so that only the external electric
field is relevant.� In this basis, write the extremal e.c.m. vec-
tor in terms of R ·�=X ,R ·�=Y ,R ·�=Z.

If �10� holds, then the extremal condition �8�, ��V /�R�Q
=0, is equivalent to

�i� Y =Z=0, that is R= �X ,0 ,0�T, where
�ii� X satisfies Pr�X�=−�NeK�B /M�+ ��NeB�2 /M�X

+NZe2�X /r3�=0.
�iii� Moreover, there is a set of angles �i such that

si=s�0,cos �i , sin �i�T ∀ i
N.
By �i�, if there is a solution, then the electronic center of

mass will be aligned along the � axis, that is the decentering
takes place antiparallel to the electric field. Based on this,
statement �ii� gives the �implicit� condition for the existence
of solutions X. Finally, �iii� reflects a constraint on all rela-
tive coordinates sa: they have the same norm s and—due to
their orthogonality to R—can be placed arbitrarily on a circle
about R. For symmetry reasons, we demand that all relative
coordinates be distributed uniformly over the circle, which
amounts to the assumption II,

�k = �Nk + � ∀ k, �N 

2


N
. �11�

This procedure determines the circular configuration only up
to a global rotation by an angle �� �0,2
�.

The above guess allows us to fix the ratio of �X� and s, or
r and s, respectively, so as to meet Eq. �9�,

r = s

3� 4N

�k
N 
sin
�k

2
�−1 ¬ �Ns , �12�

r = �1 − �N
−2�−1/2�X� ¬ �̃N�X� . �13�

Pictorially, �N is related to the angle �N between R and ri via
sin �N=�N

−1. To be explicit, we have computed the param-
eters for some relevant N as follows:

N �N=
r

s
�̃N=

r

�X�

2 2 2
�3

=1.15470054. . .

3 �3=1.7320508. . . �2

3
=1.22474487. . .

4 1.6107688… 1.27558847…
5 1.5372471… 1.31666491…

The connection between r and X now also enables us to
turn the implicit equation Pr�X�=0 above into a cubic equa-
tion

X3 + X2 K�

NB
−

M

�̃3B2 = 0, X 
 0. �14�

Equation �14� has two distinct solutions X1/2�K ;B� provided
that K��Kcr
�3N / �̃��3 MB /4,

X� =
K�

3NB
	2 cos
� + � · 2


3
� − 1�, � = 1,2,

cos � 
 2
Kcr

K�
�3

− 1. �15�

In other words, for any B there is a critical value Kcr for
K� below which ��V /�X��X� ,si

�0��=0 has complex solutions.
In an experiment, one therefore must control the value of
K�= �K+ME�B /B2�. Averbukh et al. �29� suggested how
this could be achieved experimentally. The underlying idea is
to prepare an atom with low K �requiring a slow c.m. mo-
tion�, and use the electric field E to control the critical pa-
rameter. This way an initially prepared Coulomb-Rydberg
state is transformed into a decentered state localized in the
extremum.

To gain a better understanding of the two solutions, their
behavior is illustrated in Fig. 1. For fixed B, both lines meet
at the vertex Xc
X1�Kcr�=X2�Kcr�=−Kcr /NB. From there
on, the lower branch X1�K� tends to −� monotonically
�which we identify with a proper decentering�, whereas the
upper curve X2�K� goes to zero �i.e., the decentering gets
lost�. For stronger magnetic fields, in turn, the decentering
region around Xc shrinks. We remark that the decentering is
virtually insensitive to the number of electrons, N.

Let us now wrap up our results. Every stationary elec-
tronic vector possesses the orthogonal decomposition

FIG. 1. �Color online� The extremal component X1/2 as a func-
tion of K /Kcr for different field strengths B / a.u. The critical point
X�Kcr� corresponds to the vertex where X1 �lower graph� and X2

�upper graph� meet.
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ri = X� + s�0,cos �i,sin �i�T.

This means that all electrons have a common position along
�—which we refer to as the decentering—while they are
confined to a highly symmetric circular configuration per-
pendicular to �. This circular configuration in turn is deter-
mined only up to an overall rotation �. A generic setup is
shown in Fig. 2.

The extremal solution exists only if the effective pseudo-
momentum K� �controlled via the electric field� exceeds
some critical value. The more it does so, the more distinct
the decentering of the e.c.m will be.

IV. NORMAL-MODE ANALYSIS OF N-ELECTRON GIANT
DIPOLE STATES

As argued in the preceding section, we expect the station-
ary configurations to be candidates for giant dipole reso-
nances with certain lifetimes. Preceding a numerical study,
we first seek to obtain some insight into the local stability of
the system, i.e., their behavior in the vicinity of the extrema.
To that end, we will carry out a normal-mode analysis about
these points. More specifically, we shall consider the har-
monic system

V�Q� ª V�Q0� + 1
2 �Q − Q0�Tw�Q − Q0� ,

with the Hessian matrix w
�2V�Q0��R3N�3N. According to
Ehrenfest’s theorem, in this case the expectation values
�Q��t� obey the corresponding classical equations of motion.
Their solution leads us to a quadratic eigenvalue problem,
which will be solved by linearization so as to obtain the
eigenmodes and eigenvectors, giving an insight into both the
dynamics and the spectrum of the problem.

A. Equations of motion

Before stating the equations of motion, we are to deduce
the form of the Hessian matrix of the generalized potential V.
Using the obvious notation

��2V��Q0� =�
�2V

�R�R

�2V
�R�s j

�2V
�si�R

�2V
�si�s j

�
Q0

= 
wRR wRj

wiR wij
�

i,j=1

N−1

,

a lengthy calculation reveals that the symmetric matrix w has
the 3�3 block structure

wRR =
�NeB�2

M
I� + �Ne�2	 I

r3 −
3

r5
R � R +
1

N
�
a=1

N

sa � sa�� ,

wRi = − Ne2 3

r5 �2S��si − sN� � R� + si � si − sN � sN� ,

wij = − Ne2 3

r5 �R � R�1 + �ij� + 2S��si�ij + sN� � R� + si � si�ij + sN � sN�

+ Ie2�N
1 + �ij

r3 − ��ij �
a=1

�a�j�

N

saj
−3 − �1 − �ij�sij

−3 + siN
−3 + sjN

−3 + �
k
N

skN
−3�� + 3e2��ij �

a=1

�a�j�

N
�s j − sa� � �s j − sa�

sja
5

+ �
k
N

�sN − sk� � �sN − sk�
sNk

5 + 
 �si − sN� � �si − sN�
siN

5 + �i → j�� − �1 − �ij�
�si − s j� � �si − s j�

sij
5 � , �16�

FIG. 2. �Color online� A giant-dipole configuration for N=4
electrons �B=10−4, K=2Kcr�. The e.c.m. R= �X ,0 ,0� is decentered,
with the relative vectors si confined to a circle as indicated. Also
shown is the electronic vector relative to the nucleus ri=R+si. A
typical example of the cyclotron and the motion due to a Coulomb
mode is indicated �see Sec. IV B 1�.
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where I�
diag�1,1 ,0�, S denotes the symmetrizer, S�A�
= 1

2 �A+AT�, and ��� represents the tensor product. �All coor-
dinates here of course refer to the extremal positions.�

Despite this rather involved form, the equations of motion
themselves look fairly simple,

�NR̈ = qṘ � B − wR�Q − Q0� ,

ms̈i = eṡi � B − 
wi −
1

N
�

k

wk��Q − Q0� . �17�

Here a mixed notation was employed for clarity, wa

�waR ,wa1 , . . . ,wa,N−1��R3�3N is the ath block row of w. It
is inviting to interpret these equations as the motion of ef-
fective particles with masses �N ,m and charges q ,e, respec-
tively, in a magnetic field, coupled via linear forces.

To solve the equations of motion, let us first write the
above system in a more compact way in terms of the dis-
placements v�t�ªQ�t�−Q0,

v̈ = � · v̇ + A · v . �18�

Here the antisymmetric cyclotron matrix � and the harmonic
matrix A, respectively, have been introduced,

� =
qB

�
� �

eB

m
� � ¯ �

eB

m
� � R3N�3N,

A = − � wR/�


wi −
1

N
�

k

wk�/m�
i=1,. . .,N−1

� R3N�3N,

where ���ijª�ij3 is connected with the Levi-Civita tensor
and ��� stands for the direct sum. The solution of this
3N-dimensional second-order system of differential equa-
tions �ODE� is given by the span

v�t� = �
�=1

6N

�v�e��t�c� �v� � C3N;��,c� � C� , �19�

fulfilling the quadratic eigenvalue equation

���
2I − ��� − A�v� = 0. �20�

In this respect, our stability analysis amounts to finding the
complex eigenvalues ��¬��+ i�� �whose imaginary parts
are frequencies of a vibration about a stable point, and whose
real part corresponds to an instability�, and the eigenvectors
v�.

The above quadratic eigenvalue problem is solved via lin-
earization, which is entirely equivalent to reducing a second-
order ODE to a first-order system. In this fashion one obtains
a standard linear eigenvalue problem

Au = �u , �21�

with the linearization matrix

A = 
0 I

A �
� � R6N�6N.

Before we present the results, let us state two general prop-
erties of the solutions that can be obtained ahead of a com-
putation.

�i� For any eigenpair �� ,v� of �20� such that Im �
�0, there is another pair ��* ,v*�.

�ii� Let ���vªv†�v denote the Rayleigh quotient for
an arbitrary matrix �. Assuming v to be a normalized eigen-
vector, then for any mode the eigenvalue is given by

�± = 1
2 ����v ± ����v

2 + 4�A�v� ,

where in general only one of the roots is in the spectrum.
First, �i� implies that only one out of two modes is rel-

evant; hence it is widely legitimate to treat the 6N modes as
effectively 3N. �ii� tells us where in the complex plane we
can expect the eigenmodes to lie. If the problem is elliptic,
that is

�A�v 
 − 
 ���v

2
�2

∀ v , �22�

then the solution is imaginary �= i� �since � is antisymmet-
ric�.

B. Results and discussion

1. General classification

Let us first have a look at the behavior of the modes
����K��� for different N at fixed B �Figs. 3 and 4�. Even
though the patterns become increasingly rich and involved
with higher N, one can see a distinction between the modes
regarding their behavior as a function of K �and B�, their
order of magnitude and, more generally, their location in the
complex plane.

FIG. 3. Eigenmodes ����� for N=2 electrons as a function of the
electric field E
BK /M over the range K /Kcr� �1,10� �all modes
are imaginary�. The three plots refer to the magnetic fields
B=10−5 ,10−4 ,10−3 �from left to right�. Each top horizontal line
represents two almost degenerate cyclotron modes. Below, the two
Coulomb modes fall off quickly and intersect the c.m. mode �the
nearly horizontal line about four orders below the cyclotron modes�.
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An analysis of the associated eigenvectors and the crite-
rion for ellipticity �22�, will also allow us to illuminate the
modes’ origins. This suggests the following classification of
the 3N eigenmodes:

�i� N so-called cyclotron modes corresponding to the cy-
clotron motion of the effective particles. Their values are
exclusively on the scale of the cyclotron frequencies,
�= i�� i��e�B /m�.

�ii� N Coulomb modes corresponding to the inter-
Coulombic motion, with a main contribution from the har-
monic matrix A. They fall off quickly with K, since the de-
centering X0 increases, and so the Coulomb interaction
becomes less effective.

�iii� 1 c.m. mode, roughly reflecting the cyclotron motion
of the center of mass, ��NeB /M �stemming mostly from
the c.m. kinetic energy�.

�iv� 1 zero mode ���=0� that stems from the rotational
invariance of the saddle point with respect to the circular
configuration �see Eq. �11��.

�v� N-2 modes that will be referred to as decay modes in
recognition of the fact that they are predominantly real. They

are neither directly related to the cyclotron motion nor to the
spectrum of A, and their slope is twice as steep as that of the
Coulomb modes.

The cyclotron modes roughly pertain to gyrations perpen-
dicular to B, while the Coulomb motion is predominantly
parallel to B. The c.m. mode is primarily a gyrational
mode—reflecting the nucleus motion—but it also exhibits
Coulomb-type contributions. The zero mode—to be analyzed
in more detail below—corresponds to the rotation along the
stationary circle identifiable in Fig. 5. Last, the decay modes
reveal no striking underlying structure.

There are a few subtleties that go beyond the categoriza-
tion suggested above. A closer look at, for instance, the case
of N=10 electrons reveals certain interactions among the dif-
ferent modes. Their principal causes are crossings between
the center-of-mass mode and the decay modes �resulting in
some striking deformations of the usual line pattern�, and
equally avoided crossings of the c.m. mode with at least
some of the Coulomb modes. This may be taken as a hint at
the different symmetry relations among the Coulombic and
the decay modes.

FIG. 4. Eigenmodes � for the cases N=3 �a�, N=4 �b�, N=5 �c�, and N=10 �d�, as a function of the electric field E
BK /M, plotted over
the range K /Kcr� �1,10�. The magnetic field is B=10−4. Imaginary parts appear as solid lines, while points ��� are use d for the real parts.
The individual modes are assigned just as for Fig. 3, with an extra class of very small decay modes, which fall off twice as fast as the
Coulomb lines.
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2. Influence of the rotational invariance �

By construction, the stationary character was not affected
by a common rotation of the relative coordinates sa by an
angle � on the circle,

sa � D�sa ∀ a ,

�a � �a + � , �23�

where D��1 � SO�2� denotes that rotation about the � axis.
Nonetheless, the Hessian matrix ��2V�Q0


w is affected—
and thus the dynamics differs. To see this, note that the block
matrices transform like

wRR �
D�

wRR �N � 2� ,

waj �
D�

D�wajD�
−1.

The spectra of both the Coulombic Hessian ��2V�0 and the
magnetic contributions �including �� are separately invariant
under these rotations. Still, their conflicting symmetries guar-
antee that the dynamics will vary with �.

In order to see this dependency, a semilog plot of the
modes ������� on the maximal interval �0,2
� is recorded
for different N �Fig. 6�. As before, B=10−4 and K=2Kcr are
fixed. The plots display an obvious symmetry, as rotating by
�N=2
 /N gives an indistinguishable setup. The cyclotronic
modes as well as the affiliated c.m. mode are essentially �
independent. By contrast, the Coulomb modes and the decay
modes show a pronounced periodic change. In addition, one
can see avoided crossings in some cases between the c.m.
mode and the lowest Coulomb mode.

For the case N=2 �Fig. 6�a��, which was found to be
locally stable in the vertical configuration �Ref. �23�, see also
Sec. IV B�, there is some exceptional behavior whenever �
is close to k ·
. The lower Coulomb mode has an avoided
crossing with the almost constant c.m. mode before it expe-
riences a singularity on the logarithmic scale, along the way
turning real. In this respect, the local stability we found for

N=2 is applicable only outside the singular horizontal con-
figuration �=0.

While the case of three electrons �N=3, Fig. 6�b�� reveals
no striking effects, the spectrum becomes much richer when
we add another electron �N=4, Fig. 7�. The four Coulomb
modes as well as two more decay modes reveal an intriguing
behavior. There is an avoided crossing between the c.m.
mode and the lowest Coulomb mode, which turns into an
unstable real mode in an intermediary region. Also, one can
get a sense of the interplay between the two decay modes.

V. WAVE-PACKET DYNAMICAL STUDY OF THE
TWO-ELECTRON CASE

The extensive analysis of the normal modes of N-electron
giant dipole states in the preceding section provided evi-
dence that the two-electron case is locally stable, apart from
the singular horizontal configuration. We now turn to a nu-
merical study of that system.

FIG. 5. Visualization of the zero mode, plot of the generalized
potential V for N=2 close to the extremum, cut along the yz coor-
dinates of s �K /Kcr=2; B=10−4�. There is a circle that continuously
connects all minima, referred to as stationary circle.

FIG. 6. Upon rotating the circular configuration by an angle �,
the spectrum is changed in part �B=10−4, K=2Kcr�. The cyclotronic
modes �658 GHz� and c.m. mode �0.17 GHz� remain constant. The
Coulomb modes and, for N=3, the decay mode ��10−2 GHz� show
some periodic modulation. �For symbol coding, see Fig. 4.�
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It cannot be overemphasized that a six-dimensional reso-
nance study is at the frontier of what is currently possible
and requires a careful choice of the computational approach.
This applies especially in view of the fact that the system is
governed by dramatically different time scales. Therefore we
adopted the multiconfiguration time-dependent Hartree
method �26,28,30,31�, which is known for its outstanding
efficiency in high-dimensional applications. To be self-
contained, a concise introduction to this tool is presented in
Sec. V A. Its basic idea is to solve the time-dependent
Schrödinger equation in a small but time-dependent basis
related to Hartree products. It must be stressed that this
method is designed for distinguishable particles. Applying it
to a fermionic system like ours finds its sole justification in
the fact that the spatial separation between the electrons is so
large that they are virtually distinguishable.

After some remarks on the scales of the system in
Sec. V B, the method will be applied in Sec. V C. The focus
is on stability aspects, i.e., the propagation of wave packets,
but we also investigate the spectra as well as the influence of
the rotational invariance discussed in the preceding section.

A. Computational method: MCTDH

The principal goal of MCTDH is to solve the time-
dependent Schrödinger equation as an initial-value problem,

i�̇ = H� ,

��Q,0� = �0�Q� . �24�

The standard method �see Ref. �26� and references therein�
now approaches the problem by expanding the solution in
terms of time-independent primitive basis functions. Unfor-
tunately, it exhibits a drastic exponential scaling with respect
to the number of degrees of freedom f . Rather than using a
large time-independent basis, the multiconfiguration time-
dependent Hartree method employs a time-dependent set,
which is more flexible and thus smaller. The ansatz for the
wave function now reads

��Q,t� = �
j1=1

n1

¯ �
j f=1

nf

Aj1¯j f
�t��

�=1

f

� j�
����Q�,t�


 �
�J���n�

AJ�t��J�Q,t� ,

using a convenient multi-index notation for the configura-
tions, J= �j1¯ j f�, where f denotes the number of degrees of
freedom. The �unknown� single-particle functions � j�

��� are in
turn represented in a primitive basis. Note that both the co-
efficients AJ and the Hartree products �J carry a time depen-
dence; hence the uniqueness of solutions can only be ensured
by adding certain constraints on the single-particle functions
�28,32�. Using the Dirac-Frenkel variational principle �33�,
one can derive equations of motion for both AJ ,�J �28,32�.
Integrating these ODE systems allows us to obtain the time
evolution of the system, ��· , t�=�JAJ�t��J�· , t�, which lies at
the heart of wave-packet propagation.

The Heidelberg MCTDH package �31�, which we used,
incorporates a few extensions to this basic concept.

�i� Product representation of the potential: in order to cir-
cumvent multidimensional integration in computing the ma-
trix elements, MCTDH makes the requirement

H = �
r=1

s

cr�
�=1

f

hr
���, �25�

enforcing that the numerical Hamiltonian be written as a sum
of products of one-particle operators �separable form�. The
nonseparable part of the Hamiltonian thus must be fitted to
product form ahead of a computation.

�ii� Mode combination: in practice, one combines several
�say d=2,3� degrees of freedom to a d-particle rather than a
one-particle function. This approach alleviates the bad nu-
merical scaling for high-dimensional systems.

�iii� Relaxation [34]: MCTDH provides a way to not only
propagate a wave packet, but also to obtain the lowest eigen-
states of the �discretized� system. The underlying idea is to
propagate some wave function by the nonunitary time-
evolution operator e−H� �propagation in imaginary time.� In
practice, one relies on a more sophisticated scheme termed
improved relaxation. Here ���H−E��� is minimized with
respect to both the coefficients AJ and the configurations �J.
The equations of motion thus obtained are then solved itera-
tively by first solving for AJ�t� �by diagonalization of
���J �H�K�� with fixed �J� and then propagating �J in
imaginary time over a short period. The cycle will then be
repeated.

�iv� Spectrum: one can also extract information on
the spectrum by computing the autocorrelation function
c�t�ª ��0 �e−iHt�0�. In the case of a purely discrete spec-
trum, its Fourier transform reads

c̃�E� = 2
��0���H − E��0� = 2
�
J

��EJ − E��cJ�2,

�26�

that is, all eigenenergies give a peak-type contribution,
weighted according to the overlap cJ of �0 with the Jth
eigenstate.

FIG. 7. Spectrum for N=4 depending on the rotation angle
� �B=10−4, K=2Kcr�; see text.
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B. Application of MCTDH

Let us point out how the computational method can be
applied to our problem. There are essentially two highly con-
flicting types of motion and corresponding scales: perpen-
dicular to the magnetic field, we have the magnetic length

RB =
1

���B

�
1

�2B
,

employing atomic units. To be specific, for a laboratory field
strength B=10−4, the length scale will be on the order of
102 a.u. As for the parallel �Coulomb� motion—expected to
take place roughly in a harmonic potential—we can use the
usual harmonic-oscillator lengths Z0=1/���Z, for some
“typical” frequency �Z. These are roughly on the order of
103 a.u. �Note that the higher K—or E—becomes, the
smaller will be the Coulomb frequencies, hence the wave
packet will be spread far more over the grid.�

Analogously, the anticipated time scales are

TB =
2


�B
�

B=10−4

1.5 ps

for the cyclotronic motion. By contrast, the characteristic
times parallel to B are strongly K dependent, and they vary
between about 1500–15 000 ps. For comparison, we men-
tion that the associated time scale for the c.m. mode is as-
ymptotically Tc.m.�5000 ps.

For strong fields, the relevant motion will thus certainly
be determined by the magnetic field—at least near the sta-
tionary points we are interested in. This would suggest to
introduce cylindrical coordinates about the extremum, carry-
ing out our study in the basis set for the Landau orbitals �35�
Rnm���eim� perpendicular to B, and harmonic-oscillator func-
tions �nz

�z� parallel to the field. Since the former set was not
available in the MCTDH package, we resorted to Cartesian
coordinates for the displacements from the extremum Q0 as a
pragmatic solution,

s � s − s0 
 �x,y,z�, R � R − R0 
 �X,Y,Z� .

The Hamiltonian �6� and �7� for our case, centered about the
extremum Q0 by the generalized translation operators
exp i�kR ·R0+ks ·s0�, reads

T = −
1

2�
�R

2 +
1

8
��R

2�X2 + Y2� +
�R

2
LZ −

1

4m
�s

2

+
1

4
m�s

2�x2 + y2� +
�s

2
�z,

V =
1

2M
��2eB�2�X2 + Y2� + 2X�X0�2eB�2 − 2eBK��� + V0

+ V1 + V2 + C ,

where �R= �q�B /�, �s= �e�B /m. C= �1/2M��K�−2eB�R0�2

only shifts the energy by a constant and will be ignored
hereafter, and r0= �̃�X0�, s0=r0 /�, �0=
+� denote the ex-
tremal configuration. Moreover, V0 stands for the electron-
electron repulsion, whereas V1/2 denotes the attractive poten-

tials between the nucleus and electron 1 and 2, respectively.
Both T and the c.m. kinetic energy are already in product
form �25�, whereas the Coulomb terms must be fitted.

C. Results and discussion

In our calculations, we were chiefly interested in two
questions: the stability of the giant dipole states, and their
spectral properties. The first aspect was studied using propa-
gation of wave packets initially localized at the extremum.
Emphasis was placed on initial states close to the assumed
ground states. Moreover, following the evolution of wave
packets with an initial displacement from the extremum, we
tested the robustness of the resonances. For comparison, the
eigenvectors of the Hamiltonian will be considered using the
relaxation method.

The parameter set was restricted to the following values.
B=10−4 was fixed, because changing the magnetic field
strength essentially only affects the overall scales via the
critical pseudomomentum and is not expected to make for
completely new behavior. The pseudomomenta are K /Kcr
� �1.1,2.0,10.0� �we will drop the prime from now on�,
which account for the cases of a very shallow outer well, the
medium range and the very deep outer well �the high-K re-
gime�.

For simplicity, the influence of the rotational invariance
will be scrutinized a posteriori, using the characteristic val-
ues �0=
 /2 ,3
 /4 ,
. These refer to the vertical configura-
tion ��=−
 /2� first studied in Ref. �23�, a diagonal one
�=−
 /4, and the horizontal configuration �=0, which we
expect to have an instability according to the analysis in Sec.
IV B 2.

The propagation times were chosen in the regime of
5–10�104 ps. This includes many periods of the Coulomb
modes and several 10 000 periods of the rapid cyclotron mo-
tion.

1. Stability analysis

The approach used in this section is to study the propaga-
tion of a six-dimensional �6D� harmonic-oscillator wave
packet centered within the well. The oscillator parameters
are adapted so as to match the borderline ground states, i.e.,
the cyclotron frequencies �R ,�s for XY�xy�, and a typical
Coulomb frequency �Z ,�z parallel to the magnetic field. To
test the robustness of the potential resonance, in some cases
displacements of �Z�0= �z�0=2000 a.u. are also applied to the
initial wave function. �This value is arbitrary but moderate
compared to the total decentering.� Also, relaxations �starting
from the original, undisplaced wave packets above� are car-
ried out to see how the lowest-energy configuration found
with this algorithm differs from our initial guess. The analy-
sis mostly focuses on the reduced densities �� �1D or 2D�
obtained by integrating out all but the �th degree�s� of free-
dom. Where appropriate, the wave packets’ centers and
widths �q���t� ,�q��t� are shown.

The case K=1.1Kcr. Very close to the critical point, Kcr,
the observed motion displays an instability in some degrees
of freedom.
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Both X and Y revealed weak oscillations of two types. As
these are generic, they shall be inspected in more detail on
the example of the X degree of freedom. Three representative
snapshots �Fig. 8�a�� were taken to illustrate this effect. The
nature of the oscillations can be explored more easily in Fig.
8�b�. To begin with, the center carries out a tiny oscillation
about X�−20 a.u. with a period of about 6400 ps �a snap-
shot was taken at its first turning point at 3200 ps�. This very
slow oscillation superimposes what we will call the shape
oscillations, materializing in the fluctuation of the width
�X�t�. That oscillation is about twice as fast, and it reaches
its maximum width for the first time at 1600 ps �Fig. 8�a��.
The relative stability in these two directions is readily ex-
plained in terms of the generalized potential. Apart from a
stabilization by the B field, they experience an additional
confinement via the “c.m. kinetic energy” �5�. However, it is
evident that the packet broadens over time, thus slowly de-
localizing �Fig. 8�b��.

Even though the relative motion perpendicular to

B ,s�
�x ,y�, is also gyrationally stabilized, there is no con-
fining term for it in the generalized potential as for the e.c.m.
In fact, a look at the generalized potential �Fig. 9�b�� reveals
that Q0 is a saddle point. The y direction is the zero mode,
while the cut through the x direction refers to a maximum. In
this light, we cannot expect the system to be arbitrarily stable
in these two degrees of freedom. This is a general fact, but
for K=1.1Kcr it is very pronounced. The reason being, near
the extremum, the Coulomb interaction �the source of these
instabilities� becomes negligible for higher K. A line of rea-
soning closely connected uses the time scale at which the
instability will have an impact. As the Coulomb modes ��K�
increase dramatically as K→Kcr

+ , their characteristic time
T�K�=2
 /��K� becomes much shorter �cf. Table I�. �See
Fig. 10.�

These considerations shed light on Fig. 11. For instance,
�x soon develops two small side maxima. They become more
pronounced as time goes on and slowly spread towards the
boundary of the grid. The zero mode �y� spreads out much

FIG. 8. The motion in X in the case K /Kcr=1.1. �a� Snapshots of the motion �X, reflecting oscillations of both center and shape of the
wave packet. �b� The two oscillations as documented in �X��t� ,�X�t�.

FIG. 9. Cuts through the generalized potential near the extremum, V�X ,Y ,0 ;0� �a� and V�0 ;x ,y ,0� �b�, exemplified for K=1.1Kcr. The
�XY� potential is almost harmonic. The y direction virtually coincides with the zero mode, whereas the potential exhibits an instability with
respect to x.
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faster—that is, to a significant extent after 2000 ps already.
The reduced density for Z �Fig. 12� broadens and continu-

ally leaks toward the grid ends. Although in the Z direction,
the particle lives in a fairly harmonic well �Fig. 10�, it is not
only lifted in energy to way above the bottom of the well, but
also affected by the instability in x via coupling. Turning to
the last degree of freedom, z, we find an overall stable be-
havior. Note that there is an overlay of a fast but tiny oscil-
lation of the packet’s center and a slower and less regular one
visible in Fig. 11�d� as the envelope of �z��t�.

The case K=2Kcr. For K being twice its critical value, the
vertical configuration is virtually stable on a scale of
T�104 ps. The degrees of freedom X and Y, as well as the
parallel motion Z and z, turn out to be indeed perfectly
stable. Again, there are two different types of tiny oscilla-
tions, displayed in Fig. 13, which are fingerprints of the cou-
pling with the Coulombic motion �indicated by plotting
�q���t� over some periods TZ, for instance�.

As opposed to the previous paragraph where K /Kcr=1.1,
the relative motion in x conveys a fairly stable if erratic
impression. Still, the wave packet in y spreads as it did be-
fore �Fig. 14�. But keep in mind that it occurs at a much
greater time scale than in Fig. 11�b�, for example, after
5000 ps the broadening has only just begun to become
significant.

A closer look at the response of the system upon displac-
ing Z and z by 2000 a.u. unveils that for the excited degrees
themselves, Z and z, the wave packet is simply reflected
between two positions ±�z�0 with minor �Z� or more pro-
nounced �z� deformations and smearing-out due to compet-

ing modes, cf. Figs. 15�a� and 15�b�. The most interesting
question may be the effect on the �xy� modes. In fact, x is
rendered slightly unstable by the excitation of the parallel
motion. The snapshots taken at 20 000 ps and 50 000 ps, re-
spectively, document how the wave packet slowly but inevi-
tably starts leaking, Figs. 15�c� and 15�d�. The lifetime of the
y mode is not drastically changed altogether.

We also investigated the supposed ground state obtained
via improved relaxation. It is understood that at best the ex-
act system displays a resonance state, so the quest for eigen-
states is meaningful only insomuch as those of the dis-
cretized Hamiltonian may be interpreted as localized states
which really correspond to resonances. Our results turned out
to be very sensitive to both the primitive and the single-
particle basis sizes. Nonetheless, for a high if manageable
accuracy, the pattern that emerged was the following. Apart
from some smaller deviations from the initial state �Landau-
orbital–harmonic-oscillator product�, a drastic alteration
takes place in s�
�x ,y� �Fig. 16�. The wave packet is split
into two humps that seem to be driven outwards until the
basis size is exhausted, while smeared out along the zero
mode y.

This behavior raises the question how that squares with
the potential picture, given that the local instability charac-
terized by �x

2
wxx /m is much weaker in magnitude than �B
2 .

In order to clarify these issues, we constructed a 2D model
Hamiltonian via the natural inclusion Hxyª �H�R=0;z=0. The
study of this toy model, which is numerically far more ame-
nable, revealed that it is capable of recovering many of the
key features of the full system. It therefore provided a valu-
able tool in detecting the key to this mechanism—the para-
magnetic term �B�z. To begin with, the instability of the
generalized potential in x tempts the packet to split up and be
driven downhill. However, if there were no paramagnetic
term or if the same instability occurred isotropically, this
would have no discernible effect. However, owing to the
anisotropy of V ,� is no longer conserved,

TABLE I. Summary of time scale of the Coulomb motion �TC�
and length scale ��X0�� for different values of pseudomomentum K.

K /Kcr TC�K� �X0�K��

1.1 0.1–0.4 ns 1.4�104 a.u.

2 0.4–1 ns 2.9�104 a.u.

10 5–15 ns 1.5�105 a.u.

FIG. 10. Cuts through the generalized potential parallel to the magnetic field, �a� V�0,0 ,Z ;0� is roughly harmonic, �b� V�0 ;0 ,0 ,z� is
strongly flattened on the right-hand region of the minimum. �Note that the extremum is shifted to the origin.�
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�̇ = − s � �V .

It is energetically favorable for the particle to go to ever
lower ��z�
0 while being expelled from the unstable line

x=0, thus introducing a high correlation between x and y.
Note that this effect essentially amounts to the fact that

the giant-dipole resonance state is far from the energetically
lowest configuration. That does not pose an immediate con-
straint on the system’s lifetime under propagation, since our
initial Landau–harmonic-oscillator state has a virtually zero
overlap with the above relaxation state. Hence in a propaga-
tion, this bimodal relaxation state is not accessible, which
explains why the system is so much more stable than its
relaxation suggests. Physically speaking, the cyclotron gyra-
tion stabilizes the motion near the stationary configuration
for fixed energy and thus inhibits a delocalized state at a
lower energy. This is approved by a 2D numerically exact
time evolution �Fig. 17�, which reveals no breakup for many
nanoseconds, until the wave packet is slightly rotated in the
xy plane and split up roughly in the y direction—and not in
x as in the relaxation case. Note that it acquires a small but
nonzero value of ��z��−1, in contrast to ��z��−60 in Fig.
16; this also reflects the higher level of stability. It is only
after way more than 100 ns that the packet hits the grid’s
boundary. These outcomes seem to confirm that for moderate

FIG. 11. Snapshots of the wave packet’s motion in the direction of x �a�, y �b�, and z �c� for K=1.1Kcr. The plots display the reduced
densities �x, �y, and �z at different times. While the unstable mode x leaks slowly, the zero mode y spreads much more quickly. The wave
packet in z is only marginally shifted over time. In �d�, the different oscillations in z are illustrated.

FIG. 12. The motion of the Z mode in the case K /Kcr=1.1.
Three snapshots of the reduced density �Z are plotted.

N-ELECTRON GIANT DIPOLE STATES IN CROSSED… PHYSICAL REVIEW A 72, 033416 �2005�

033416-13



values of K, our system is quasistable on a time scale of up
to T�100 ns.

The case K=10Kcr. For this value, which corresponds to
E
BK /M =207 kV/m, we find the system to be practically
stable on the time scale we considered, T=100 ns.

The initial wave packet experiences only tiny deforma-
tions in most degrees of freedom, which are not discussed
here. However, there are oscillations for z, which are more
pronounced but still marginal compared to the spatial exten-
sion of the decentered state; these are sketched in Fig. 18�a�.
While its center shows a shift to positive values of z, its
elongation is on the order of 250 a.u., and the width varies
by a factor of 2, all at a period of about Tz. In contrast with
x and any other degree, the width in the y direction shows a
steady minute broadening �Fig. 18�b��. This might be taken
for a sign that eventually, the system is bound to decay. Then
again, this takes 300 000 ps to move by one atomic unit and
is beyond the time scale regarded here.

After having come a long way to find the system practi-
cally stable for high enough values of the pseudomomentum,

we now explore the robustness with respect to displace-
ments. Skipping the detailed behavior, we find that the over-
all stability was not affected. Due to coupling to other
modes, the excitation of the parallel motion imprints some
oscillations both of the packet’s center and its width on the
perpendicular degrees of freedom.

Last, applying a relaxation revealed similar phenomena as
in the previous paragraph. Regardless of the specific shape of
the relaxation state, it can be reasoned that the instabilities of
course still underlie the system, but that the lifetimes for
sufficiently large K are too large to be observed in our propa-
gation.

2. Influence of the rotational freedom

To complete the discussion, let us now investigate the
giant dipole states for different settings of the extremal angle
�0 of the relative coordinate s0 on the circle. So far, the focus
was on �0=
 /2 only �or, equivalently, �=−
 /2�, which we
referred to as the vertical configuration. In the normal-mode
analysis, however, we found an interesting frequency pattern
as we varied this extremal angle. It was argued that each �0
corresponds to a different extremal point, i.e., for each value
of �B ,K� there is really a one-parameter class of extremal
points Q��0� with different stability and spectral properties.

As examples, we thus investigate both the supposedly un-
stable horizontal configuration �0=
��=0� and a diagonal
configuration �0= 3

4
��=−
 /4�, as visualized in Fig. 19.
This was done for the special cases of K /Kcr=2,10.

To sum up our findings, the horizontal configuration in-
deed adds an instability, which is discernible even for very
high K, if less distinct. The diagonal configuration was partly
unstable on a time scale comparable to that of the vertical
case, T�104 ps. A rotation of the extremum obviously ro-
tates the zero mode, too, which is why the detailed dynamics
is a different one for the relative degrees of freedom. For
instance, in case that �0=
, the zero mode points along the
z direction, which would otherwise live in a harmonic poten-
tial. As a consequence, even for K /Kcr=10 the z-packet �pre-

FIG. 13. The expectation values and uncertainties over selected time periods for the coordinates �a� Z and �b� z�K /Kcr=2�.

FIG. 14. The relative coordinate s� in the case K /Kcr=2: Char-
acteristic snapshots of the reduced density �y.
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pared with a nonzero frequency �z=10−8 a.u.� smoothly os-
cillates between its initial and a much more smeared-out
state according to Fig. 20.

3. Spectrum

We finally look into some spectral properties of the GDS
for the different values of K /Kcr. The spectrum calculated

FIG. 15. Snapshots of the wave-packet upon an initial displacement by Z=z=2000 a.u. for K /Kcr=2. Plot �a� illustrates the strong
deformations in Z in the course of the oscillation; �b� shows how the the z packet is distorted after several thousand picoseconds. The
nonstable modes x ,y are affected via coupling, see �c� and �d�.

FIG. 16. �Color online� A generic relaxation state �K=2Kcr, see
text�—plotted is the 2D-reduced density for the plane perpendicular
to B: the wave packet is driven away from the x axis with increasing
basis size.

FIG. 17. �Color online� Wave packet of the 2D model �xy� after
T=160 ns �K=2Kcr, see text�.
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from a propagation for K /Kcr=1.1 �Fig. 21� looks somewhat
fuzzy, but the main peak is still distinct enough to vaguely
resemble a resonance. The situation is less ambiguous in the
case K /Kcr=2, as the decay occurs on a much greater time
scale. The spectrum in Fig. 22 illustrates the resonance char-
acter of the system. Our initial wave packet gives a peak at
E�0.281 meV, whereas the displaced state with �z�0= �Z�0

=2000 a.u. produces a rather interesting excitation spectrum
�same figure�, revealing overlaps with many eigenstates. The
equidistant spacing of the peaks might be interpreted as a
signature of harmonicity in both excitations �Z ,z�. Finally, in
the most stable case K /Kcr=10, the spectrum consists of a
sharp dominant peak at about 2.2422 eV, plus a very tiny
one 0.0017 eV above. This somehow quantifies our empiri-
cal observation that K /Kcr=10 is quasistable.

VI. CONCLUSION AND OUTLOOK

We have studied the internal motion of N-electron atoms
in crossed magnetic and electric fields utilizing the general-

ized potential. For electric fields above a critical value, a
strongly decentered potential well forms. It supports giant
dipole states where the electrons’ center of mass is aligned
along the electric field, with all electrons in a symmetric
circular configuration in the orthogonal plane. These states
have been investigated for an arbitrary number of electrons
in a normal-mode analysis, and numerically for the case of
two-electron giant dipole states employing wave-packet
propagation.

The normal-mode analysis of the N-electron atoms leads
to a quadratic eigenvalue problem. Its eigenmodes �as well
as the eigenvectors� have been studied depending on the field
strengths B ,E as well as the electron number N. A subse-
quent classification according to their characteristics indi-
cated that the 3N modes were grouped into N cyclotron
modes and N Coulomb modes, corresponding mostly to the
motion induced by the magnetic field and the Coulomb po-
tential, respectively. Moreover, we found a c.m. mode re-
flecting the center-of-mass gyration in the magnetic field, as

FIG. 18. The time evolution of �z� ,�z �a� and �y �b� for K /Kcr=10. Both degrees are altogether stable, but oscillate due to coupling. A
marginal broadening can be seen in y.

FIG. 19. The circular configuration s�0�=s0�0,cos �0 , sin �0�T

for N=2, depending on the angle �0. The arrows refer to s�0� in the
yz plane for different values of �0. The X axis points into the page.

FIG. 20. The horizontal configuration �0=
�K /Kcr=10�. The
wave packet switches between two positions �snapshots of reduced
density for 11 500 ps and 20 000 ps�.
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well as a zero mode referring to a rotational invariance of the
extremal configuration, also studied in detail. The residual
modes were termed decay modes on account of their peculiar
behavior suggesting instability for atoms with three or more
electrons. Their absence for the system N=2 provided a
strong indication of local stability, with the single exception
of the so-called horizontal configuration.

In the second part of the present work, an ab initio simu-
lation of the six-dimensional two-electron system was per-
formed. Since this type of investigation can be viewed as the
state of the art of what is numerically feasible, we resorted to
the multiconfiguration time-dependent Hartree method, a
wave-packet dynamics tool known for its unique efficiency
in higher dimensions. Both the stability of the six degrees of
freedom and some spectral properties have been examined.
To establish the link to the normal-mode analysis, the influ-
ence of the rotational freedom of the circular configuration
has also been investigated. We find that the stability of the
system strongly increases for larger electric fields. For a field
strength twice the critical value, some modes experience a
decay on the time scale of 104–105 ps; for the tenfold critical
value, there is no instablity on the scale we considered, i.e.,
105 ps. These states proved rather robust against perturba-
tions, simulated by displacements parallel to the magnetic
field, where the motion is not gyrationally stabilized. As an-
ticipated, the stability of the giant dipole states turned out to
apply only outside the singular horizontal configuration of
the extremum.

While the investigation into the local aspects of stability
can be regarded as somewhat completed, a rigorous numeri-

cal analysis is to date limited with an eye toward time and
computational effort. First and foremost, the MCTDH calcu-
lations set up so far could in principle be modified to the case
of N�3 electrons. However, this appears to be a massive
numerical challenge, since the MCTDH method is slowed
down significantly the more degrees of freedom are in-
volved. One approach to circumvent this would be an adia-
batic separation similar to Ref. �36�, amounting to an average
over the rapid cyclotron motion. This would allow for a sig-
nificantly faster integration. For future investigations, it may
also be beneficial for short-time propagations to implement a
discrete-variable representation of the Landau orbitals in
MCTDH.

Apart from these questions, concerned with a wider range
of application and efficiency, the task arises to make the
analysis more quantitative. A systematic resonance calcula-
tion yielding both the energy levels and decay widths of the
giant-dipole states is desirable, but has so far proven to be a
severe challenge computationally due to the type of instabil-
ity. It might also yield a deeper understanding of the reso-
nance wave functions. Ultimately, one could even go so far
as to simulate the preparation of giant dipole states, migrat-
ing from the Coulomb well to the decentered extremum. In
analogy to the scheme suggested for single electrons �29�,
this may serve as a bridge to the experimental verification of
giant dipole resonances.
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