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It is shown that sub-Doppler cooling occurs in an atom-field geometry that can lead to reduced-period
optical lattices. Four optical fields are combined to produce a “standing wave” Raman field that drives tran-
sitions between two ground state sublevels. In contrast to conventional Sisyphus cooling, sub-Doppler cooling
to zero velocity occurs when all fields are polarized in the same direction. Solutions are obtained using both
semiclassical and quantum Monte Carlo methods in the case of exact two-photon resonance. The connection of
the results with conventional Sisyphus cooling is established using a dressed state basis.
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I. INTRODUCTION

Conventional laser cooling techniques involve the appli-
cation of counterpropagating laser fields having the same
frequency to atoms in a magneto-optical trap. The fields
drive transitions between ground and excited electronic state
manifolds in the atoms. It is especially important for the
ground state manifold to consist of a number of degenerate
or nearly degenerate levels to allow for Sisyphus cooling of
the atoms �1,2�. Sisyphus cooling can be achieved using
cross polarized, counterpropagating laser fields. In this field
configuration, the atoms see a spatially modulated polariza-
tion gradient that leads to a spatially modulated optical
pumping. Sisyphus cooling to zero velocity cannot occur us-
ing parallel polarized fields, which produce no spatially vary-
ing polarization �3�.

The conventional laser cooling schemes have been ex-
tended to Raman-type schemes, where two sets of standing
wave fields drive coupled transitions in a � level configura-
tion �4�. Sisyphus cooling can be achieved if the standing
wave fields driving the coupled transitions are phase shifted
relative to one another, but not if they have the same spatial
phase. In both Raman and traditional laser cooling schemes,
the basic periodicity of the atomic population distribution is
� /2, where � is the laser wavelength. In some cases, the
periodicity of individual sublevel populations can be � /4,
but the overall periodicity of the system as a whole remains
equal to � /2.

Recently, a modified Raman geometry was proposed
which reduces this basic periodicity from � /2 to � /4 �5,6�.
The basic geometry is indicated schematically in Fig. 1.
Transitions between states �1� and �2� in the Raman scheme
occur through the common state �3� using two field modes.
Consider first the effect of fields E1 and E2. Field E1, having
frequency �1 and wave vector k1=k=kẑ drives the 1-3 tran-
sition while field E2, having frequency �2��1−�21 and
wave vector k2�−k drives the 2-3 transition, where �21 is
the frequency separation of levels 1 and 2 �it is assumed that
�2 /c��1 /c, or, equivalently, that �21/�31�1�. Owing to
polarization selection rules or to the fact that �21 is greater

than the detuning �=�1−�31, one can neglect any effects
related to field E1 driving the 2-3 transition or field E2 driv-
ing the 1-3 transition �7�. If, in addition, the atom-field de-
tunings on the electronic state transitions are sufficiently
large to enable one to adiabatically eliminate state �3�, one
arrives at an effective two-level system in which states �1�
and �2� are coupled by a two-photon “Raman field” having
propagation vector 2k.

Imagine that we start in state �1�. If the initial state �1�
amplitude is spatially homogeneous, then, after a two-
quantum transition, the final state �state �2�� amplitude varies
as e2ikz. Such a state amplitude does not correspond to a state
�2� population grating, since the final state density is spatially
homogeneous. To obtain a density grating one can add an-
other pair of counterpropagating fields as shown in Fig. 1.
These fields E3 and E4 differ in frequency from the initial
pair, but the combined two-photon frequencies are equal,
�1−�2=�3−�4. The propagation vectors are chosen such

FIG. 1. �Color online� Atom-field geometry that can be used to
create a two-photon, standing wave Raman field on the 1-2
transition.
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that k3=−k4=−k. The frequencies of fields E1 and E3 are
taken to be nearly equal, as are the frequencies of fields E2

and E4, but it is assumed that the frequency differences are
sufficient to ensure that fields E1 and E3 �or E2 and E4� do
not interfere in driving single photon transitions, nor do
fields E1 and E4 �or E2 and E3� drive Raman transitions be-
tween levels 1 and 2 �8�. On the other hand, the combined
pairs of counterpropagating fields �E1 and E2� and �E3 and
E4� do interfere in driving the 1-2 Raman transition and act
as a “standing wave” Raman field which, to lowest order in
the field strengths, leads to a modulation of the final state
population given by cos�4kz�. In this manner, a grating hav-
ing period � /4 is created. By using one pair of fields parallel
polarized and the other perpendicularly polarized, one can
create optical potentials with � /8 periodicity �9�.

Reduced period optical lattices have potential applications
in nanolithography and as efficient scatterers of soft x rays.
Moreover, they could be used to increase the density of Bose
condensates in a Mott insulator phase when there is exactly
one atom per lattice site. With the decreased separation be-
tween lattice sites, electric and/or magnetic dipole interac-
tions are increased, allowing one to more easily carry out the
entanglement needed in quantum information applications.

Now that it has been established that this standing-wave
Raman scheme �SWRS� leads to optical lattices having re-
duced periodicity, the question arises naturally whether or
not some type of sub-Doppler or Sisyphus cooling is present
in this scheme. A sub-Doppler cooling mechanism would
simplify the experimental realization of this new type of op-
tical lattice. It is by no means obvious that Sisyphus cooling
occurs in this SWRS. In this paper, laser cooling in the
SWRS is examined in detail for two-photon resonance of the
Raman fields, �=�1−�2−�21=�3−�4−�21=0. The fric-
tion force and diffusion coefficients are calculated using a
semiclassical approach and are shown to be very similar to
those obtained in standard Sisyphus cooling. A dressed atom
picture is introduced to help facilitate the comparison of the
SWRS with conventional Sisyphus cooling. The calculation
is repeated using a quantum Monte Carlo approach �10� and
the results are compared with those of the semiclassical
model. In a future planned publication, the calculations are
extended to allow for nonresonant Raman detunings, ��0.
Subsequent to the submission of this paper, an experiment
has been carried out that provides the first evidence for this
SWRS sub-Doppler cooling �11�.

II. PHYSICAL ORIGIN OF THE FRICTION FORCE

To understand the physical origin of the friction force for
our atom-field geometry, it is useful to review the mecha-
nisms responsible for sub-Doppler cooling. In polarization
gradient cooling of a J=1/2 ground state, a Sisyphus picture
of cooling has proven useful �1�. In this picture there are
potential curves for each ground state sublevel; an atom
climbs a hill of one potential and is transferred to a trough of
the other potential via spontaneous emission. There is, how-
ever, an alternative picture of the cooling �12�. The incident

counter-propagating fields create a matter wave grating for
the population difference of the two ground state sublevels
and scatter off this grating. As a result, momentum is ex-
changed between the fields provided that there is a nonvan-
ishing phase shift between the field and matter wave grat-
ings. It is easy to show that such a phase shift exists only in
the presence of dissipation �spontaneous emission� and only
for atoms having nonzero velocity. The momentum exchange
between the fields is responsible for the friction force �12�.

Since we are not dealing with polarization gradient cool-
ing in our atom field geometry, we must consider two addi-
tional mechanisms responsible for sub-Doppler cooling.
Both mechanisms arise for the atom-field geometry of Fig. 1.
The first of these has been discussed by Dalibard and Cohen-
Tannoudji in the context of “corkscrew” cooling using �+

and �− counterpropagating fields for a J=1 ground state and
a single pair of Raman fields �1�. These fields do not result in
a spatially modulated population of the ground state sublev-
els, but they do give rise to an imbalance in the populations

of the ground state sublevels if the effective detuning, �̃=�
−2kv is not equal to zero �v is the z component of atomic
velocity�. As a result of the imbalance, the scattering rate for
each of the incident fields differs and the difference results in
a friction force on the atoms. There is an additional mecha-
nism present in the corkscrew polarization scheme �1,13�.
The incident fields lead to a spatially modulated phase co-
herence between ground state sublevels �in this paper, the
term “coherence” refers to nonvanishing off-diagonal density
matrix elements�. In analogy with the case of a driven oscil-
lator, it is possible for the incident fields to exchange mo-
mentum if the matter wave phase coherence is out of phase
with the phase coherence of the fields. This will occur only
in the presence of dissipation �spontaneous emission� and

only for atoms having �̃�0. For the J=1 to J=2 transition
considered by Dalibard and Cohen-Tannoudji �1�, the major
contribution to the friction force comes from the imbalance
in the sublevel populations.

We are now ready to address the origin of the friction
force in our atom field geometry. Mathematical justification
for this qualitative discussion is given in Appendix B. Con-
sider first the action of a single pair of Raman field �e.g.,
fields E1 and E2�. It is known that the friction force vanishes
in this case, provided the branching ratios for decay of level
3 to each of levels 1 and 2 are equal �as is assumed� �13–15�.
The vanishing of the friction force can be understood in
terms of an exact cancellation of the contribution associated
with an imbalance of population of levels 1 and 2 by the
contribution associated with the spatially modulated phase
coherence of 	12 induced by the fields �13�. When the second
pair of Raman fields �E3 and E4� is added, the contributions
from the population imbalance cancel, regardless of the de-
tuning, provided that the Rabi frequencies associated with all
the atom-field transitions are equal. In this limit, the spatially
averaged friction force results solely from momentum ex-
change between the fields that is mediated by the spatially
modulated phase coherence 	12�e±2ikz. Of course, this con-
tribution is nonvanishing only in the presence of dissipation.
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From this qualitative discussion, it should be apparent that
the underlying physical mechanism responsible for sub-
Doppler cooling in our atom-field geometry differs from that
of conventional sub-Doppler cooling. An alternative expla-
nation of the cooling mechanism can be given in terms of
dressed states �see Sec. V�; in that case one recovers the
conventional explanation in terms of Sisyphus cooling.

III. SEMICLASSICAL TREATMENT

The basic physics is illustrated if we consider the some-
what unphysical level scheme in which states �1� and �2� in
Fig. 1 have angular momentum J=0, while the upper level
has angular momentum J=1 �16�. The fields all are assumed
to be linearly polarized in the x direction; there is no polar-
ization gradient. The fields couple the ground state to the
excited state �3�= ��J=1,m=−1�− �J=1,m=1�� /	2. The field
intensities are adjusted such that the Rabi frequencies 
 �as-
sumed real� associated with all the atom-field transitions are
equal �Rabi frequencies are defined by −�E /2�, where � is
the x component of the dipole moment matrix element be-
tween ground and excited states�, and the partial decay rate
of level 3 to each of levels 1 and 2 is taken equal to  /2
�equal branching ratios for the two transitions�. The results
would be unchanged if the fields were all �+ polarized.

In the rotating-wave approximation and neglecting spon-
taneous emission, the Hamiltonian for the atom-field system
is

H = 

j=1

3

�� j�j��j + �
��1��3��e−i�kz−�1t� + e−i�−kz−�3t��

+ �2��3��e−i�−kz−�2t� + e−i�kz−�4t�� + adj� , �1�

where �� j is the energy of level j and “adj” stands for ad-
joint. It is assumed that the electronic state detunings are
sufficiently large to satisfy

�1 − �31 � �3 − �31 � �2 − �32 � �4 − �32 � � � ,
,kv .

In this limit and in the rotating-wave approximation, it is
possible to adiabatically eliminate state �3� and to obtain
equations of motion for density matrix elements �17,18�. For
classical center-of-mass motion �d	ij /dt=�	ij /�t+v�	ij /�z�,
using a field interaction representation �19�, and including
spontaneous emission �20�, one finds the steady-state equa-
tions of motion for density matrix elements to be

�
�w

�x
= − w + 2i��	21 − 	12�cos x ,

�
�	12

�x
= − �1 + id�	12 − i�w cos x −

1

2
cos x , �2�

where w=	22−	11 is the population difference of levels 2
and 1,

� = �1 − �2 − �21 = �3 − �4 − �21 �3�

is the Raman detuning,

x = 2kz , �4a�

d =
�

2�
, �4b�

� = kv/�, �4c�

� = �/ , �4d�

� = 
2/��2 + �/2�2� � 
2/�2 �4e�

is an optical pumping rate, and v is the z component of
atomic velocity. As noted above, interference between fields
E1 and E3 �or E2 and E4� in driving single photon transitions
is neglected in deriving these equations, as is the combined
action of fields E1 and E4 �or E2 and E3� in driving Raman
transitions between states �1� and �2�. Equations �2� reflect
the combined effects of the Raman fields driving transitions
between levels 1 and 2 and the loss of coherence resulting
from spontaneous emission.

For d�0, Eqs. �2� must be solved numerically; however,
as is seen below, an analytical solution can be obtained if
d=0. Note that there is now a source term, − 1

2 cos x, in the
equation for 	12 that can be traced to the fact that the factor
�	11+	22� that multiplies this term is equal to unity. Steady

state is reached on a time scale �
−1

�−1. The atom-field
“coupling strength” � is actually independent of field
strength in these dimensionless units. Note that, for zero ve-
locity atoms, �=0, and for zero detuning d=0, the popula-
tion difference w vanishes, while the coherence 	12=
− 1

2 cos x is spatially modulated. This is in contrast to conven-
tional Sisyphus cooling, where the coherence vanishes while
the population difference is spatially modulated.

In Appendix A, Eqs. �2� are modified to include diffusion
resulting from changes in atomic momentum associated with
stimulated emission and absorption, as well as spontaneous
emission. The total population S=	11+	22 now becomes a
function of momentum and position, although the depen-
dence of S on position is neglected �21,22�. The modified
equations are

�
�

�xu

g

w
� = − 1 d 0

− d − 1 − 2� cos x

0 2� cos x − 1
�u

g

w
�

−cos xS + 2��k sin x
�S

�p

0

0
� , �5a�

�S

�t
=

7

5
�2k2�

�2S

�p2 − 4���k sin x
�u

�p
−

3

5
�2k2� cos x

�2u

�p2 ,

�5b�

where u=	12+	21 and g= i�	21−	12�. Each of the functions
u ,g ,w are now functions of the momentum p=Mv �M is the
atom’s mass� as well as x. Equation �5a� is solved for u ,g ,w
and the solution for u is inserted into Eq. �5b� for S. The
resultant equation is averaged over a wavelength such that
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�S

�t
=

7

5
�2k2�

�2S

�p2 − 4���k sin x
�u

�p
−

3

5
�2k2� cos x

�2u

�p2 ,

�6�

where the bar indicates a spatial average �S̄=S, by assump-
tion�. In this paper, only the limit of zero Raman detuning,
d=0, is considered.

If d=0, the equation for u is decoupled from the others
and both g and w vanish owing to the lack of any source
term. The appropriate solution for u, periodic in the variable
x, is given by

u = −
1

�
�

−�

x

dx�e−�x−x��/��cos x�S + 2��k sin x�
�S

�p
�

= −
1

1 + �2�S�cos x + � sin x�

+ 2��k
�S

�p
�sin x − � cos x�� . �7�

When this solution is substituted into Eq. �5b� and the result-
ing equation is compared with the Fokker-Planck equation

�S

�t
=

�

�p
�− F̄S + D̄ind

�S

�p
+

�

�p
�D̄spS�� , �8�

one can identify the spatially averaged friction force

F̄ = − 2���k
�

1 + �2 , �9�

and the spatially averaged diffusion coefficients

D̄sp = �2k2��7

5
+

3

10

1

1 + �2� , �10�

D̄ind = 4��2�2k2 1

1 + �2 , �11�

where �=kp /M�. These results are very similar to those
found in conventional Sisyphus cooling �21,22�.

Energy distribution

The steady state solution of the Fokker-Planck equation,
subject to the boundary condition ��S /�p�p=0=0, is given by

S�p� = S�0�exp��
0

p

dp�

�F̄ −
�D̄sp

�p�
�

D̄ind + D̄sp

� . �12�

Since �=kv /�=kp /M�, one has

�D̄sp

�p
= −

6

5
�k�r

�

�1 + �2�2 , �13�

where

�r =
�k2

2M
�14�

is the recoil frequency associated with a one-photon transi-
tion. Defining ��=kp� /M�, one finds that the integral in
Eq. �12� can be recast in the form

�
0

p

dp�

�F̄ −
�D̄sp

�p�
�

D̄ind + D̄sp

= �
0

�

d��
��

1 + ��2

3

5
− I��1 + ��2�

4�2 +
7

5
�1 + ��2� +

3

10

,

�15�

where

I� = I
4�2

1 + 4�2 , I = 
2/���r� .

It then follows from Eqs. �12� and �15� that

S�p̄� = S�0��1 +
p̄2

p̄c
2��0 1

�1 +
p̄2

p̄c
2�1��+�0

, �16�

where

p̄ = p/�k, p̄c =
�

2�r
,

�0 =
1

1 +
40

3
�2

� 0, �17a�

�1 =
14

40�2 + 17
�

72

20�2 , �17b�

� =
5

14
I

1

1 +
1

4�2

�
5

14
I . �17c�

The momentum distribution S�p̄� depends on two param-
eters, �=� / and the dimensionless Raman intensity I
=
2 / ���r�.

The mean equilibrium kinetic energy can be calculated as

Eeq = Er

�
−�

�

p̄2S�p̄�dp̄

�
−�

�

S�p̄�dp̄

,

where Er=��r is the recoil energy. The integrals can be
evaluated analytically and, for I�21/5, one finds
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Eeq/Er = p̄c
2�	�

2
�−

3

2
− �0���0 + ��2F1�3

2
,� + �0,

5

2
+ �0,�1�

+

�−
3

2
+ ���3

2
+ �0��− �0�

�1
3/2+�0 2F1�−

3

2
+ �,− �0,−

1

2
− �0,����	��−

1

2
− �0���0 + ��2F1�1

2
,� + �0,

3

2
+ �0,�1�

+

�−
1

2
+ ���1

2
+ �0��− �0�

�1
1/2+�0 2F1�−

1

2
+ �,− �0,

1

2
− �0,���

−1

, �18�

where �¯� is the Euler gamma function �not to be confused
with the decay rate � and 2F1 is a hypergeometric function.
With the approximations �0�0, �1�72 /20�2, �� 5

14I, this
reduces to

Eeq

Er
=

I2

I −
21

5

. �19�

The momentum distribution S�p̄�, given by Eq. �16�, is
shown in Fig. 2 as a function of scaled intensity I. Maximum
cooling, which corresponds to the narrowest momentum dis-
tribution, is obtained for I�8.4 in good agreement with Eq.
�19�. More details about the form of the momentum distribu-
tion and mean equilibrium kinetic energy are provided in the
next section.

IV. QUANTUM MONTE CARLO APPROACH

To gain further insight into the cooling dynamics, we
solve the problem using quantum Monte Carlo wave func-
tion simulations �QMCWF� �10,23�. The simulations employ
a fully quantum-mechanical description of the center-of-
mass motion and allow us to determine the spatial and mo-
mentum distributions of the atoms, including the degree to
which the atoms become localized in the wells of the Raman
optical-lattice potentials. Also, the dynamics of the cooling
process can be studied in detail.

In the QMCWF method, the evolution of the density ma-
trix describing the atoms in the lattice is obtained by forming
averages over N quantum trajectories ��i�t��, each of which
is a realization of a single-atom wave function evolution:

	�t� = 

i=1

N
1

N

��i�t����i�t��
��i�t����i�t��

. �20�

Averages are taken over ensembles of typically N=104 to
N=105 quantum trajectories.

Each quantum trajectory contains periods of deterministic
Hamiltonian wave function evolution, connected by discrete
quantum jumps. The Hamiltonian evolution is governed by
an effective Hamiltonian H=Hkin+Hpot with a kinetic part
Hkin= p̂2 /2M and a potential operator Hpot. The latter de-
scribes the coherent interaction between atoms and light
fields, and wave function damping caused by photon scatter-
ing �10�. As in the semiclassical treatment, in our QMCWF
the excited-state components of the wave functions are adia-
batically eliminated. Consequently, matrix elements of the
potential operator are of the form

�z�,m��Hpot�z,m� =
�
2

� + i/2
Am�,m�z���z� − z� �21�

with an internal-state quantum number m� �1,2� denoting
the two ground states. The imaginary part in the energy de-
nominator leads to a gradual decay of the wave function
norm. The elements Am�,m�z�, written in a conventional inter-
action representation, are given by

A1,1�z,t� = 2�1 + cos�2kz − �ut + �13�� ,

A2,2�z,t� = 2�1 + cos�2kz + �ut + �42�� ,

A1,2�z,t� = 2ei�/2ei�t cos�2kz − �/2� + ei���+�u�t+�41�

+ ei���−�u�t+�23�,

A2,1�z,t� = A1,2
* �z,t� , �22�

where �u=�1−�3=�2−�4, �ij =�i−� j, �=�21−�43, �
=�21+�43, and the �i are the phases of the individual fields.
The terms A1,1�z , t� and A2,2�z , t� are proportional to the ac
stark shift of levels 1 and 2. There is a common shift of both
levels that can be ignored and a moving spatial grating that
contributes negligibly, owing to the fact that ��u���. The
second two terms in the transition matrix element A1,2�z , t�
also average to zero on the assumption that ��u��� , ���; the

FIG. 2. �Color online� Momentum distribution, S�p̄�, as a func-
tion of I=
2 / ���r� for �=� /=10.
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remaining term in A1,2�z , t� contains a spatial lattice phase
shift � and a phase factor ei�/2. The spatial phase shift cor-
responds to a global shift of the lattice and can be ignored.
The phase � is unimportant if spontaneous emission does not
result in the creation of coherence between states �1� and �2�.
In this work, any such contributions are neglected, owing to
the assumption that the frequency separation of levels 1 and
2 is much larger than � �24�.

The quantum trajectories are represented in a basis
��pn=��2nkL+q� ,m��, where kL=2� /�, n is an integer with
−nmax�n�nmax and nmax=16 or 32. The continuous mo-
mentum variable �q, which satisfies −kL�q�kL and is as-
sociated with recoil on spontaneous emission, does not
change during the Hamiltonian portions of the wave function
evolution, as can be seen by inspection of the matrix ele-
ments of A�z�. The Hamiltonian evolution is carried out nu-
merically in discrete time steps. We use a split-operator
method �25�, in which the kinetic-energy operator, which is
diagonal in the momentum basis, is applied in the momen-
tum basis, while the atom-field interaction, which is diagonal
in position, is applied in a position basis. Thus, at each time
step the quantum trajectory is transformed back and forth
between position and momentum representations using
FFT’s. Consequently, both the position and the momentum
probability distributions of the quantum trajectory ��� can be
obtained without numerical overhead at any time of the
quantum trajectory evolution.

The periods of Hamiltonian evolution are interrupted by
discrete quantum jumps, which simulate the effect of the
spontaneous scattering of lattice photons. The time instants
and effects of the quantum jumps are governed by quantum-
mechanical probability laws �10�. In each quantum jump,
random numbers are drawn to select the type of transition—
into state �1� or state �2�—and the direction of the spontane-
ously emitted photon. The applied radiation pattern is that of
a linearly polarized dipole aligned perpendicular to the direc-
tion of the lattice beams. In each jump, the wave function is
modified in a well-defined manner, unambiguously deter-
mined by the wave function prior to the jump and by the
rules of quantum measurement of a spontaneous photon of
the selected type.

We study first the dependence of steady-state kinetic en-
ergy on the dimensionless Raman intensity I=
2 /��r.
Steady-state energies are displayed in Fig. 3 for �=� /
=2,16. In the figure, the simulation results are compared
with those obtained from the semiclassical theory. In both the
QMCWF and the semiclassical calculations, in the range I
�10 the energy scales linearly with I. The energy values
obtained in the QMCWF are about 30% lower than those
obtained in the semiclassical calculations. This systematic
difference is attributed to the beneficial effect of atomic lo-
calization in the lattice wells, which is accounted for in the
QMCWF, but not in the semiclassical theory. A similar be-
havior has been observed earlier for Sisyphus cooling in con-
ventional optical lattices �21�.

The QMCWF results in Fig. 3 show that the energy
reaches a minimum Emin�12Er at I�10, compared with the
results of the semiclassical model, in which Emin=16.8Er at
I=8.4. At lower values of I the energy quickly diverges, and
the uncertainties in the QMCWF become substantial. The

increase in uncertainty of the QMCWF results in the range
I�10 is due to the fact that in this range the cooling dynam-
ics becomes very slow. Thus, it becomes questionable in the
QMCWF whether or not steady state is reached. The issue is
amplified by the fact that for I�10 the atoms undergo so-
called Levy flights, as in standard Sisyphus cooling �26�. The
Levy flights are phases in which the atoms have abnormally
large kinetic energies. The Levy flights are quite rare events
and interrupt much longer phases in which the atoms are
cooled to very low kinetic energy. Owing to these properties
of the Levy flights, in QMCWF it is problematic to achieve
small statistical errors of the kinetic energy in the range I
�10. It is noteworthy that in the range I�10 the Levy
flights quickly disappear. Therefore, the uncertainties of
QMCWF results drop rapidly for I�10.

Figure 4 shows several examples of the momentum dis-
tribution obtained using the QMCWF and semiclassical
models. It is seen that the momentum distribution changes
dramatically as a function of scaled intensity I. We have
examined QMCWF and semiclassical momentum distribu-
tions for a wide range of intensities and found that the dis-
tributions varied from being close to Gaussian for I�10 to

FIG. 3. �Color online� Dimensionless steady-state kinetic energy
obtained using QMCWF simulations �symbols with error bars� and
semiclassical calculations �lines� as a function of dimensionless in-
tensity I=
2 /��r for �=2,16.

FIG. 4. Graphs of the momentum distribution, S�p̄�, multiplied
by p̄2 for �=8 and several values of I : I=3.11, solid line; I=8.4,
dashed line; I=50, dotted line; lines, semiclassical theory; lines
with circles, QMCWF.
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nearly Lorentzian for I�10. It can also be seen in the figure
that the QMCWF simulations lead to momentum distribu-
tions that are narrower than the semiclassical ones. This ef-
fect can be attributed to localization in the lattice wells and
results in lower mean equilibrium kinetic energies �Fig. 3�.

In the range of robust cooling, I�10, the time depen-
dence of the kinetic energy is found to be of the form
Ekin�t�=E0+E1e−coolt. The constants E0 and E1 and the cool-
ing rate cool depend on lattice and atomic parameters. In
Fig. 5 we show cooling rates obtained for typical Raman
lattices. It is noted that the cooling rates saturate at a
�-dependent value and can be as large as 0.2� �see data for
�=2�. Also, considering fits of the cooling rates such as the
one displayed for �=16, it is seen that the cooling rate tends
to be a quadratic function of the photon scattering rate �. In
conventional Sisyphus cooling the cooling rate tends to be
more a linear function of the photon scattering rate �27�.

For I�10 the energy Ekin�t� cannot be represented by a
simple analytical approximation. In this range, Ekin�t� ini-
tially decays exponentially �to a good approximation�, fol-
lowed by a much slower cooling to steady state. The pres-
ence of multiple time scales in the cooling process
apparently reflects a shrinking velocity capture range of the
cooling process for I�10. At such low lattice intensities,
atoms with initial velocities within the capture range are

cooled quickly, while atoms with larger velocities are cooled
much more slowly. Further study will be required to entirely
understand the cooling dynamics.

The QMCWF also yield data on the modulation depth of
the density distribution of the atoms in the lattice wells. The
spatial density distribution generally is found to have a peri-
odicity of � /4, in agreement with the discussion in Sec. I.
Quantitatively, we find that the modulation depth of the den-
sity distribution increases with I and �, as seen in Fig. 6. It is
concluded that it is fairly easy to achieve a relative modula-
tion amplitude of order 0.4 �the relative modulation ampli-
tude is defined as the difference between maximum and
minimum density divided by their sum�.

V. DRESSED STATES

The fact that one recovers the results of Sisyphus cooling
for �=0 suggests that there is a representation where the
Sisyphus picture emerges naturally. One might think that the
appropriate basis is a semiclassical dressed state basis in
which one diagonalizes the Hamiltonian

FIG. 5. �Color online� Dimensionless cooling rate vs � / for
several values of �. The dashed line shows a quadratic fit to the data
for �=16. FIG. 6. �Color online� Modulation depth of the density distribu-

tion of the atoms in the lattice wells vs I for several values of �.

FIG. 7. �Color online� Graphs of the dressed-state optical potentials �a� and the modified dressed state potentials �b�. Solid line, �+;
dashed line, �−.
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H =
�

2 �
4
2

�
cos x

4
2

�
cos x − � � .

When �=0, the eigenvalues of H are given by

�± = ± �2
2

�
cos x� .

The potentials are drawn in Fig. 7�a� as a function of x.
Since each eigenvalue is either always positive or always
negative, these potentials are not those associated with Sisy-
phus cooling. Moreover, nonadiabatic coupling occurs when-
ever the potentials meet. Instead of using conventional
dressed states, one could use modified dressed states in
which the eigenvalues are �±� ±2�
2 /��cos x. The corre-
sponding potentials shown in Fig. 7�b� are totally equivalent
to the conventional Sisyphus potentials. The dressed eigen-
states are analogous to the bare states of conventional Sisy-
phus cooling. As such, for zero velocity atoms, the dressed
state coherence vanishes, while the dressed state population
difference is spatially modulated; in other words, populations
and coherences are interchanged in going from the bare to
dressed basis. The interpretation in terms of these modified
dressed states is useful only for �=0; for ��0, one must
revert to conventional dressed states, and nonadiabatic cou-
pling near the potential extrema can play a role. This will be
explored in a future paper.

VI. SUMMARY

We have shown that sub-Doppler cooling occurs for a
standing-wave Raman scheme �SWRS� that results in re-
duced period optical lattices. Both semiclassical and quan-
tum Monte Carlo calculations were carried out for the case of
exact two-photon resonance. The results from the two ap-
proaches were in qualitative agreement, but the role of spa-

tial localization leads to effects that are not included in the
simplified semiclassical method. It was possible to draw an
analogy with conventional Sisyphus cooling if a transforma-
tion to a new basis was made. In a future planned paper, the
calculations will be extended to nonzero Raman detunings.

It is relatively straightforward to generalize these results
to situations in which optical lattices having periodicity � /2n
can be produced �n is a positive integer greater than 1�
�5,28,29�. If the Raman detuning � is chosen equal to
−�21/n, then it will take n two-photon processes to achieve
resonance between states �1� and �2�. If �21/n��, the 1-2
transition is, in effect, driven by a 2n-photon process and the
resultant overall periodicity is reduced to � /2n.
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APPENDIX A

The starting point for the derivation of the Fokker-Planck
equation is Eq. �4.10� of Ref. �30�. This equation is written in
momentum space for quantized center-of-mass states and in-
cludes effects related to changes in atomic momentum result-
ing from both stimulated and spontaneous emission. Equa-
tion �4.10� of Ref. �30� is evaluated for G=0, G�=0 ground
states, an H=1 excited state, and the linearly polarized inci-
dent fields of our model 3-level atom-field system. The re-
sultant equation is transformed into the Wigner representa-
tion using

	�z, p̄� =
1

2��
�

−�

�

dq 	�p̄ + q/2, p̄ − q/2�eiqz/�,

and one finds that ground state density matrix elements �in
the “normal” representation� obey the following equation of
motion:

� �

�t
+ i�aa1

�	�a,a1;z,p� +
p

M

�

�z
	�a,a1;z,p�

= − e−i�j j�teikjj�z�
2g�j,a1�g�j�,a3�
� + i�

�a2a	�a2,a3;z,p +
1

2
�kjj�� +


2g�j,a2�g�j�,a�
� − i�

�a3a1
	�a2,a3;z,p −

1

2
�kjj���

+
1

2

2g�j,a2�g�j�,a3��1

2
�K̄0 +

1

4
�K̄2� 

�2 + �2�a,a1
e−i�j j�teikjj�z�

−1

1

dxPK̄�z�	0
0�a2,a3,z,p + ��kz −

kj + kj�

2
�� , �A1�

where a ,a1 ,a2 ,a3 label the two lower states and can equal 1
or 2, PK̄�x� is a Legendre polynomial, �= /2, and �aa1

= �Ea−Ea1
� /�. Several points should be made concerning

this equation. First, there is a summation convention implicit
in which repeated indices appearing on the right-hand side of

the equation are summed over if they do not appear on the
left hand side. Second, the sum over j and j� is from 1 to 4,
corresponding to the four incident fields. Third, the Rabi fre-
quencies associated with all the fields are taken to be equal,
as is the branching ratio for each decay channel. Fourth, the
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detunings of all the fields have been set equal when they
appear in energy denominators associated with electronic
state transitions, based on the assumption that ��3−�1�,
��4−�2�� ���. Fifth, the Kronecker delta �a,a1

reflects the
neglect of any ground state coherence resulting from sponta-
neous emission. Finally, the g functions are defined by

g�j,1� = � j1 + � j3, g�j,2� = � j2 + � j4,

reflecting the fact that fields 1 and 3 drive only the 1-3 tran-
sition and fields 2 and 4 drive only the 2-3 transition.

To obtain a Fokker-Planck equation, one expands density
matrix elements to second order in �. When this is done, one
finds

� �

�t
+

p

M

�

�z
�	12 = − �2� + i��	12 − 2i���cos�x��	22 − 	11� − i�k sin�x�

�

�p
�	22 + 	11� + �2k2cos�x�

2

�2

�p2 �	22 − 	11��
− ��cos�x��	22 + 	11� − i�k sin�x�

�

�p
�	22 − 	11� + �2k2cos�x�

2

�2

�p2 �	22 + 	11�� , �A2�

� �

�t
+

p

M

�

�z
�	11 = − 2�	11 + 2i���cos�x��	12 − 	21� + i�k sin�x�

�

�p
�	12 + 	21� +

cos�x�
2

�2k2 �2

�p2 �	12 − 	21�� + ��	11 + 	22�

+
7

10
�2k2�

�2

�p2 �	11 + 	22� −
3

10
�2k2�cos�x�

�2

�p2 �	12 + 	21� − i�k� sin�x�
�

�p
�	12 − 	21� , �A3�

where x=2kz, and a field interaction representation has been
introduced �e.g., 	�1,2 ;z , p�=	12�z , p�ei��+�21�t; 	�a ,a ;z , p�
=	aa�z , p��. Equations for 	21 and 	22 are obtained by inter-
changing 1 and 2.

Defining

S = 	22 + 	11, �A4�

w = 	22 − 	11, �A5�

one can rewrite these equations as

� �

�t
+

p

M

�

�z
�S =

7

5
�2k2�

�2

�p2S − 4���k sin�x�
�

�p
�	12 + 	21�

−
3

5
�2k2� cos�x�

�2

�p2 �	12 + 	21� , �A6a�

� �

�t
+

p

M

�

�z
�w = − 2�w − 4i���cos�x��	12 − 	21�

+ �2k2cos�x�
2

�2

�p2 �	12 − 	21��
− 2i�k� sin�x�

�

�p
�	12 − 	21� , �A6b�

� �

�t
+

p

M

�

�z
�	12 = − �2� + i��	12 − 2i���cos�x�w

− i�k sin�x�
�S

�p
+ �2k2cos�x�

2

�2w

�p2�
− ��cos�x�S − i�k sin�x�

�w

�p

+ �2k2cos�x�
2

�2S

�p2� . �A6c�

The semiclassical description is valid only for p��k, ener-
gies greater than the recoil energy, and negligible spatial
modulation of the total atomic density S �21,22�. In this limit,
the only derivative on the right-hand side of Eqs. �A6b� and
�A6c� that need be retained is �S /�p and the spatial deriva-
tive of S can be dropped in Eq. �A6a�. In this manner one
arrives at Eqs. �5a� and �5b� of the text.

APPENDIX B

In this appendix, we provide the mathematical justifica-
tion for the qualitative discussion of the origin of the friction
force given in Sec. II.

1. Single pair of Raman fields

We consider first the friction force for a single pair of
Raman fields, E1 and E2. To help elucidate the origin of the
friction force, it proves useful to write down the density ma-
trix equations for the full three-level system before adiabatic
elimination of the ground-excited state coherence and the
excited state populations. These equations, written in an in-
teraction representation in which 	13

normal= 	̃13e
−i�kz−�1t�,

	23
normal= 	̃23e

−i�−kz−�2t�, and 	12
normal= 	̃12e

−i�2kz−��1−�2�t�, and
with the same approximations as in the text, are

�	11/�t = i
1�	̃13 − 	̃31� + �3,1	33, �B1a�

�	22/�t = i
2�	̃23 − 	̃32� + �3,2	33, �B1b�

�	33/�t = − i
1�	̃13 − 	̃31� − i
2�	̃23 − 	̃32� − 	33,

�B1c�
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�	̃12/�t = i
2	̃13 − i
1	̃32 − i�̃	̃12, �B1d�

�	̃13/�t = i
2	̃12 − i
1�	33 − 	11� − �� + i��	̃13, �B1e�

�	̃23/�t = i
1	̃21 − i
2�	33 − 	22� − �� + i��	̃23, �B1f�

	 ji = 	ij
* , �B1g�

where �3,j is the spontaneous decay from level 3 to level

j �=�3,1+�3,2� and �̃=�−2kv. We have not yet imposed the
assumptions of equal Rabi frequencies and equal branching
ratios.

For the applied field

E�z,t� =
1

2
x̂�E1ei�kz−�1t� + E2ei�−kz−�2t�� + c.c.,

the friction force can be calculated using F=Tr�	� �� ·E��,
and one finds the spatially and temporally averaged friction
force to be

F̄ = − �k�i
1�	̃13 − 	̃31� − i
2�	̃23 − 	̃32�� . �B2�

It then follows from Eqs. �B1a� and �B1b� that

F̄ = �k���3,1 − �3,2�	33 + ��	22 − 	11�/�t� . �B3�

In steady state, the averaged friction force vanishes regard-

less of the detuning �̃ and regardless of the ratio of the Rabi
frequencies associated with the coupled transitions provided
that the branching ratios of the two transitions are equal �15�.
Even if the branching ratios are unequal, the steady-state,

averaged friction force vanishes provided that �̃=0, since
there is a dark state in this limit and 	33=0. Equation �B3�
can be given a simple physical interpretation. In steady state,
the second term vanishes and the force arises solely from
scattered radiation. Each photon scattered on the 3-1 transi-
tion involves a loss of one photon from field E1 and each
photon scattered on the 3-2 transition involves a loss of one
photon from field E2, with a corresponding force on the at-
oms that is proportional to the scattering rates �3,1 and �3,2,
respectively. If one is not in steady state, a time rate of
change of the population difference of the ground states cor-

responds to a stimulated exchange of momentum between
the fields resulting in a corresponding change in momentum
of the atoms.

To make connection with the comments in Sec. II, we
adiabatically eliminate 	̃13, 	̃31, 	̃23, 	̃32, and 	33 from Eqs.
�B1a�–�B1g�, and revert to the approximations of equal Rabi
frequencies and equal branching ratios to obtain the evolu-
tion equations

�w

�t
= − �w + 2i���	̃21 − 	̃12� , �B4a�

�	̃12

�t
= − �� + i�̃�	12 − i�w −

�

2
, �B4b�

where w= �	22−	11� and �=� /. With the same adiabatic
elimination, Eq. �B3� for the friction force becomes

F̄ = − �k��w − 2i��	̃21 − 	̃12�� = �k�w/�t ,

the last equality following from Eq. �B4a�. In steady state,
the averaged friction force vanishes, resulting from a cancel-
lation of the term proportional to the population difference w
with that proportional to the ground state coherences �	̃21

− 	̃12�. Each of these terms separately is nonvanishing if �̃
�0; i.e.,

w =
2�̃��

�̃2 + �2�1 + 4�2�
.

2. Two pairs of Raman fields

When two pairs of Raman fields are present, such as those
shown in Fig. 1, it is no longer possible to eliminate the
spatial dependence in all density matrix elements using a
simple change of representation. Within the approximations
of the main text, the appropriate equations for ground state
density matrix elements and the friction force in terms of
those elements can be derived using the equations of Ref.
�17�. The density matrix equations are given in Eqs. �2�,
while the spatially and temporally averaged friction force is
given by

F̄ = �k�� + i��−1� �
1
2 − 
3

2�	11 − �
2
2 − 
4

2�	22

+ �
1
2e2ikz − 
3
4e−2ikz�	12 − �
1
2e−2ikz − 
3
4e2ikz�	21
� + c.c., �B5�

where �¯� represents a spatial average. The Rabi frequen-
cies have not yet been set equal so that cancellations can be
seen. It can be deduced immediately from Eq. �B5� that only
the spatially homogeneous part of the ground state popula-
tions contribute to the averaged friction force. There are no
contributions from spatially modulated components of the

popu-lations �as occurs in Sisyphus cooling� since we have
neglected interference between fields E1 and E3 �or E2 and
E4� in driving single photon transitions. On the other hand,
the components of the coherences 	12 and 	21 that are spa-
tially modulated as e±2ikz contribute to the averaged friction
force.
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For equal Rabi frequencies, the terms involving popula-
tions in Eq. �B5� cancel, reflecting the fact that changes in
momentum arising from scattering from fields 1 and 3 �or 2
and 4� into vacuum field modes cancel one another. On the
other hand, owing to different spatial phases associated with
two-photon amplitudes proportional to E1E2 and E3E4, there
is no cancellation of the terms involving the ground state
coherences, except when kz=n� �n is an integer�. For equal
Rabi frequencies, Eq. �B5� reduces to

F̄ = 4�k���sin�2kz��	12 + 	21�� . �B6�

In general, owing to interference on two-photon transitions
involving contributions with different spatial phases, there
will be a nonvanishing contribution to the averaged friction
force. Note that, for stationary atoms and zero detuning,

	12=−cos�2kz� /2 and F̄=0.

�1� J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6,
2023 �1989�.

�2� P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, J. Opt. Soc. Am.
B 6, 2046 �1989�.

�3� G. Nienhuis, P. van der Straten, and S.-Q. Shang, Phys. Rev. A
44, 462 �1991�.

�4� See, for example, S. Chang, B. M. Garraway, and V. G. Mi-
nogin, Opt. Commun. 77, 19 �1990�; P. R. Hemmer, M. G.
Prentiss, M. S. Shahriar, and N. P. Bigelow, ibid. 89, 335
�1992�; R. Gupta, C. Xie, S. Padua, H. Batelaan, and H. Met-
calf, Phys. Rev. Lett. 71, 3087 �1993�.

�5� B. Dubetsky and P. R. Berman, Laser Phys. 12, 1161 �2002�.
�6� M. Weitz, G. Cennini, G. Ritt, and C. Geckeler, Phys. Rev. A

70, 043414 �2004�.
�7� This condition is necessary to neglect the effects of fields E1

acting on the 2-3 transition and E2 acting on the 1-3 transition
with regards to light shifts and optical pumping; however, it is
possible to neglect the effect of fields E2 and E1 driving co-
herent transitions between levels 1 and 2 �with E2 acting on the
1-3 transition and E1 acting on the 2-3 transition� under the
much weaker condition that the optical pumping rates be much
smaller than �21.

�8� The condition needed to neglect modulated Stark shifts result-
ing from the combined action of fields E1 and E3 �or E2 and
E4�, as well as transitions between levels 1 and 2 resulting
from fields E1 and E4 �or E3 and E2� is ��3−�1�� �

� /�� and
��4−�2�� �

� /��, where 
 is a Rabi frequency associated
with the 1-3 transition and 
� is a Rabi frequency associated
with the 2-3 transition.

�9� B. Dubetsky and P. R. Berman, Phys. Rev. A 66, 045402
�2002�.

�10� J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68,
580 �1992�; P. Marte, R. Dum, R. Taieb, and P. Zoller, Phys.
Rev. A 47, 1378 �1993�.

�11� R. Zhang, N. V. Morrow, P. Berman, and G. Raithel �unpub-
lished�.

�12� P. R. Berman, V. Finkelstein, and J. Guo, in Laser Spectros-
copy X, edited by M. Ducloy, E. Giacobino, and G. Camy
�World Scientific, Singapore, 1992�, pp. 15–20.

�13� C. Cohen-Tannoudji, in Proceedings of the International
School of Physics “Enrico Fermi,” Course CXVIII, edited by
E. Arimondo, W. D. Phillips, and F. Strumia �North-Holland,
Amsterdam, 1992�, pp. 99–169.

�14� M. G. Prentiss, N. P. Bigelow, M. S. Shahriar, and P. R. Hem-
mer, Opt. Lett. 16, 1695 �1991�.

�15� F. Papoff, F. Mauri, and E. Arimondo, J. Opt. Soc. Am. B 9,
321 �1992�.

�16� Essentially the same equations result if one considers transi-
tions between the m=−1 �state �1�� and m=1 �state �2�� sub-
levels of a J=1 ground state manifold of an atom in a magnetic
field. In this case, one takes fields E1 and E3 to be polarized �+

and fields E2 and E4 to be polarized �−.
�17� P. R. Berman, G. Rogers, and B. Dubetsky, Phys. Rev. A 48,

1506 �1993�.
�18� The detunings of all the fields have been set equal when they

appear in energy denominators associated with electronic state
transitions, based on the assumption that ��3−�1�, ��4−�2�
� ���.

�19� The interaction representation is one in which 	12
normal

=	12ei��1−�2�t=	12ei��3−�4�t, where 	12 is the density matrix
element in the field interaction representation.

�20� Before adiabatic elimination of state �3�, the contribution of
spontaneous emission to the density matrix evolution is 	̇11

= 	̇22= � /2�	33, 	̇13=−� /2�	13, 	̇23=−� /2�	23, and 	̇33=
−	33. After adiabatic elimination of state �3�, the contribution
of spontaneous emission to the density matrix evolution is
	̇11=−��	11−	22�; 	̇22=−��	22−	11�; 	̇12=−2�	12, where
� is defined by Eq. �4e�.

�21� Y. Castin, J. Dalibard, and C. Cohen-Tannoudji, in Light In-
duced Kinetic Effects of Atoms and Molecules, edited by L.
Moi, S. Gozzini, C. Gabbanini, E. Arimondo, and F. Strumia
�ETS Editrice, Pisa, 1990�.

�22� V. Finkelstein, P. R. Berman, and J. Guo, Phys. Rev. A 45,
1829 �1992�.

�23� See, e.g., S. K. Dutta, B. K. Teo, and G. Raithel, Phys. Rev.
Lett. 83, 1934 �1999�; N. V. Morrow and G. Raithel, Phys.
Rev. A 70, 051601�R� �2004�.

�24� In the QMCWF, the creation of coherence via spontaneous
emission is avoided by simulating a detection process that dis-
tinguishes between spontaneous emission into levels 1 and 2.

�25� R. Kosloff, J. Chem. Phys. 92, 2087 �1988�; C. Leforestier et
al., J. Comput. Phys. 94, 59 �1991�.

�26� S. Marksteiner, K. Ellinger, and P. Zoller, Phys. Rev. A 53,
3409 �1996�; H. Katori, S. Schlipf, and H. Walther, Phys. Rev.
Lett. 79, 2221 �1997�.

�27� G. Raithel, G. Birkl, A. Kastberg, W. D. Phillips, and S. L.
Rolston, Phys. Rev. Lett. 78, 630 �1997�.

�28� P. R. Berman, B. Dubetsky, and J. L. Cohen, Phys. Rev. A 58,
4801 �1998�.

�29� F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz,
Phys. Rev. Lett. 87, 113601 �2001�. For applications to re-
duced period optical lattices, the copropagating fields used by
these authors must be replaced by counterpropagating fields.

�30� B. Dubetsky and P. R. Berman, Phys. Rev. A 53, 390 �1996�.

SUB-DOPPLER COOLING IN REDUCED-PERIOD… PHYSICAL REVIEW A 72, 033415 �2005�

033415-11


