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We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice.
We show that site-to-site tunneling leads to a residual sensitivity to the atom dynamics hence requiring large
depths ��50–100�Er for Sr� to avoid any frequency shift or line broadening of the atomic transition at the
10−17–10−18 level. Such large depths and the corresponding laser power may, however, lead to difficulties �e.g.,
higher-order light shifts, two-photon ionization, technical difficulties� and therefore one would like to operate
the clock in much shallower traps. To circumvent this problem we propose the use of an accelerated lattice.
Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunneling. We show
that using the Earth’s gravity, much shallower traps �down to 5Er for Sr� can be used for the same accuracy
goal.
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I. INTRODUCTION

The control of the external degrees of freedom of atoms,
ions, and molecules and of the associated frequency shifts
and line broadenings is a long-standing issue of the fields of
spectroscopy and atomic frequency standards. They have
been a strong motivation for the development of many
widely spread techniques like the use of buffer gases �1�,
Ramsey spectroscopy �2�, saturated spectroscopy �3�, two-
photon spectroscopy �4�, trapping and laser cooling �5,6�,
etc.

In the case of ions, the problem is now essentially solved
since they can be trapped in relatively low fields and cooled
to the zero point of motion of such traps �5�. In this state, the
ions are well within the Lamb-Dicke regime �1� and experi-
ence no recoil or first-order Doppler effect �5�. The fractional
inaccuracy of today’s best ion clocks lies in the range from 3
to 10�10−15 �7–11� with still room for improvement. The
main drawback of trapped ion frequency standards is that
only one to a few ions can contribute to the signal due to
Coulomb repulsion. This fundamentally limits the frequency
stability of these systems and puts stringent constraints on
the frequency noise of the oscillator which probes the ions
�12�.

These constraints are relaxed when using a large number
of neutral atoms �13� for which, however, trapping requires
much higher fields, leading to shifts of the atomic levels.
This fact has for a long time prevented the use of trapped
atoms for the realization of atomic clocks and today’s most
accurate standards use freely falling atoms. Microwave foun-
tains now have an inaccuracy below 10−15 and are coming
close to their foreseen ultimate limit which lies around 10−16

�14�, which is essentially not related to effects due to the
atomic dynamics �15,16�. In the optical domain, atomic mo-
tion is a problem and even with the use of ultracold atoms
probed in a Ramsey-Bordé interferometer �17�, optical
clocks with neutrals still suffer from the first-order Doppler

and recoil effects �18–21�. Their state-of-the-art inaccuracy
is about 10−14 �20�.

The situation has recently changed with the proposal of
the optical lattice clock �22�. The idea is to engineer a lattice
of optical traps in such a way that the dipole potential is
exactly identical for both states of the clock transition, inde-
pendently of the dipole laser power and polarization. This is
achieved by tuning the trap laser to the so-called “magic
wavelength” and by the choice of clock levels with zero
electronic angular momentum. The original scheme was pro-
posed for 87Sr atoms using the strongly forbidden 1S0− 3P0
line at 698 nm as a clock transition �23�. In principle, how-
ever, it also works for all atoms with a similar level structure
like Mg, Ca, Yb, Hg, etc., including their Bosonic isotopes if
one uses multiphoton excitation of the clock transition
�24,25�.

In this paper we study the effect of the atom dynamics in
the lattice on the clock performances. In Ref. �22�, it is im-
plicitly assumed that each microtrap can be treated separately
as a quadratic potential in which case the situation is very
similar to the trapped ion case and then fully understood �5�.
With an inaccuracy goal in the 10−17–10−18 range in mind
�corresponding to the mHz level in the optical domain�, we
shall see later on that this is correct at very high trap depths
only. The natural energy unit for the trap dynamics is the
recoil energy associated with the absorption or emission of a
photon of the lattice laser, Er=�2kL

2 /2ma with kL the wave
vector of the lattice laser and ma the atomic mass. For Sr and
for the above accuracy goal the trap depth U0 corresponding
to the independent trap limit is typically U0=100Er, which
corresponds to a peak laser intensity of 25 kW/cm2.

For a number of reasons, however, one would like to work
with traps as shallow as possible. First, the residual shift by
the trapping light of the clock transition is smaller and
smaller at a decreasing trap depth. The first-order perturba-
tion is intrinsically canceled by tuning to the magic wave-
length except for a small eventual tensorial effect which de-
pends on the hyperfine structure of the atom under
consideration. Higher-order terms may be much more prob-
lematic depending on possible coincidences between two
photon resonances and the magic wavelength �22,26�. The*Electronic address: pierre.lemonde@obspm.fr
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associated shift scales as U0
2 �27�. The shifts would then be

minimized by a reduction of U0 and their evaluation would
be greatly improved if one can vary this parameter over a
broader range. Second, for some of the possible candidate
atoms, such as Hg for which the magic wavelength is about
340 nm, two-photon ionization can occur which may limit
the achievable resonance width and lead to a frequency shift.
Finally, technical aspects like the required laser power at the
magic wavelength can be greatly relaxed if one can use shal-
low traps. This can make the experiment feasible or not if the
magic wavelength is in a region of the spectrum where no
readily available high power laser exists, such as in the case
of Hg. For this atom, a trap depth of 100Er would necessitate
a peak intensity of 500 kW/cm2 at 340 nm.

When considering shallow traps, the independent trap
limit no longer holds, and one cannot neglect tunneling of
the atoms from one site of the lattice to another. This leads to
a delocalization of the atoms and to a band structure in their
energy spectrum and associated dynamics. In Sec. III we
investigate the ultimate performance of the clock taking this
effect into account. We show that depending on the initial
state of the atoms in the lattice, one faces a broadening
and/or a shift of the atomic transition of the order of the
width of the lowest energy band of the system. For Sr, this
requires U0 of the order of 100Er to ensure a fractional in-
accuracy lower than 10−17.

The deep reason for such a large required value of U0 is
that site-to-site tunneling is a resonant process in a lattice.
We show in Sec. IV that a much lower U0 can be used
provided the tunneling process is made nonresonant by lift-
ing the degeneracy between adjacent sites. This can be done
by adding a constant acceleration to the lattice, leading to the
well-known Wannier-Stark ladder of states �28,29�. More
specifically, we study the case where this acceleration is sim-
ply the Earth’s gravity. The experimental realization of the
scheme in this case is then extremely simple: the atoms have
to be probed with a laser beam which propagates vertically.
In this configuration, trap depths down to U0�5Er can be
sufficient for the above accuracy goal.

II. CONFINED ATOMS COUPLED TO A LIGHT FIELD

In this section we describe the theoretical frame used to
investigate the residual effects of the motion of atoms in an
external potential. The internal atomic structure is approxi-
mated by a two-level system �g� and �e� with energy differ-
ence ��eg. The internal Hamiltonian is

Ĥi = ��eg�e��e� . �1�

We introduce the coupling between �e� and �g� by a laser of
frequency � and wave vector ks propagating along the x
direction:

Ĥs = �� cos��t − ksx̂��e��g� + H.c., �2�

with � the Rabi frequency.
In the following we consider external potentials induced

by trap lasers tuned at the magic wavelength and/or by grav-

ity. The external potential Ĥext is then identical for both �g�

and �e� with eigenstates �m� obeying Ĥext�m�=��m�m� �Note
that �m� can be a continuous variable in which case the dis-
crete sums in the following are replaced by integrals.� If we
restrict ourselves to experiments much shorter than the life-
time of state �e� �for 87Sr, the lifetime of the lowest 3P0 state
is 100 s� spontaneous emission can be neglected and the
evolution of the general atomic state,

��at� = 	
m

am
g e−i�mt�m,g� + am

e e−i��eg+�m�t�m,e� , �3�

is driven by

i�
�

�t
��at� = �Ĥext + Ĥi + Ĥs���at� , �4�

leading to the following set of coupled equations:

iȧm
g = 	

m�

�*

2
ei�m�,mt�m�e−iksx̂�m��am�

e , �5�

iȧm
e = 	

m�

�

2
e−i�m,m�t�m�eiksx̂�m��am�

g .

To derive Eq. �5� we have made the usual rotating wave
approximation �assuming �−�eg� ��eg� and defined
�m�,m=�−�eg+�m−�m�.

In the case of free atoms, Ĥext=�2	̂2 /2ma with �	�
ˆ

the
atomic momentum and ma the atomic mass. The eigenstates
are then plane waves: �g ,	� � is coupled to �e ,	� +k�s� with
�	� ,	�+k�s

=�−�eg+�	� ·k�s /ma+�ks
2 /2ma. One recovers the

first-order Doppler and recoil frequency shifts.
Conversely in a tightly confining trap �m�eiksx̂�m��m�


 �m�eiksx̂�m�, and the spectrum of the system consists of a
set of unshifted resonances corresponding to each state of the
external Hamiltonian. Motional effects then reduce to the
line pulling of these resonances by small �detuned� sidebands
�5�.

III. PERIODIC POTENTIAL

A. Eigenstates and coupling by the probe laser

We now consider the case of atoms trapped in an optical
lattice. As is clear from Eq. �5�, only the motion of the atoms
along the probe laser propagation axis plays a role in the
problem and we restrict the analysis to one dimension �30�.
We assume that the lattice is formed by a standing wave
leading to the following external Hamiltonian:

Ĥext
I =

�2	̂2

2ma
+

U0

2
�1 − cos�2klx̂�� , �6�

where kl is the wave vector of the trap laser. The eigenstates

�n ,q� and eigenenergies ��n,q of Ĥext
I are derived from the

Bloch theorem �31�. They are labeled by two quantum num-
bers: the band index n and the quasimomentum q. Further-
more, they are periodic functions of q with period 2kl and the
usual convention is to restrict oneself to the first Brillouin
zone q� �−kl ,kl�.
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Following a procedure given in Ref. �32� a numerical so-
lution to this eigenvalue problem can be easily found in the
momentum representation. The atomic plane wave with
wave vector 	 obeys

Ĥext
I �	� = 
�2	2

2ma
+

U0

2
��	� −

U0

4
��	 + 2kl� + �	 − 2kl�� .

�7�

For each value of q, the problem then reduces to the diago-
nalization of a real tridiagonal matrix giving the eigenener-
gies and eigenvectors as a linear superposition of plane
waves:

Ĥext
I �n,q� = ��n,q

I �n,q� ,

�n,q� = 	
i=−�

�

Cn,	i,q
�	i,q� , �8�

with 	i,q=q+2ikl. For each value of q one obtains a discrete
set of energies ��n,q

I and coefficients Cn,	i,q
, which are real

and normalized such that 	iCn,	i,q

2 =1. In Figs. 1 and 2 are
shown ��n,q

I and C0,	i,q
for various values of U0. Except

when explicitly stated, all numerical values throughout the
paper are given for 87Sr at a lattice laser wavelength 813 nm
which corresponds to the magic wavelength reported in Ref.
�33�. In frequency units Er then corresponds to 3.58 kHz. In
Fig. 3 is shown the width ���n,q=kl

I −�n,q=0
I �� of the lowest

energy bands as a function of U0 in units of Er and in fre-
quency units.

Substituting �m�→ �n ,q� and �m��→ �n� ,q�� in Eq. �5�, the
action of the probe laser is described by the coupled equa-
tions

iȧn,q
g = 	

n�

�q
n�,n*

2
ei�q

n�,ntan�,q+ks

e , �9�

iȧn,q+ks

e = 	
n�

�q
n,n�

2
e−i�q

n,n�tan�,q
g ,

with �q
n,n�=�	iCn�,	i,q

Cn,	i,q+ks
and �q

n,n�=�−�eg+�n�,q
I

−�n,q+ks

I . As expected from the structure of the Bloch vectors
in Eq. �8�, the translation in momentum space eiksx̂ due to the
probe laser leads to the coupling of a given state �n ,q� to the
whole set �n� ,q+ks� �see Fig. 1� with a coupling strength

�q
n�,n and a shift with respect to the atomic resonance

�n�,q+ks

I −�n,q
I . Both quantities depend on n ,n�, and q and to

go further we have to make assumptions on the initial state
of the atoms in the lattice.

B. Discussion

We first consider the case where the initial state is a pure

�n ,q� state. The strengths of the resonances �q
n,n� are shown

in Fig. 4 for the case n=0 and various values of q. At a

growing lattice depth �q
n,n� become independent of q and the

strength of all “sidebands” �n�−n�0� asymptotically de-

creases as U0
−�n�−n�/4 for the benefit of the “carrier” �n�=n�.

The frequency separation of the resonances rapidly increases
with U0 �Fig. 4�. For U0 as low as 5Er, this separation is of
the order of 10 kHz. For narrow resonances �which are re-
quired for an accurate clock� they can be treated separately
and the effect of the sidebands on the carrier is negligible. If,
for example, one reaches a carrier width of 10 Hz, the side-
band pulling is of the order of 10−5 Hz. On the other hand,
the carrier frequency is shifted from the atomic frequency by
�n,q+ks

I −�n,q
I due to the band structure. This shift is of the

order of the width of the nth band �Figs. 3 and 5�. It can be
seen as a residual Doppler and recoil effect for atoms trapped
in a lattice and is a consequence of the complete delocaliza-

FIG. 1. Band structure for two different lattice depth: U0=2Er

�left� and U0=10Er �right�. Each state �n ,q0� is coupled to all the
states �n� ,q0+ks� by the probe laser.

FIG. 2. C0,	i,q
for two different lattice depth: U0=2Er �left� and

U0=10Er �right�. The dotted lines delimit the Brillouin zones. For a
state �n=0,q=akl� with a� �−1,1� the solid envelope gives the
contribution of the plane waves �	i,akl

=akl+2ikl�. The bold vertical
lines illustrate the case q=−kl /2.

FIG. 3. Lowest four band widths as a function of the lattice
depth U0 in units of Er /� �left scale� and in frequency units �right
scale�.
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tion of the eigenstates of the system over the lattice. The
carrier shift is plotted in Fig. 5 for the case n=0 and U0
=10Er. For this shift to be as small as 5 mHz over the whole
lowest band, which corresponds in fractional units to 10−17

for Sr atoms probed on the 1S0− 3P0 transition, the lattice
depth should be at least 90Er �Fig. 3�.

Another extreme situation is the case where one band is
uniformly populated. In this case the “carrier” shift averaged
over q cancels and one can hope to operate the clock at a
much lower U0 than in the previous case. The problem is
then the ultimate linewidth that can be achieved in the sys-
tem, which is of the order of the width of the band and is
reminiscent of Doppler broadening. This is illustrated in Fig.
6 for which we have computed the expected carrier reso-
nances in the case where the lowest band is uniformly popu-
lated, by numerically solving Eq. �5�. This was done for a
Rabi frequency �=10 Hz and an interaction duration which
is adjusted for each trapping depth so as to maximize the
transition probability at zero detuning. We have checked that
all resonances plotted in Fig. 6 are not shifted to within the
numerical accuracy �less than 10−5 Hz�. However, at de-
creasing U0 the contrast of the resonance starts to drop for
U0�40Er and the resonance broadens progressively, becom-
ing unusable for precise spectroscopy when the width of the
energy band reaches the Rabi frequency. To get more physi-
cal insight into this phenomenon, let us consider the particu-
lar example of this uniform band population where one well
of the lattice is initially populated. This corresponds to a
given relative phase of the Bloch states such that the inter-

ference of the Bloch vectors is destructive everywhere except
in one well of the lattice. The time scale for the evolution of
this relative phase is the inverse of the width of the populated
energy band which then corresponds to the tunneling time
towards delocalization �once the relative phases have
evolved significantly, the destructive and constructive inter-
ferences of the initial state no longer hold�. The broadening
and loss of contrast shown in Fig. 6 can be seen as the
Doppler effect associated with this tunneling motion.

The two cases discussed above �pure �n ,q� state and uni-
form superposition of all states inside a band: �dq�n ,q�� cor-
respond to the two extremes one can obtain when populating
only the bottom band. They illustrate the dilemma one has to
face: either the resonance is affected by a frequency shift of
the order of the width of the bottom band �pure state�, or by
a braoadening of the same order �superposition state�, or by a
combination of both �general case�. In either case the solu-
tion is to increase the trap depth in order to decrease the
energy width of the bottom band.

In the experimental setup described in Ref. �33� about
90% of the atoms are in the lowest band and can be selected
by an adequate sequence of laser pulses. The residual popu-
lation of excited bands can then be made negligible
��10−3�. On the other hand, knowing and controlling with
accuracy the population of the various �q� states in the
ground band is a difficult task. The actual initial distribution
of atomic states will lie somewhere between a pure state in
the bottom band and a uniform superposition of all states in
the bottom band. If we assume that the population of the �q�
states in the ground band can be controlled so that the fre-
quency shift averages to within one tenth of the bandwidth,
then a fractional inaccuracy goal of 10−17 implies U0=70Er
or more. Note that due to the exponential dependence of the
width of the ground band on U0 �see Fig. 3� the required
lattice depth is largely insensitive to an improvement in the
control of the initial state. If for example the averaging effect
is improved down to 1% the depth requirement drops from
70Er to 50Er. Consequently, operation of an optical lattice
clock requires relatively deep wells and correspondingly
high laser power, which, in turn, is likely to lead to other
difficulties as described in the Introduction.

Fortunately, the requirement of deep wells can be signifi-
cantly relaxed by adding a constant acceleration to the lat-
tice, as described in the next section.

FIG. 4. Left: Relative strength of the transitions to different
bands �n=0→n�� for an atom prepared in state
�n=0,q=−kl� �bold lines�, �n=0,q=−kl /2�, and �n=0,q=kl /2� �thin
lines�. Right: detuning of the first two sidebands for an atom pre-
pared in state �n=0,q=−kl� �bold lines� and �n=0,q=0� �thin lines�
in units of Er /� �left scale� and in frequency units �right scale�.

FIG. 5. Shift of the “carrier” resonance in the first band for a
lattice depth U0=10Er. Left scale: in units of Er /�. Right scale: in
frequency units.

FIG. 6. Expected resonances in the case where the first band is
uniformely populated for �=10 Hz and U0=20Er ,30Er, and 40Er.
The duration of the interaction is such that the transition probability
Pe is maximized at resonance.
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IV. PERIODIC POTENTIAL IN AN ACCELERATED
FRAME

A. Wannier-Stark states and coupling by the probe laser

The shift and broadening encountered in the previous sec-
tion are both due to site-to-site tunneling and to the corre-
sponding complete delocalization of the eigenstates of the
lattice. As is well known from solid-state physics, one way to
localize the atoms is to add a linear component to the Hamil-
tonian �28,29�: adjacent wells are then shifted in energy,
which strongly inhibits tunneling. In this section we study
the case where the lattice and probe laser are oriented verti-
cally so that gravity plays the role of this linear component.
The external Hamiltonian is then

Ĥext
II =

�2	̂2

2ma
+

U0

2
�1 − cos�2klx̂�� + magx̂ , �10�

with g the acceleration of the Earth’s gravity. This Hamil-
tonian supports no true bound states, as an atom initially
confined in one well of the lattice will end up in the con-
tinuum due to tunneling under the influence of gravity �Fig.
7�. This effect is known as Landau-Zener tunneling and can
be seen as nonadiabatic transitions between bands induced
by the linear potential in the Bloch representation
�29,34–37�. The time scale for this effect, however, increases
exponentially with the depth of the lattice and for the cases
considered here is orders of magnitude longer than the dura-
tion of the experiment �38�. In the case of Sr in an optical
lattice, and for U0 as low as 5Er, the lifetime of the ground
state of each well is about 1010 s! The coupling due to grav-
ity between the ground and excited bands can therefore be
neglected here. In the frame of this approximation the prob-

lem of finding the “eigenstates” of Ĥext
II reduces to its diago-

nalization in a subspace restricted to the ground band �39,40�
�we drop the band index in the following to keep notations as
simple as possible�. We are looking for solutions to the ei-
genvalue equation, of the form

Ĥext
II �Wm� = ��m

II�Wm� , �11�

�Wm� = 

−kl

kl

dq bm�q��q� .

In Eq. �11� the �q� are the Bloch eigenstates of Ĥext
I �cf. Sec.

III� for the bottom energy band �n=0� ,m is a new quantum
number, and the bm�q� are periodic: bm�q+2ikl�=bm�q�. After
some algebra, Eq. �11� reduce to the differential equation

���q
I − �m

II�bm�q� + imag�qbm�q� = 0, �12�

where �q
I is the eigenvalue of the Bloch state �n=0,q� of

Sec. III. Note that Eqs. �11� and �12� only hold in the limit
where Landau-Zener tunneling between energy bands is neg-
ligible. Otherwise, terms characterizing the contribution of
the other bands must be added and the description of the
quasibound states is more complex �29,32,41�. In our case
the periodicity of bm�q� and a normalization condition lead to
a simple solution of the form

�m
II = �0

II + m�g,

bm�q� =
1

�2kl

e−�i�/mag��q�m
II−�q� �13�

with the definitions �0
II= �1/2kl��−kl

kl dq �q
I , ��g=mag
l /2,

and �q�q=�q
I with �0=0. The �Wm� states are usually called

Wannier-Stark states and their wave functions are plotted in
Fig. 8 for various trap depths. In the position representation
�Wm� exhibits a main peak in the mth well of the lattice and
small revivals in adjacent wells. These revivals decrease ex-
ponentially at increasing lattice depth. At U0=10Er the first
revival is already a hundred times smaller than the main
peak. Conversely, in the momentum representation, the dis-
tribution gets broader with increasing U0. The phase shift
between bm and bm−1 in Eq. �13�, bm�q�=e−i�q/klbm−1�q�, cor-
responds to a translational symmetry of the Wannier-Stark
states in the position representation �x+
l /2�Wm�= �x�Wm−1�.
The discrete quantum number m is the “well index” charac-
terizing the well containing the main peak of the wave func-
tion �x�Wm�, and, as intuitively expected, the energy separa-
tion between adjacent states is simply the change in
gravitational potential between adjacent wells: ��g
=mag
l /2.

Substituting �m�→ �Wm� and �m��→ �Wm�� in Eq. �5�
shows that the effect of the probe laser is to couple the

FIG. 7. External potential seen by the atoms in the case of a
vertical lattice �U0=5Er�. An atom initially trapped in one well of
the lattice will end up in the continuum by tunnel effect. For U0

=5Er the lifetime of the quasibound state of each well is about
1010 s.

FIG. 8. Wannier-Stark states in position �left� and momentum
�right� representation for U0=5Er, U0=10Er, and U0=50Er. Nu-
merically we first compute the momentum representation �	�Wm�
=bm�	�C0,	 and then obtain the position representation by Fourier
tranformation.
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Wannier-Stark states to their neighbors by the translation in
momentum space eiksx̂, with the coupling strengths

�Wm�eiksx̂�Wm�� = 

−�

�

d	 bm
* �	 + ks�bm��	�C0,	C0,	+ks

,

�14�

obtained from direct substitution of Eqs. �8� and �11� �42�.
Using the translational symmetry of the Wannier-Stark

states it is easy to show that

�Wm�eiksx̂�Wm�� = ei�mks/kl�W0�eiksx̂�Wm�−m� . �15�

From that property, Eq. �14�, and using bm�	�=bm
* �−	� �note

that �q=�−q� one can then show that

�Wm�eiksx̂�Wm+j� = ei�jks/kl�Wm�eiksx̂�Wm−j� , �16�

which is a useful result when studying the symmetry of cou-
pling to neighboring states �see the next section�.

The differential equations �5�, governing the evolution of
the different states under coupling to the probe laser, are then

iȧm
g = 	

m�

�m−m�
*

2
e−i�m��ks/kl�ei�m−m�tam�

e , �17�

iȧm
e = 	

m�

�m�−m

2
ei�m�ks/kl�e−i�m�−mtam�

g ,

in which we have used Eq. �15� and defined �m
=��W0�eiksx̂�Wm� and �m=�−�eg+m�g.

B. Discussion

We now study the case where the initial state of the atom
is a pure Wannier-Stark state. According to Eq. �17� excita-
tion by the laser will lead to a set of resonances separated by
�g �see Fig. 9�. In the case of Sr, �g /2�=866 Hz and for the
narrow resonances required for high performance clock op-
eration, they are easily resolved. The resonances obtained by
first numerically integrating Eq. �14� and then numerically
solving Eq. �17� are plotted in Fig. 10 for the cases U0
=5Er and U0=10Er. They exhibit remarkable properties.
First the carrier �which corresponds to the transition �Wm�
→ �Wm�� has a frequency which exactly matches the atomic
frequency �eg. It also does not suffer from any broadening or
contrast limitation �provided the side bands are resolved�
which would be due to the atomic dynamics. Second, the
sidebands ��Wm�→ �Wm±i�� have a coupling strength which
very rapidly decreases as U0 increases �see Fig. 11�. In ad-
dition they are fully symmetric with respect to the carrier
which results from Eq. �16�, and hence lead to no line pulling
of the carrier. We have checked that the numerical calcula-
tions agree with this statement to within the accuracy of the
calculations. This absence of shift and broadening remains
true even for very shallow traps down to a depth of a few Er,
the ultimate limitation being the lifetime of the Wannier-
Stark states. This situation is in striking contrast with the
results of Sec. III in the absence of gravity.

The system is more complex if the initial state of the atom
is a coherent superposition of neighboring wells. In this case
off-resonant excitation of the sidebands will interfere with
the carrier excitation with a relative phase which depends on
the initial relative phase of neighboring wells and on all the
parameters of the atom-laser interaction �� ,�, and the dura-
tion of the interaction�. This interference leads to a modifi-
cation of the carrier transition probability which is of the
order of �1 /�g �for the first, and most significant, sideband�.
For an interaction close to a � pulse, an order of magnitude
of the corresponding carrier pulling is then �1�0 /�g which
can be significant. As an example for U0=10Er and �0 /2�
=10 Hz the shift is about 2�10−2 Hz, i.e., several times
10−17 of the clock transition frequency. This shift is a priori
all the more problematic as the initial atomic state is difficult
to know and control accurately.

We have numerically solved Eq. �17� for various initial
atomic states, lattice depths, and interaction parameters to
get a more quantitative insight of the effect. The results are
illustrated in Fig. 12 for the case U0=5Er. A clear signature
of the effect can be identified from its dependence on the
interaction duration: the frequency shift oscillates with a fre-
quency �g /2� resulting from the �g term in �m−m� in Eq.

FIG. 9. Wannier-Stark ladder of states and coupling between
states by the probe laser.

FIG. 10. Computed resonances when the initial state is a pure
Wannier-Stark state. Left: U0=5Er, right: U0=10Er. In both cases
the transition probability Pe is plotted as a function of the probe
detuning for an effective Rabi frequency of the carrier �0 /2�
=10 Hz and an interaction time of 50 ms.
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�17�. This provides a powerful method for investigating site-
to-site coherences in the lattice. More interestingly from a
clock point of view, the shift becomes negligible for all in-
teraction durations t such that t= �n+1/2�2� /�g. For these
interaction durations the interference from the sidebands is
symmetric for positive and negative detunings from reso-
nance, leading to no overall shift. Since �g is extremely well
known �potentially at the 10−9 level� this condition can be
accurately met. Note that choosing such a value of the inter-
action duration does not significantly affect the contrast, as
the two relevant time scales have different orders of magni-
tude in the narrow resonance limit ��−1� ��g

−1�, and there-
fore a range of values of t such that t= �n+1/2�2� /�g cor-
respond to almost optimal contrast �e.g., all such values of t
in Fig. 12�. A more detailed study shows that the level of
cancellation depends on the depth of the modulation used to
determine the frequency shift �see caption of Fig. 12� which
results from a slight distortion of the carrier resonance. This
effect is shown in Fig. 13, which clearly indicates that the
shift can be controlled to below 1 mHz even for a very shal-
low lattice depth down to U0=5Er.

V. DISCUSSION AND CONCLUSION

We studied the trap depth requirement for the operation of
an optical lattice clock with a projected fractional inaccuracy
in the 10−17–10−18 range. We have shown that using a purely
periodic potential necessitates a lattice of depth �50–100�Er

limited by tunneling between adjacent sites of the lattice. A
possible way to vastly reduce this depth is to use gravity to
lift the degeneracy between the potential wells which
strongly inhibits tunneling. Trap depths down to �5–10�Er

are then sufficient to cancel the effects of the atom dynamics
at the desired accuracy level. This will become even more
important for future work aiming at even higher accuracies.

Although very simple, gravity is not the only way to sup-
press tunneling and other solutions, essentially consisting in
a dynamic control of the lattice, may be possible �43–45�. If
we restrict the discussion to constant accelerations, the mag-
nitude of the applied acceleration is not a critical parameter.
Its minimal value is determined by the requirement that the
sidebands in Fig. 10 be sufficiently separated from the carrier
to be well resolved �e.g., 0.1g leads to a separation of
�90 Hz which should be sufficient with interrogation times
of �100 ms and for a trap depth such that ��±1�� ��0��. Its
maximal value is set by Landau-Zener tunneling: for U0
=5Er the lifetime of the Wannier-Stark states is �10 s for
accelearations up to �30g. Modifying the applied accelera-
tion �e.g., by shifting the phase of the contrapropagating la-
ser beams forming the standing wave� could be a test that the
effects of Landau-Zener tunneling and of the sidebands are
indeed negligible within a certain range. From the experi-
mental point of view, however, a much simpler way for such
a test is to modify the trap depth, as all relevant quantities are
critically �exponentially in most cases� dependent on this pa-
rameter, for example the Landau-Zener tunneling rate, the
relative strengths of the carrier and the sidebands �Fig. 11�,
or the residual delocalization of the Wannier-Stark states
�Fig. 8�. Eventual residual effects could then easily be sepa-
rated from other effects varying with the trap depth �higher-
order light shift, etc.�. Nonetheless, dynamic control may
prove useful when gravity is not available �e.g., for an opti-
cal lattice clock in space�.

FIG. 11. Relative strength of the carrier ��0 /��2 and of the first
four sidebands ��±1 /��2 and ��±2 /��2 as a function of the lattice
depth U0.

FIG. 12. Frequency shift of the carrier as a function of the
interaction duration in the case where the initial state of the atom is
a coherent superposition of neighboring Wannier-Stark states. Solid
line: an

g�t=0�=an+1
g �t=0� for all n. Dashed line: an

g�t=0�=an+1
g �t

=0�ei�/2 for all n. Dotted line: a−1
g �t=0�=a0

g�t=0� and an
g�t=0�=0

for n�−1,0. The shift is defined as the equilibrium point of a
frequency servo loop using a square frequency modulation of opti-
mal depth and computed for U0=5Er and a carrier Rabi frequency
�0 /2�=10 Hz. The interaction duration corresponding to a � pulse
is t�g /2�=43.3.

FIG. 13. Frequency shift of the carrier as a function of the
square modulation depth �see caption of Fig. 12�. The calculation
has been performed for U0=5Er, �0 /2�=10 Hz, and an interaction
time of t�g /2�=43.5. The initial atomic state is the one corre-
sponding to the dotted line in Fig. 12.
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Throughout the paper we have not taken into account the
dynamics of the atoms in the directions transverse to the
probe beam propagation. Experimental imperfections, how-
ever, �misalignement, wave-front curvature, aberrations� may
lead to a residual sensitivity to this dynamics. If, for ex-
ample, the probe beam is misaligned with respect to the ver-
tical lattice by 100 �rad the transverse wave vector k� is
about 10−4ks and a modest transverse confinement should be
sufficient to make its effect negligible. Such a confinement
can be provided by the Gaussian transverse shape of the laser
forming the lattice or by a three-dimensional lattice. The
latter also leads to an interesting physical problem depending
on the relative orientation of the lattice with respect to
gravity �46�.

Finally the well-defined energy separation between
Wannier-Stark states and the possibility to drive transitions

between them on the red or blue sideband of the spectrum
�Sec. IV B� opens interesting possibilities for the realization
of atom interferometers. This provides a method to generate
a coherent superposition of distant states for the accurate
measurement of the energy separation between these states.
This can, for instance, lead to an alternative determination of
g or h /ma �47–50�.
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