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We present a detailed study of laser cooling of neutral atoms with an electric-dipole transition between a
Jg=0 ground state and a Je=1 excited state, for both broad- and narrow-line transitions. We focus on the novel
effects arising from the multidimensional nature of the laser configuration and point out under which condi-
tions these features can be observed in practice. Our analysis also shows that qualitative differences in multi-
dimensional laser cooling properties exist between the broad- and the narrow-line transitions.
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I. INTRODUCTION

Cooling and trapping of neutral atoms has matured over
the past two decades or so, and ultracold atomic physics is
now one of the most active areas of physics. Various laser
cooling mechanisms have been identified, among which the
two most important ones are the Doppler and Sisyphus cool-
ing mechanisms. Although many experiments are performed
with three-dimensional �3D� laser configurations, theoretical
efforts in cooling and trapping have disproportionally con-
centrated on 1D optical fields �1� with the implicit assump-
tion that light-pressure forces in higher dimensions would
just be a simple superposition of 1D forces. This, however,
has been shown not to be true in general—there are inher-
ently multidimensional effects that cannot be accounted for
by a 1D theory �2–5� and that may play important roles for
the atomic kinematics and dynamics in optical molasses and
magneto-optical traps �MOT’s�. Evidence of multidimen-
sional effects was found in the experiment of Ref. �6� where
two near-resonant laser standing waves along orthogonal di-
rections were used.

In the current paper, we want to examine in detail the
multidimensional laser cooling features for an atom possess-
ing an electric-dipole transition between a Jg=0 ground state
and a Je=1 excited state and subject to a 2D �+-�− laser
field. We pick this particular system for several important
reasons. First, this system is often used as a paradigm to
illustrate the mechanism of the MOT �7�, which has become
a standard tool in most laser cooling and trapping laborato-
ries. It has been assumed that the 1D MOT mechanism could
be straightforwardly generalized to 3D by applying �+-�−

light fields along three mutually orthogonal directions, thus
excluding any potential multidimensional effects. It is there-
fore important to investigate whether this assumption is
valid.

Second, our work is motivated by the recent experimental
efforts on cooling and trapping of alkaline-earth atoms, such
as calcium �8� and strontium �9–11�. Due to the lack of hy-
perfine structure, the bosonic alkaline-earth atoms possess
singlet ground states �Jg=0� and several triplet Je=1 excited

states. The simple level structure makes these atoms ideally
suited for optical-frequency standard and cold collision stud-
ies �12�. Some of the triplet excited states have linewidths
comparable to or even narrower than the single-photon recoil
frequency, which offers the possibility of cooling the atom
down below the single-photon-recoil limit using Doppler
cooling. A recent experiment done at JILA �13� on 88Sr in-
deed demonstrated this possibility with red-detuned �+-�−

light fields. The same experiment also showed the formation
of momentum-space lattice structure when the laser detuning
is changed to the blue side. This experiment is carried out
with a 3D laser field, but it seems that the results can be
explained by a simple 1D theory �13�. In addition to the
alkaline-earth atoms, the rare-earth atom Yb also possesses a
similar ground-state structure. Recently, a condensate of Yb
atoms has been achieved with the help of the narrow-line
cooling �14�.

In this paper, we will provide a detailed investigation of
the light-pressure force and momentum-space distribution
for an atom with a Jg=0↔Je=1 dipole transition in a 2D
�+�− laser field, focusing on the multidimensional effects
and the differences between the broad- and narrow-line tran-
sitions. We will also comment on why the multidimensional
features are absent in the JILA experiment and find condi-
tions under which these features will manifest themselves.
After discussing our model in Sec. II, we will present in
Secs. III and IV the results for the broad- and narrow-line
transitions, respectively. Concluding remarks are presented
in Sec. V. In Appendix A, we will present an analytical ap-
proach to calculate the light-pressure forces for the broad-
line transition. Finally, in Appendix B, We will examine the
effects of a uniform external magnetic field.

II. MODEL

We choose the quantization axis to be along the z axis. As
shown in Fig. 1, the ground state is denoted by �g� and the
three Zeeman sublevels of the excited manifold are denoted
by ���, �0�, and ���, which are coupled to the ground state
with light polarized along �̂+, ẑ, and �̂−, respectively, where

�̂± = �� x̂ − iŷ�/�2 �1�

are spherical unit vectors with respect to the quantization
axis z.
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For the 2D laser configuration considered in this work, we
choose the laser fields to be propagating along the ±x and ±y
directions and polarized along �̂x

± and �̂y
±, respectively, where

�̂x,y
± can be obtained from �̂± in Eq. �1� by cyclically permut-

ing �x̂ , ŷ , ẑ�. The electric field can then be written as

E =
1

2
�Ex��̂x

+eikx + �̂x
−e−ikx� + ei�Ey��̂y

+eiky + �̂y
−e−iky��e−i�t

+ c.c.,

where � denotes the time-phase difference between the fields
along the two orthogonal directions and can be restricted
between 0 and �. Previous studies have shown that this
phase may significantly affect the 2D light-pressure force
�4–6�. We can rewrite the electric field, or equivalently the
Rabi frequency, under the polarization vector basis
��̂+ , �̂− , ẑ�, as

�± = �x sin kx ± iei��y cos ky , �2a�

�0 = − i�2�x cos kx − i�2ei��y sin ky , �2b�

where �x,y =dEx,y / �2	�, with d being the transition dipole
moment, which can be assumed to be real without loss of
generality.

The Hamiltonian under the rotating-wave approximation
describing the dipole coupling reads

H =
1

2m
�Px

2 + Py
2� − 	
��−− + �00 + �++� −

	

2
��−�−g + �0�0g

+ �+�+g + H.c.� , �3�

where �ij = �i��j� �i , j=g ,− ,0 , + � and 
 is the detuning of the
laser fields from the atomic transition. In writing the Hamil-
tonian, we have neglected the kinetic energy Pz

2 / �2m�, and
since the laser fields are applied only along the x and y axes,
the atomic center-of-mass motion along the z axis is
neglected.

In the following, we will present our results for the broad-
and narrow-line transitions separately.

III. RESULTS FOR THE BROAD-LINE TRANSITION

For the broad-line transition, the momentum width of the
atom is much larger than the single-photon recoil momen-
tum. Under this condition, the atom can be regarded as a
point particle and the standard semiclassical approach can be
used, in which the center-of-mass motion of the atom is not
quantized and the atomic velocity comes into the picture as a
c-number parameter.

A general 2D semiclassical theory can be found in Ref.
�5�, where a numerical technique based on the continued-

fraction method for calculating the velocity-dependent light-
pressure force was presented. This theory is, in principle,
valid for arbitrary electric-dipole transitions and arbitrary 2D
laser configurations. For the Jg=0↔Je=1 transition we are
interested in here, the relatively simple level structure also
allows us to present an analytical calculation under the weak-
field low-velocity limit that is valid for arbitrary dimensions,
which can provide significant insights into the multidimen-
sional nature of the system. Both of these approaches will be
used here to calculated the velocity-dependent forces.

To find the velocity-dependent force, we first obtain the
steady-state solutions of the optical Bloch equations:

�̇ij = v · ��ij =
1

i	
��ij,H� + L��ij� ,

where v is the velocity of the atom and L��ij� represents the
phenomenological damping terms. The light-pressure force
is then found by substituting the steady-state solutions of
�ij’s into the formula

F�v� = − ��H� ,

where the overbar denotes a spatial average over the laser
wavelength.

A. 1D results

It is instructive to first briefly mention the situation where
only a 1D �+-�− laser field is applied. For this case, it is
convenient to choose the propagation direction along the ±z
axis. Assuming the two fields have equal intensity, we then
have �0=0 and �±=�e±ikz, where � is a constant and can
be taken to be real, and k is the wave number of the fields.
Under such a field configuration, the Jg=0↔Je=1 transition
reduces to a three-level V system since the �0� excited sub-
level is not coupled to the ground state. The conservation of
angular momentum prevents a coherent photon redistribution
�i.e., the atom absorbs a photon from one field followed by a
stimulated emission into the other field� from occurring.
Consequently, in this 1D situation, the light-pressure force
consists entirely of the spontaneous force �15� which is a
superposition of the radiation pressure exerted by the two
individual running light fields. The force can be readily
found analytically as

F�vz� = 	k�	 s

1 + s + �
 − kvz�2/�2 −
s

1 + s + �
 + kvz�2/�2
 ,

�4�

where 2� is the excited-state spontaneous decay rate and s
=�2 / �2�2� is the saturation parameter �the ratio of the
single-beam laser intensity and the saturation intensity�.

By examining the expressions of the Rabi frequencies in
Eqs. �2�, we can immediately see one major difference be-
tween the 2D and 1D field configurations: while in the latter
case the field is composed of running waves with orthogonal
polarizations, in the former case the waves traveling along
different directions possess parallel polarization components.
Consequently, the field in the 2D case contains standing-
wave patterns, as manifested by the sinusoidal functions in

FIG. 1. Level scheme of the Jg=0↔Je=1 dipole transition.
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the expressions of Rabi frequencies �see Eqs. �2��, which
makes a coherent photon redistribution possible. Therefore in
the 2D situation the light-pressure force should have a stimu-
lated component that is completely absent in the 1D case.

We now turn to our 2D results.

B. 2D results

With the 2D laser field, in general, we have to resort to
numerical calculations to solve the optical Bloch equations.
However, the simple level structure we consider here also
affords an analytical expressions of the light pressure under
the weak intensity low-velocity limit. The details of the nu-
merical technique we use can be found in Ref. �5�. Here we
only present the results from this calculation. In the ex-
amples shown, we always take �x=�y =� and s
=�2 / �2�2�. We will discuss the cases for weak and strong
light field intensities separately.

1. Weak-intensity limit

Figure 2 shows a vector plot of the velocity-dependent
force as a function of �vx ,vy�. Here the laser is on-resonance
�
=0�, the phase �=� /4, and the saturation parameter s
=5. In this case, the force is strongly anisotropic—it is a
cooling force along the x axis, while a heating force along
the y axis. Similar behavior was found for a two-level atom
in a 2D laser field �4,6�. It can be understood from the pattern
of the Poynting vector of the field and can be identified as a
spontaneous force. As in the case of the two-level atom, this
anisotropic force is sensitive to the time-phase difference �.
Numerically, we found that it varies as sin 2�; hence it van-
ishes for �=0 and � /2, changes sign when �→�+� /2.

To gain more insights into the results shown in Fig. 2, we
solve the optical Bloch equations analytically in the weak-
field limit, i.e.,

�2  �2 + 
2,

by generalizing the procedures outlined in Ref. �16� for a
two-level atom. The details can be found in Appendix A.
This analytic calculation is valid for arbitrary dimensions.

With the 2D �+-�− field configuration, to first order in
atomic velocity, we find that the force can be decomposed
into an isotropic and an anisotropic part F�v�=Fiso�v�
+Fani�v� with

Fiso�v� = �iso	k2�vxx̂ + vyŷ� , �5a�

Fani�v� = �ani	k2�vxx̂ − vyŷ� , �5b�

where the dimensionless coefficient for the anisotropic force
is given by

�ani =
3�
2 − 3�2��4

32��2 + 
2�3 sin 2� , �6�

in agreement with the numerical results. The corresponding
isotropic force coefficient has the following expression:

�iso = �1D −

�4

32���2 + 
2�3

��122�2 − 8
2 − 3�5�2 + 
2�cos 2�� , �7�

where �1D=2
��2 / ��2+
2�2 is the coefficient for the 1D
force which can be easily obtained from Eq. �4�. The isotro-
pic force therefore vanishes at 
=0 �see Fig. 2�. In the weak-
field limit when this analytic treatment is valid, the isotropic
force will in general dominate over the anisotropic force for
finite detunings as �1D is the most dominant component of
the force coefficients.

2. Strong-intensity limit

Figure 3 shows three examples of the velocity-dependent
force for a strong field. Here the laser is red-detuned �

�0�; hence, according to the 1D theory �Eq. �4��, we should
expect a cooling force. The bottom plot of Fig. 3, with �
=� /2, does show a cooling force in the entire velocity space.
By contrast, in the case when �=0 and � /4 �upper and
middle plots of Fig. 3�, we see a cooling force at large atomic
velocities, but a heating force as the velocity decreases below
some critical value. For �=� /4, the force is also anisotropic.
The low-velocity heating for red detuning happens to be a
general feature for ��� /2 as long as the saturation param-
eter s is sufficiently large. The fact that this heating effect
only occurs at large laser intensity indicates that this behav-
ior is related to the stimulated component of the force, also
known as the dipole force.

In the left column of Fig. 4, we plot the corresponding
steady-state momentum distribution calculated using the
Monte Carlo wave function simulation method �17,18� for
2�=40�r. The momentum distributions are in full agreement
with the semiclassical force plot shown in Fig. 3. In particu-
lar, one can see that for �=� /2, atoms accumulate around
zero momentum, while for other values of �, atoms will
gather around some finite momenta corresponding to the
critical points where the dipole heating force is balanced by
the spontaneous cooling force.

To get a deeper understanding of the dipole force, the
weak-field analytic approach is no longer valid. On the other
hand, the dressed-state approach �19� usually provides a in-
tuitive picture of the dipole force. For this purpose, we want

FIG. 2. Velocity-dependent force for 
=0, s=5, and �=� /4.
The velocity is in units of � /k.
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to find the eigenvalues and eigenstates of the Hamiltonian
�3�.

The Hamiltonian �3� can be straightforwardly written in
a 4�4 matrix form under the standard base states
��g� , �−� , �0� , �+ ��. However, it turns out that we can change
to a different base set ��g� , �e1� , �e2� , �e3�� through a unitary

transformation over the excited-state manifold, where

�e1� =
1

�̃
��−

*�− � + �0
*�0� + �+

*� + �� ,

�e2� =
1

�̃���+�2 + ��−�2
��−

*�0�− � + �+
*�0� + �

− ���+�2 + ��−�2��0�� ,

�e3� =
1

���+�2 + ��−�2
�− �+�− � + �−� + ��

are linear superposition states of the original excited-state
sublevels, with

�̃2 = ��+�2 + ��0�2 + ��−�2

= 2�x
2 + 2�y

2 + 4 cos ��x�y cos kx sin ky . �8�

Under the transformed base set ��g� , �e1� , �e2� , �e3��, the
Hamiltonian takes the block-diagonal form

H = 	�
0 �̃/2 0 0

�̃/2 − 
 0 0

0 0 − 
 0

0 0 0 − 

� , �9�

from which we see that the states �e2� and �e3� are not
coupled to the ground state �g� by the light field. These two
states can be regarded as “dark states” that do not participate

FIG. 3. Velocity-dependent force for 
=−2� and s=24.5. The
range of the velocity is �−3,3�� /k along both axes.

FIG. 4. �Color online�. Steady-state momentum space distribu-
tion for 
=−2� and s=24.5. Left column: broad-line transition
with 2�=40�r. The range of the momentum is �−30,30�	k, corre-
sponding to a velocity range of �−3,3�� /k along both axes; right
column: narrow-line transition with 2�=1.6�r. The range of the
momentum is �−4,4�	k.
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in the atom-laser interaction and hence can be neglected. The
remaining two states �g� and �e1� form an effective two-level

system that is dipole coupled with a coupling strength �̃
given in Eq. �8�.

The strong-field behavior of the light-pressure force can
thus be easily understood from previous studies of a two-
level atom interacting with standing light waves �15�. It is
well known that in this case, under the strong-field and low-
velocity limit, the Sisyphus effect gives rise to a heating
force for red detuning and a cooling force for blue detuning
�19�, and the light-pressure force changes sign at some criti-
cal velocity. This therefore explains what we found numeri-
cally. The reason that no Sisyphus effect exists for �=� /2
can be seen from Eq. �8�: when �=� /2, the effective cou-
pling � becomes spatially independent; hence the standing-
wave pattern responsible for the Sisyphus effect disappears.

Obviously, when either �x or �y vanishes, �̃ is again spa-
tially independent, which provides an alternative way to un-
derstand the absence of the dipole force in a 1D �+-�− field.

We stress that the block-diagonal form of the Hamiltonian
matrix given in Eq. �9� is independent of the laser configu-
ration. Therefore, the reduction to the effective two-level
atom is a generic feature of the Jg=0↔Je=1 regardless of
the dimensionality of the system. The Sisyphus effect should

be present as long as the coupling constant �̃ varies in space
and its magnitude sufficiently large.

At blue detuning, the Sisyphus effect gives rise to a cool-
ing dipole force which may have important applications.
Whereas the spontaneous force saturates to a value of 	k� at
large laser intensity �see Eq. �4��, the stimulated force is not
bounded by this limit. Figure 5 demonstrates the strong
Sisyphus cooling force at blue detuing. Figure 5�a� shows the
light-pressure force as a function of vx at vy =0. In compari-
son, the 1D force according to Eq. �4� is also plotted as the
dashed line. At large velocity ��vx��15� /k�, the 2D force is
not very different from the 1D force, except that the former
exhibits sharp resonance features that can be identified as
Dopplerons �15,20� which arise from the coherent redistribu-
tion processes involving multiple photons. In contrast, the
2D force at small velocities is dominated by the Sisyphus
effect: it becomes a cooling force within the velocity range
�−10,10�� /k and the maximum magnitude of the 2D force
exceeds the 1D limit of 	k�. The force near zero velocity has
a very steep slope, indicating a strong cooling capability.

At small velocities, the force can be expanded to first
order in atomic velocity as

F�v� = − �v ,

where � is the viscosity coefficient. For the 1D case, using
Eq. �4�, one can easily find that

� = −
4s
/�

�1 + s + 
2/�2�2	k2.

Hence ��0 �cooling force� when 
�0 and ��0 �heating
force� when 
�0. Furthermore, � reaches the maximum
value �1D=	k2 /2 under the optimal Doppler cooling condi-
tion s=2 and 
=−�. The 2D viscosity coefficient can be
found numerically. Figure 5�b� displays � as a function of

the saturation parameter s for the 2D force with a blue de-
tuning. For this set of parameters, � becomes positive when
s�26. At large s, the 2D viscosity coefficient can exceed
�1D by over an order of magnitude. We note that 1D Sisy-
phus cooling with blue-detuned laser light has been observed
in experiments �21�.

Even though the Sisyphus effect is capable of producing
very strong cooling forces, it however does not lead to a
lower temperature at equilibrium compared with the normal
spontaneous force-based red-detuned low-intensity optical
molasses. This is because the induced momentum diffusion
coefficient D scales roughly as the saturation parameter s at
large laser intensity, while the viscosity coefficient for the
dipole cooling force ��s under the same limit �19,22�. The
temperature at equilibrium TD /��s thus increases as
laser intensity increases. Therefore, for a broad-line 0↔1
transition, the blue Sisyphus cooling force is not capable of
producing temperatures below the Doppler limit.

IV. RESULTS FOR NARROW-LINE TRANSITION

Narrow-line transitions correspond to atomic transitions
where the excited-state spontaneous emission rate is compa-
rable to or even smaller than the single-photon recoil fre-
quency. Theoretical study of Doppler cooling on a narrow-
line 0↔1 transition under the 1D �+-�− field configuration
has shown that subrecoil temperature can be reached �23�, as

FIG. 5. �a� Velocity-dependent force for 
=30�, s=2000, �
=0, and vy =0. Solid line: 2D force. Dashed line: 1D force accord-
ing to Eq. �4�. The velocity is in units of � /k and the force in units
of 	k�. �b� The viscosity coefficient � �in units of 	k2� as a func-
tion of the saturation parameter s.
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was demonstrated in recent experiments �13�. The semiclas-
sical treatment we used above to describe the broad-line
cooling relies on a perturbative expansion of mv / �	k� and is
therefore not suitable for narrow-line studies where the
atomic momentum can become comparable to the single-
photon recoil momentum. To study the cooling properties in
the narrow-line regime, one must use a full quantum-
mechanical treatment in which the atomic center-of-mass
motion is also quantized.

For the 1D �+-�− laser field, the problem is greatly sim-
plified due to the lack of a coherent photon redistribution. A
density-matrix master equation approach can be adopted
�23�. The situation becomes significantly more complicated
at higher dimensions as now a coherent photon redistribution
becomes possible. We use the Monte Carlo method to find
the steady-state momentum distribution for the 2D field con-
figuration, and the result is displayed in the right column of
Fig. 4.

For our calculation, we choose 2�=1.6�r which corre-
sponds to the narrow-line 1S0-3P1 intercombination transition
of 88Sr. Comparing the two columns in Fig. 4, we see two
important differences between the broad- and narrow-line
transitions: �1� the momentum distribution for the narrow-
line transition is not as sensitive to the phase � as for the
broad-line transition, and �2� there is no apparent Sisyphus
effect in the narrow-line transition as the atoms accumulated
around zero momentum for all values of �. The differences
might be understood as follows: Changing the phase �
would change the laser field distribution over a length scale
on the order of laser wavelength �. For narrow-line cooling,
temperatures about the single-photon recoil are reached.
Hence the atomic de Broglie wavelength, which can be re-
garded as the effective size of the atom, is comparable to the
laser wavelength. The atom therefore experiences an effec-
tive laser field averaged over its de Broglie wavelength. This
averaging reduces the sensitivity to the phase � and also
explains the lack of Sisyphus effect which relies on the pres-
ence of the light shift spatially modulated with a period of
� /2 �19�.

A closer examination of the narrow-line momentum dis-
tribution does show some weak � dependence; namely, the
width of the distribution decreases slightly when � changes
from 0 to � /2. This can be attributed to the standing-wave
pattern present in the 2D field configuration which causes
atomic diffraction and hence broadens the momentum
distribution.

The JILA experiment reported in Ref. �13� concerns the
narrow-line cooling on the 1S0-3P1 transition of 88Sr. One
particular set of experiments is carried out in a 3D optical
molasses with blue laser detuning. They found that the atoms
organize into discrete momentum packets forming a face-
centered-cubic crystal, a behavior which can be rather satis-
factorily explained by the 1D force equation given in Eq. �4�.
This is in accordance with our calculation here which shows
that narrow-line transitions do not exhibit strong multidimen-
sional effects.

V. CONCLUSION

In conclusion, we have performed a detailed study of the
Jg=0↔Je=1 transition under a 2D �+-�− laser field. Our

work shows that inherent multidimensional effects are ex-
pected in broad-line transitions. These multidimensional ef-
fects are in general sensitive to the time-phase difference �
between fields along different dimensions. In most experi-
mental situations, � is not deliberately stabilized. When �
fluctuates randomly, the multidimensional effects are washed
out and become unobservable. It is therefore crucial to sta-
bilize �, as was done in the experiment reported in Ref. �6�,
in order to observe the multidimensional cooling effects.
Otherwise, the multidimensional light-pressure force may in-
deed be regarded as a simple superposition of 1D forces.
This shows why the 1D cooling theories are as successful as
they are in explaining 2D and 3D experimental results.

Our work also shows that qualitative differences exist be-
tween the broad- and narrow-line transitions. In particular,
narrow-line transitions do not exhibit strong multidimen-
sional effects or Sisyphus effects.

One interesting point we have found in this calculation is
that, due to the presence of the two dark states which are
linear superpositions of the excited sublevels, the broad-line
Jg=0↔Je=1 transition can be reduced to an effective two-
level atom regardless of the laser configuration. Therefore
there exists a Sisyphus cooling force at blue laser detuning as
long as the laser fields support a standing-wave pattern. Be-
cause of the stimulated nature of the Sisyphus effect, this
cooling force does not saturate at large laser intensity and,
hence, can be significantly more efficient than the spontane-
ous cooling force of the 1D Doppler theory. This, however,
does not lead to sub-Doppler temperatures at equilibrium
since a large laser intensity also results in large momentum
diffusion. From a theoretical point of view, this reduction to
an effective two-level structure may simplify future theoret-
ical studies of the Jg=0↔Je=1 transition.

By contrast, for a narrow-line transition, due to the lack of
the Sisyphus effect, we cannot take advantage of the large
cooling capability of the dipole force. Temperatures compa-
rable to the sing-photon recoil limit have been achieved us-
ing Doppler cooling on narrow-line transitions. This, by its
own, is not yet enough to reach quantum degeneracy �24�.
How to further improve the narrow-line cooling efficiency
and whether one can achieve all-optical quantum degeneracy
without the time-consuming evaporative cooling process are
still open questions and remain as both theoretical and ex-
perimental challenges.
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APPENDIX A: ANALYTIC EXPRESSIONS
OF THE VELOCITY-DEPENDENT FORCE

FOR THE BROAD-LINE TRANSITION

In this appendix, we outline the details of how the ana-
lytic expressions of the velocity-dependent force can be ob-
tained following Ref. �16�.
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First we write down the optical Bloch equations—i.e., the
equations of motion for �ij. We will work in the weak-field
limit by assuming that �±,0

2 / ��2+
2�1. We will neglect
any terms that are of the second or higher orders of this small
quantity. Under this limit, the excited-state coherences �e.g.,
�23, �24, �34 and their respective conjugates� vanish. The re-
maining equations are

�̇�� = − 2���� + i
��

2
��g − i

��
*

2
�g�, �A1a�

�̇g� = �− � + i
���g� − i
��

2
��gg − ���� , �A1b�

where �=−,0 ,+ and we need to add the population conser-
vation condition

�gg = 1 − �−− − �00 − �++.

Here we have included the effect of a magnetic field along
the quantization axis by defining


± = 
 � �B, 
0 = 
 .

The zero-velocity steady-state solution can be easily ob-
tained by taking the time derivatives to be zero, which yields

���
�0� = �� =

����2

4��2 + 
�
2�

�� = − ,0, + � ,

�g�
�0� = i

�−

2�� − i
+�
��gg

�0� − ���
�0�� .

We now find the solution, to first order in velocity, by
taking the time derivatives on the left-hand side of Eqs. �A1�
as

�̇ij = v · ��ij
�0�,

and resolve the optical Bloch equations. This procedure
yields the first-order solution as

���
�1� = �� −

1

2�
v · ���,

�g�
�1� =

1

� − i
�
	i

��

2
��gg

�1� − ���
�1�� − v · ��g�

�0�
 .

The velocity-dependent force can then be found as

F�v� = − ��H� = 	 Re	 �
�=−,0,+

�g�
�1� � ��

*
 ,

where the overbar represents average over one optical wave-
length along both the x and y directions.

APPENDIX B: EFFECTS OF MAGNETIC FIELD

We have so far neglected any external magnetic field. Un-
der many circumstances, a magnetic field is present. This
occurs, for example, during the operation of a MOT. Here we
consider the simplified case where a uniform field with

strength B is applied along the quantization axis, in order to
illustrate the new features induced by the magnetic field.

The Zeeman effect due to this field will lift the energy
degeneracy of the excited manifold, assuming the field is not
too strong so that the quadratic Zeeman effect can be ne-
glected. While the states �0� and �g� are not affected by the
external field, the states ��� will be shifted by the amount
±	�B= ±�B, respectively, with � being the gyromagnetic ra-
tio. We performed numerical calculations under such a con-
dition for the case of the broad-line transition and found that
the features in the absence of the magnetic field are pre-
served. In particular, the Sisyphus effect can still be ob-
served. This is despite the fact that we can no longer reduce
the system to an effective two-level atom as there are no dark
states when the excited state degeneracy is lifted.

One new feature induced by the magnetic field is the
“vortical force” as shown in Fig. 6, which illustrates a
strong-field situation where both the vortical force and the
Sisyphus effect can be clearly seen.

Analytical expressions for the vortical force can again be
found in the weak-field low-velocity limit. The vortical force
can be written as

Fvor�v� = �vor	k2�vyx̂ − vxŷ� ,

with the coefficient

�vor =
�2�2

16��2 + 
2�	 1

�
 + �B�2 + �2

−
1

�
 − �B�2 + �2
cos 2�

�
�2
�2�B

16�
2 + �2�3cos 2� ,

where the last line is valid for a weak magnetic field when
�B

2 �2+
2. Therefore the vortical force is analogous to the
Lorentz force experienced by a charged particle moving in a
magnetic field. The effective charge would be

FIG. 6. Velocity-dependent force for 
=−�, �B=4�, �=� /2,
and s=100. The velocity is in units of � /k.
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Qeff =
�2
�2�k2

16�
2 + �2�3 cos 2� .

For the parameters of Fig. 6, this yields Qeff=5.7�10−18 C,
or about 35 electron charge, for the 5 1S0−5 1P1 broad-line
transition of 88Sr.

The other new force induced by the magnetic field can be
written as

Fani� �v� = �ani� 	k2�vyx̂ + vxŷ� ,

which represents an anisotropic force along the two diagonal
directions x̂+ ŷ and x̂− ŷ. This force varies as sin 2�, but is
usually rather weak and hence is dominated by other types of
forces.

Obviously, the magnetic field used in the MOT is not
uniform. To realistically model the force inside a MOT, we
have to account for the spatial variance of the magnetic field
in both magnitude and direction. This is a rather complicated
situation, out of the scope of this paper. Again, a Monte
Carlo approach seems to be the only possible way to tackle
this problem. Nevertheless, our calculations indicate that the
magnetic-field-induced multidimensional features may play a
nontrivial role in the dynamics of a MOT.

Finally, we also studied the effects of the magnetic field
on the narrow-line transition. No appearance of the vortical
force is found in this case. In general, the magnetic field does
not seem to play as a significant role in the narrow-line tran-
sition as in the broad-line transition.
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