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Quantum signatures of a free electron in interaction with a continuous-wave radiation field are investigated
by looking for negativities in the Wigner function of the system. The free-electron wave function in the
radiation field is calculated fully analytically by solving the appropriate Schrödinger equation in the
Krammers-Henneberger frame. It is found that pronounced quantum signatures show up already for a laser
peak field of magnitude E0=1–2 a.u. and a frequency �=1 a.u. However, the nonclassical behavior gets lost if
the interaction with the radiation field is taken in the dipole approximation.
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I. INTRODUCTION

For studying the interaction of a single bound electron
with a laser field, at least a semiclassical approach whereby
the electron is treated quantum mechanically and the laser
field classically is essential in a wide range of applications.
Among other things, the semiclassical treatments have domi-
nated, for a long time, the investigation of phenomena like
laser-assisted multiphoton and above-threshold ionization
and harmonic generation.

On the other hand, it is generally believed that a free
electron may be treated classically as long as the radiation
energy is small compared with the �center-of-mass� electron-
positron pair-production energy threshold �1.022 MeV.
Only laser photons of intensity as high as 2�1029 W/cm2

may achieve this �1–3�. However, it was shown experimen-
tally several years ago �4� that electron-positron pairs could
be produced by making the threshold center-of-mass energy
available in �-� collisions at intensities of the order of only
1019 W/cm2. This has been achieved in two steps. First, low-
energy �2.35 eV� laser photons were backscattered off a
high-energy �46.6 GeV� electron beam �acquiring GeV ener-
gies themselves in the process�, and then these high-energy
photons were made to collide against a few of the low-
energy laser photons.

For moderately intense laser pulses quantum electrody-
namical effects due to the vacuum should not play a role
anymore. Then the question arises as to whether the quantum
nature of a free electron in an intense classical laser field
may ever play a significant role �5�. Apart from rather small
spin-induced dynamics �6,7�, quantum features have always
been considered negligible in such situations. In addition to
powerful low-frequency laser fields �8�, intense high-
frequency laser fields are now available with a wavelength
approaching the size of a laser-driven quantum wave packet.
Currently, laser systems exist �8� at a number of laboratories
around the world which promise to make investigating some
of these effects possible �9�.

This paper aims at showing that a free electron exhibits
nonclassical behavior in the presence of an intense high-
frequency laser field �10�. This will be demonstrated by the

negativity exhibited by the Wigner function of the free elec-
tron in the given environment. It is well known that negativ-
ity in the Wigner function is an indicator of nonclassicality
�11�. It will be shown that, starting with an initial free elec-
tronic state described by a Gaussian distribution, the Wigner
function corresponding to the time-evolved wave function of
the free electron in the laser field exhibits negativities, pro-
vided the dipole approximation is not made. Recall that the
dipole approximation amounts to dropping the term k ·r,
where k is the wave vector of the laser and r is the position
vector of the free electron, from the description of the laser
fields �or, equivalently, from the vector potential�. With that,
coupling of the free electron to the magnetic component of
the laser field gets lost. However, at sufficiently high field
intensities the v�B force can be quite strong �v is the ve-
locity of the free electron and B is the magnetic field strength
of the laser.� It causes shearing and distortion in the free
electron when the latter is modeled by a quantum mechanical
wave packet. So, without resorting to the dipole approxima-
tion, coupling to the laser magnetic field is retained and that
results in the distortion of the free-electron quasi probability
distribution, making it negative at times. An intuitive expla-
nation of the effect is also presented in terms of quantum
pathway interferences.

In the next section, our program for calculating the
Wigner function of a free electron interacting with an intense
laser field is outlined. Some crucial background material on
the Krammer-Henneberger frame is given there. Next, the
time-evolved wave function is worked out analytically, and
the Wigner function is calculated numerically, with interac-
tion with the field taken in the dipole approximation. The
same thing is also done in Sec. II B, but without making the
dipole approximation. We present and discuss our main re-
sults in Sec. III. Our conclusions based on those results are
finally given in Sec. IV.

II. WIGNER FUNCTION

To investigate the quantum signatures of the free electron
in a laser field, we employ the quantum-mechanical phase-
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space distribution, known as the Wigner function �12�. For a
three-dimensional system, phase space is six dimensional
and the said function may be written as

W�r,p,t� =
1

��q�3�
−�

�

d3q�*�r + q,t���r − q,t�

� exp�2iq · p

q
� , �1�

where p represents the generalized momenta conjugate to the
spatial coordinates r of the particle and � is its wave func-
tion. The latter is, of course, obtained from solving the ap-
propriate Schrödinger equation. The Wigner function is a
quasiprobability distribution whose negativity indicates non-
classical behavior.

We let the free electron have a mass m and a charge −e,
and we model the laser field, by a vector potential A in the
space-time coordinates �r , t�. In general, the Hamiltonian of
such a system reads

H =
�p + eA/c�2

2m
=

p2

2m
+

e

mc
A · p +

e2A2

2mc2 = Hf + Hi, �2�

where Hf = p2 /2m represents kinetic energy of the free elec-
tron, Hi describes its interaction with the radiation field, and
c is the speed of light in vacuum. Note, further, that the
Coulomb gauge �� ·A=0� has been employed. Throughout
this work, Gaussian units will be used in the analysis while
atomic units will be employed in the numerical calculations.

The next step would be to solve Schrödinger’s equation

H� = iq
��

�t
�3�

for � and to use it in the Wigner function, Eq. �1�. However,
it turns out to be easier, and intuitively more appealing, to
solve the Schrödinger equation in the Krammers-
Henneberger �KH� frame �13�, instead. This is a noninertial
reference frame in which the well-known quiver motion of
the free electron in the laser field may be eliminated �exactly
within the dipole approximation and approximately without
it�. The wave function in the KH frame is related to its labo-
ratory counterpart by the following unitary transformation

�KH�r,t� = U��r,t�, U 	 exp
 i
q � Hi�r,t��dt�� . �4�

When the transformation �4� is followed by a second trans-
formation � �see the Appendix�, the Schrödinger equation
becomes

iq
��KH

�t
� −

q2

2m
�2�KH, �5�

i.e., a noninteracting particle equation that admits an easy
solution. Note that because the two terms making up Hi com-
mute, the transformation may be written as U=U1U2 and

� = U2
†U1

†�†�KH. �6�

The above developments allow for calculation of the
Wigner function to proceed along the following lines. First, a

choice is made for the vector potential A�r , t� that best mod-
els the laboratory laser field. This function is then used to
calculate the transformations U1 ,U2, and �. Next, a wave
function �KH that describes the free electron most realisti-
cally is adopted. Finally, Eq. �6� is used to calculate the
laboratory wave function �, and this is subsequently em-
ployed to obtain the Wigner function on the basis of Eq. �1�.
Several nontrivial steps of this procedure may be carried out
analytically, while calculation of the Wigner function is done
numerically.

The electric component of a continuous-wave �cw� radia-
tion field, polarized in the x direction and propagating along
+z, may be modeled by

E = x̂E0sin��	� , �7�

where

	 = t −
z

c
�8�

E0 is a constant amplitude, and � is the frequency. Two cases
of free-electron–field interactions will be investigated in
what follows—namely, one with and another without the di-
pole approximation �DA�.

A. Dipole approximation

In the DA, valid whenever kz
1, the corresponding elec-
tric field follows, by differentiation, from the vector potential

A�t� = x̂
cE0

�
�cos��t� − 1� . �9�

The presence of the constant term in Eq. �9� does not affect
the observable electromagnetic fields and has the advantage
of making A well behaved in the zero-frequency limit �14�. It
is also simple enough to allow for considerable progress in
the analytic investigation. Simple integrations and straight-
forward algebra lead to �see the Appendix�

� = x̂
eE0

m�2 �sin��t� − �t� , �10�

D =
i

q

�eE0�2

8m�3 �sin�2�t� − 8 sin��t� + 6�t� , �11�

� = 0, �12�

U2 = eD. �13�

Hence,

� = e−D�KH�x − �,y,z� . �14�

Evaluation of the full wave function follows immediately
from Eq. �14� once a choice for �KH that satisfies Eq. �5� has
been made. In order to help us gain some confidence in the
procedure outlined above for calculation of the laboratory �,
let us consider a one-dimensional �1D� free-electron model.
Assuming that the free electron is constrained to move in one
dimension—say, along an x axis—a choice in the KH frame
would be the momentum wave function
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�KH�x,t� =
1


2�
ei�kex−�et�, q�e =

q2ke
2

2m
, �15�

where qke= p represents the momentum of the free electron.
Recall here that the wave function �15� does not suitably
represent a localized particle of well-defined momentum. For
one thing, it leads to a wave velocity that is one-half the
classical velocity of the particle it is supposed to represent
�15�. In any case, it does lead to the following time-
dependent solution:

� =
e−D


2�
ei�ke�x−��−�et�. �16�

This is precisely the solution developed by Rau and
Unnikrishnan �16� using evolution operator methods. Note
that it reduces to the free-electron plane wave function in the
�→0 limit. Unlike the often-used Volkov wave function,
this one does not retain any additional phase factors �17�.

For a realistic representation of the localized free electron,
a Gaussian wave packet moving along the z axis, and having
nonzero extension along x, seems more appropriate. Our
choice, taken straight from a textbook �15�, is the 2D wave
packet

�KH =
1

a
2��1 + it/��
exp� i�

t

 x2 + z2

4a2 ��
�exp�−

i�/4a2t

1 + it/�
�x2 + 
z −

p0

m
t�2�� , �17�

where �=2ma2 /q ,a represents a reasonable size for the wave
packet, and p0 stands for the initial momentum of the free
electron. Assuming it is born from an atom, possibly by ion-
ization, a size for the free electron may be taken as
a�
x�
z. This wave packet leads to a probability distri-
bution which describes a point particle in the a→0 limit. In
other words, it turns out to be zero everywhere except on the
classical particle trajectory �15�.

Using Eqs. �10�, �13�, and �17� in Eq. �14�, we arrive at

��DA� =
e−D

a
2��1 + it/��
exp� i�

t

 x̄2 + z2

4a2 ��
�exp�−

i�/4a2t

1 + it/�
�x̄2 + 
z −

p0

m
t�2�� , �18�

where x̄=x−�. Finally, Eq. �18� is used in Eq. �6� and the
Wigner function is calculated numerically. In Fig. 1, the qua-
siprobability distribution is shown, at t=0.5 T, where T is the
laser period, for field amplitudes E0=0.5, 1, and 2 a.u. Recall
that E0=1 a.u. is equivalent to an electric field strength of
about 5.4�109 V/cm. This is much less than the QED criti-
cal field strength Ecrit=1.3�1016 V/cm at which a static
electric field would spontaneously break down into electron-
positron pairs �2,3�. Note that the initially symmetric distri-
bution shows little signs of distortion due to interaction with
the radiation field. No apparent signs of negativity are exhib-
ited, however, in Fig. 1. It is also hard to detect any appre-
ciable difference between the three distributions shown.

B. Nondipole approximation

Recall that making the dipole approximation amounts to
ignoring the effects on the free-electron dynamics due to the
magnetic component of the laser field �18,19�. The magnetic
component of the Lorentz force on the free electron becomes
comparable to the electric component when the free elec-
tron’s velocity approaches the speed of light, a situation we
know happens under conditions of interaction with a high-
intensity laser field.

Next, we abandon the dipole approximation altogether.
Thus, in place of Eq. �9� we will now model the radiation

FIG. 1. The Wigner function of a free electron initially �at
t=0� at rest at the origin of coordinates and subsequently subjected
to a plane-wave, dipole-approximation, laser field. The plots are for
a wave packet that has interacted with a field of frequency �
=1 a.u. for a time equal to 0.5 T, where T is a laser- field cycle. The
snapshots correspond to x=0= px and an initial wave packet mod-
eled by a two-dimensional Gaussian of width equal to a=100 a.u.
in either spatial dimension.
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field by the nondipole-approximation �NDA� vector potential

A = x̂
cE0

�
�cos ��	� − 1� , �19�

where 	 is given in Eq. �8�. This choice for the vector po-
tential is also well behaved in the �→0 limit; it vanishes for
a free electron initially at rest at the origin of coordinates,
and it is admissible by the principle of gauge invariance.
Using it we get the following NDA counterparts for Eqs.
�10�–�13�:

� = x̂
eE0

m�2�sin ��	� − �	� , �20�

D =
i

q

�eE0�2

8m�3 �sin �2�	� − 8 sin ��	� + 6�	� , �21�

� = − ẑ
 iq

mc
�D , �22�

U2 = eD. �23�

Note that Eqs. �19�–�21� follow from Eqs. �9�–�11�, re-
spectively, by replacing �t with �	, as in Ref. �14�. Even-
tually, the following expression for the laboratory wave func-
tion ��NDA� results:

��NDA� =
e−D

a
2��1 + it/��
exp� i�

t

 x̄2 + z̄2

4a2 ��
�exp�−

i�/4a2t

1 + it/�
�x̄2 + 
z̄ −

p0

m
t�2�� , �24�

with

x̄ = x − � and z̄ = z − � . �25�

III. RESULTS AND DISCUSSION

To look for nonclassical behavior, the Wigner function of
the system is considered next. Results from numerical calcu-
lations using Eq. �24� in Eq. �1� are shown in Fig. 2. The
quasiprobability distribution is shown for three laser field
intensities, corresponding to E0=0.5, 1 and 2 a.u., respec-
tively. In Figs. 2�b� and 2�c�, the Wigner function exhibits
negativities, clear manifestations of the quantum signatures.
The nonclassical behavior is more pronounced in �c� than in
�b�, as expected. Note that our calculations have employed a
wave packet of size 2a�200 a.u. and laser fields of wave-
length ��850 a.u. The case for abandoning the dipole ap-
proximation is made even stronger by the observation that
the quantum signatures become more pronounced for wave
packet sizes smaller than the laser wavelength.

To further elucidate these conclusions we refer to Fig. 3.
Within the dipole approximation, Fig. 3�a�, the forces �indi-
cated by the arrows, which also indicate free-electron quan-
tum pathways� affecting all parts of the wave packet �solid
circle� are roughly the same in both magnitude and direction.

However, beyond the dipole approximation, Fig. 3�b�, while,
at this stage, still a negligible ponderomotive force acts, parts
of the wave packet on the left-hand side may be subject to
forces different from those to which the parts on the right-
hand side are exposed, at the same time. However, only be-
yond the dipole approximation and with significant dynamics
in the laser propagation direction 3�c�, may fractions of the
wave packet move in both polarization and propagation di-
rections. Thus, there may be quantum pathway interferences
leading to negativities in the Wigner function. Suppose, fur-
ther, that measurement, at some time, reveals that the free
electron is roughly at point B in Fig. 3�c�. Then, one would
not be certain whether it was at A or at A� at some earlier
time.

FIG. 2. Same as Fig. 1, but without the dipole
approximation.
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IV. CONCLUSION

We have shown that the quantum effects associated with a
free electron in laser fields of present-day intensities and fre-
quencies may be retained if the dipole approximation is not
used in modeling the laser-electron interaction. The quantum
signatures �pointing to nonclassical behavior� get washed
away when the dipole approximation is made. This could be
attributed to the fact that the dipole approximation amounts
to neglecting the magnetic effects associated with the laser
field. Such effects are retained when the dipole approxima-
tion is abandoned in strong laser pulses, and they alter the
free-electron dynamics quite appreciably. This is evidenced
by distortions in the wave packet and in negativities exhib-
ited by the quasiprobability distributions �20�.
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APPENDIX

Under the KH transformation, the Schrödinger equation
becomes

UHfU
†�KH = iq

��KH

�t
. �A1�

Note that, with a vector potential of the form

A = x̂
cE0

�
�cos � − 1�, � = �t − kz , �A2�

the two terms making up Hi commute and the transformation
may be written as U=U1U2, where

U1 = e�·�, U2 = eD �A3�

and where

� =
e

mc
� A�r,t��dt�, �A4�

D =
ie2

2mc2q
� A2�r,t��dt�. �A5�

In Eq. �A4� the operator substitution p=−iq� has been made
and the excursion parameter ��r , t� has been introduced. Ob-
viously, � and D can only involve the spatial z coordinate in
addition to the time. The following derivatives will turn out
to be useful for the subsequent analysis:

��

�z
=

eE0

mc
� sin �dt� � O
1

c
� , �A6�

�2�

�z2 = −
eE0�

mc2 � cos �dt� � O
 1

c2� , �A7�

�D

�z
=

i

q

�eE0�2

m�c
� sin ��cos � − 1�dt� � O
1

c
� , �A8�

�2D

�z2 = −
i

q

�eE0�2

mc2 � �cos�2�� − cos ��dt� � O
 1

c2� .

�A9�

The operator UHfU
†=U1U2HfU2

†U1
† on the left-hand side

of Eq. �A1� may be much simplified with the help of the
following two commutation relations:

�U1,Hf� =
q2

2m
��2U1 +

2i

q
� U1 · p� , �A10�

�U2,Hf� =
q2

2m
��2U2 +

2i

q
� U2 · p� . �A11�

Hence, the following derivatives are needed �with px the x
component of the free-electron momentum operator�:

�U1 = ẑ
 i

q
� ��

�z
U1px, �A12�

�2U1 = 
 i

q
�� �2�

�z2 + 
 i

q
�
 ��

�z
�2�U1px, �A13�

�U2 = ẑ
�D

�z
U2, �A14�

FIG. 3. A schematic of the interaction of a free-electron wave
packet �solid lines� with a laser wave �dotted lines�. �a� In the DA
���a�, where a is the size of the wave packet, �b� in the NDA, but
in the regime in which the magnetic force �v�B� is neglected, and
�c� in the NDA case, where ��a and with the v�B force playing
a significant role. The arrows indicate possible free-electron quan-
tum pathways.
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�2U2 = � �2D

�z2 + 
 �D

�z
�2�U2. �A15�

Furthermore, employing a Taylor series expansion for the
operator U1, namely,

U1 = e
i
q

�px = �
n=0

� 
 i

q
�n�n

n!
px

n, �A16�

it is easy to see that the following commutation relations
hold as well �pz stands for the z component of the free elec-
tron momentum operator�:

�U1,pz� = −
��

�z
pxU1, �U1,px� = 0. �A17�

With the help of Eqs. �A10�–�A17� we may now write

UHfU
† = Hf +

q2

2m
� i

q
� �2�

�z2 +
i

q

 ��

�z
�2�px

−
2

q2

��

�z

pxpz −

��

�z
px

2�� +
q2

2m
U1

�� �2D

�z2 + 
 �D

�z
�2

+
2i

q

 �D

�z
�pz�U1

†, �A18�

exactly. Next we take the bold step of dropping all terms in
Eq. �18� that are proportional to the inverse square of the
speed of light, together with terms involving pxpz. That
leaves us with

UHfU
† � Hf +

q2

2m
U1�2i

q

 �D

�z
�pz�U1

†, �A19�

This simplifies even further using

� �D

�z
,pz� = iq

�2D

�z2 � 0, � �D

�z
,U1� = 0. �A20�

Hence,

UHfU
† � Hf + H�, H� = 
 iq

m
� �D

�z
pz. �A21�

Obviously, because it involves the operator pz ,H� leads to a
translation in the z direction. But this is not a simple space

translation, for it implicitly depends on the local space-time
coordinates through the term �D /�z. Actually, the same thing
may be said of the space translation resulting from the action
of U1.

After all these simplifications, Eq. �A1� takes on the fol-
lowing approximate form:

iq
��KH

�t
� �Hf + H���KH. �A22�

Guided by the U1 algebra, we now let

�KH = ��KH, � 	 exp
 i
q � H�dt�� �A23�

Under this transformation, Eq. �A22� becomes

iq
��KH

�t
� �Hf�

†�KH. �A24�

Note that if one writes H�= f�z�pz, then

�f ,pz� = iq
� f

�z
= −

q2

m

�2D

�z2 pz � 0. �A25�

From this follows that �� ,Hf��0. Finally,

iq
��KH

�t
� −

q2

2m
�2�KH. �A26�

Thus the laboratory wave function may be written as

� = U2
†U1

†�†�KH�x,y,z;t� = U2
†U1

†�KH�x,y,z − �;t�

= U2
†�KH�x − �,y,z − �;t� , �A27�

where � has been rewritten as �=e�·�, with

� 	 ẑ
 iq

m
� � �D

�z
dt� = − ẑ
 iq

mc
�D � O
1

c
� . �A28�

Note that, in the dipole approximation, H�=0 implies �=1
and, hence, �=0.
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