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The ionization distances Rc
I of slow hydrogenlike Rydberg atoms approaching solid surfaces in the presence

of a weak external electric field are calculated. The ionization is treated as resonant electron tunneling in the
very vicinity of the top of the potential barrier, created between the ionic core and polarized solid. We obtain
both the complex energies and the ionization distances by solving the energy eigenvalue problem under the
outgoing wave boundary condition towards the solid. The eigenvalue problem is studied in parabolic coordi-
nates within the framework of an etalon equation method adapted to include the confluence of turning points.
It is demonstrated that in a critical region R�Rc

I �1 a.u. of ion-surface distances R, parabolic quantum
numbers n1, n2, and m can serve as approximate, but “sufficiently good” quantum numbers, at least for lower
n1 values. The method offers asymptotically exact analytical expressions for the ionization rates and energies,
which follow the theoretical predictions of the complex scaling method �CSM�. It is also found that the
resulting ionization distances Rc

I are in very good agreement with the results of CSM. The implications of using
obtained results in analyzing the recent xenon experimental data for Rc

I are briefly discussed.
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I. INTRODUCTION

Recently, an interest for the relatively old and difficult
problem concerning “direct observation” of ionization dis-
tances of Rydberg atoms approaching to solid surfaces was
renewed �1�. In the cited experiment �1� the ionization dis-
tances Rc

I are obtained for xenon Rydberg atoms approaching
a solid surface �under near grazing geometry conditions�
with hyperthermal velocities �v�1 a .u . �, in the presence of
a weak external electric field. The distances Rc

I are estab-
lished by measuring threshold values of the electric field,
which are sufficient to stop the ionized particle and send it
back into a detector.

Despite the extensive theoretical study of the ionization
process, the information concerning the ionization distances
for Rydberg atoms remains incomplete, even for the simplest
hydrogenic-type ones. The commonly used theoretical meth-
ods are very heterogenous in nature; here we mention the
classical over-barrier method �2,3�, the perturbation method
�4�, the coupled angular mode method �CAM� �5,6�, the
complex scaling method �CSM� �7–9�, the stabilization
method �10,11�, the time-dependent close-coupling technique
�12,13�, and the two-state vector model �14–17�. Generally,
two different definitions of the ionization distance have been
used. The classical electron transition model �3� defines the
ionization distance as the critical distance Rc at which the
energy term “touches” the saddle point of the potential bar-
rier. A more exact definition of the ionization distance Rc

I is
given by quantum models. Namely, particular Rydberg states
ionize over a narrow range of ion-surface distances R around
R=Rc

I , where Rc
I is the position of maximum of total ioniza-

tion rate �15,16,18�. Although these definitions have very
different physical connotations, it is reasonable to expect that
Rc

I �Rc for highly excited Rydberg atoms.

The nonperturbative complex scaling method �19� was
used as the basis for the first calculations of ionization dis-
tance Rc

I , devoted directly to the hydrogenic Rydberg atom
approaching solid surface in the presence of external electric
field. This method �7–9,19� consists of solving the eigen-
value problem of an effective non-Hermitian Hamiltonian
Ĥ��� of the active electron, obtained by the “complex rota-
tion” r→r exp�i�� of the electronic radial coordinate r in the

Hamiltonian Ĥ. Simultaneously, a diverging boundary con-
dition of Siegert’s type is transformed into the “bound-state
boundary condition” �providing that the parameter � exceeds
a critical value�. The diagonalization of the Hamiltonian

Ĥ��� gives numerical values for complex eigenenergies, and
the imaginary parts of these eigenenergies correspond to the
ionization rates �energy widths�. The ionization distances Rc

I

are derived from the total ionization rates �ionization prob-
abilities per unit time�, calculated with the obtained widths.

Strongly “hybridized” eigenstates of Ĥ��� have been ex-
pressed as a superposition of a large but finite number of
hydrogenic bound states. An incomplete classification of
these eigenstates and corresponding eigenenergies has been
performed in terms of two good quantum numbers, n and m.

Although the predictions of the hydrogenic CSM model
mainly reflect the experimental data �1�, we realized that a
few physically relevant questions have remained open within
the framework of that model. First of all, the character of
electron tunneling requires an additional analysis, i.e., a cri-
terion concerning the relation of the energy-level position
and the potential barrier top is worthwhile. Besides, it is not
clear whether a complete classification of the electronic
eigenstates is possible, at least approximately. Also, it is im-
portant to investigate whether the forms of near-surface po-
tentials �significant at “physisorption distances” R�10 a.u.
and lower n values �8�� could play a decisive role at very
large ion surface distances, e.g., R�1000 a.u. Finally, since*Electronic address: hekata@ff.bg.ac.yu
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the highly excited Rydberg atoms manifest in part some
properties of quasiclassical objects, it would be informative
to test explicitly how the distances Rc and Rc

I are related.
In the present paper we discuss the problem of ionization

distances Rc
I of hydrogenlike Rydberg atoms outside the

complex scaling method. An appropriate nonperturbative eta-
lon equation method �20,21� will be developed. This
asymptotic method has previously been applied to a wide
class of physical problems with large parameters. It enables
us to point out in a more direct manner that the ionization of
hydrogenlike Rydberg atoms represents a tunneling process
at large ion-surface distances, R�Rc�1 a.u. Our starting
idea is that the resonant tunneling takes place in the very
vicinity of the potential barrier top, created between the ionic
core �with core charge Z� and the polarized solid, in the
presence of a weak electric field F. The electron tunneling
dynamics is described by a Gamow-type decaying state �,
representing an eigenfunction of the “nonrotated” Hamil-

tonian Ĥ and satisfying the surface oriented outgoing wave
boundary condition. Under these conditions, the decaying
eigenstate � corresponds with the complex eigenenergy with
an imaginary part proportional to the ionization rate.

A specific feature of the etalon equation method of solv-

ing the eigenvalue problem of Ĥ is that it does not use the
decaying state � as an expansion with respect to any basis of
wave functions. Accordingly, the complex eigenenergies are
not related with a diagonalization procedure resulting in the

appearance of matrix elements of Ĥ. Unlike the volume in-
tegrals over the whole space, expressing these matrix ele-
ments, the etalon equation method is based on the calculation
of corresponding “etalon-method integrals” along the tunnel-
ing direction. For R�Rc�1 a.u., the tunneling and atomic
regions give the dominant contributions to these integrals, so
that the details of the near-surface potential are avoided; see,
for example, Eq. �3.6b� and the subsequent discussion in Sec.
III B concerning Eqs. �3.11a� and �3.11b�.

Under these circumstances, a few physically plausible ap-
proximations are possible. Namely, in the critical region R

�Rc, the complex energy eigenvalue problem of Ĥ is prac-
tically separable in parabolic coordinates � ,� ,�, at least in
the most relevant region ����� of the electron transitions. In
other words, the parabolic quantum numbers can be taken as
approximate, but sufficiently good quantum numbers for a
classification of the decaying eigenstates �. The potentials
of the electron interaction with the pointlike atomic core UA
and the external electric field F do not violate the parabolic

symmetry of the Hamiltonian Ĥ. Also, in the tunneling re-
gion and for R�Rc�1 a.u., the classical image force poten-
tials fit both the “true” nonsingular electron self-image po-
tential UM and the atomic core image potential UAM. So, the
physically relevant terms which approximately maintain the
parabolic symmetry can be extracted from the total potential

U of the Hamiltonian Ĥ= T̂+ Û.
In solving the one-dimensional effective eigenvalue prob-

lems along the � and � directions, the original second-order
differential equations are associated with a set of additional
“etalon equations,” whose solutions are well known and
which have the same type of transition points �turning points

and simple poles� as the original ones. In the present paper
we consider the close turning point configuration, which
characterizes the electron tunneling in the vicinity of the po-
tential barrier top. Therefore, in order to obtain accurate
asymptotic expressions for ionization distances, we adapt the
etalon equation method to include the confluence of the turn-
ing points �in the � direction�. It allows us to introduce the
function ��R�, which represents both a spectral parameter of
the corresponding etalon equation and a measure of its turn-
ing point distance. The function ��R� contains the main in-
formation about critical distances Rc and ionization distances
Rc

I . Namely, we will show that Re ��Rc�=0 and Re ��Rc
I�

��0, where �0 is a given constant determined by the param-
eters of the system �parabolic quantum numbers, core charge,
normal component of the ionic velocity, and electric field�.

This paper is organized as follows. After the formulation
of the problem �Sec. II�, we will derive the ionization rates,
energy terms, and, simultaneously, the ionization distances
Rc

I �Sec. III�. In Sec. IV we present the results of our calcu-
lations for typical values of parabolic quantum numbers and
external electric fields. The results are compared with the
predictions of CSM �9,18,19,22� and the available experi-
mental data �1�. Some concluding remarks will be given in
Sec. V. Atomic units �e2=	=me=1� will be used throughout
the paper.

II. FORMULATION OF THE PROBLEM

A. Ion-surface potential in the critical region RÉRc

We consider the slow hydrogenlike Rydberg atom �core
charge Z�, approaching a solid surface in the presence of a
weak external electric field F, directed from the solid to the
vacuum �Fig. 1�. We restrict ourselves to the critical region
R�Rc�1 of the ion-surface distances R, i.e., our attention is
focused on the electron tunneling in the very vicinity of the
potential barrier top. The relevant z component of the atomic
core motion is described by the classical law dR /dt=−v�,
where v� is the corresponding component of the core veloc-
ity v.

In the low velocity region �v��1�, the adiabatic wave
function � behaves as a decaying state. The function � is
determined by the the complex energy eigenvalue problem

Ĥ�=E� with the outgoing wave boundary condition �to-
wards the solid� �16�. Namely, under the influence of the
field of the polarized solid, the initially discrete electron state
�the electron is bound to the atom� becomes quasistationary
in nature, due to the possibility of electron tunneling towards
the solid.

In the coordinate system located at the solid surface, with
the z axis perpendicular to the surface, and in the region

outside the solid �z
0�, the Hamiltonian Ĥ of the system is
given by

Ĥ = −
1

2
�2 + UA + Fz + UM + UAM . �2.1�

For UA we take the Coulomb potential UA=−Z /rA, where rA
is the electron position with respect to the ionic core. The
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term UM +UAM is the surface potential of the polarized solid.
So far, a number of “true” nonsingular �at z=0� surface

potentials, approaching the bulk value for z→0, have been
proposed �see, for example, Refs. �3,6,8,12�, and references
therein�. However, bearing in mind that the etalon equation
method is based on the calculation of the integrals over the
interval sufficiently far from the surface �see the Introduc-
tion�, our model is almost independent from the concrete
form of the near-surface potential. Also, for low velocities of
the ionic projectile, a dynamical response of the surface can
be neglected. For these reasons it is sufficiently accurate to
use the classical electrostatic image approximations: the
electron image potential UM =−1/4z and the potential of
ionic core image UAM =Z /��2+ �z+R�2, where �2=x2+y2.
Besides, under the conditions R�Rc�1, the potential inside
the solid does not play a decisive role. Namely, for the tun-
neling in the vicinity of the potential barrier top, Fig. 1, the
Fermi level and the corresponding depth U0 of the solid po-
tential wall are far below the instant position of the elec-
tronic level.

The first three terms in the Hamiltonian Ĥ �hydrogenlike
atom in the electric field� enable the separation of variables
in the parabolic coordinates �=rA+zA, �=rA−zA and �
=arctan�y /x�, defined in the coordinate system located at the
ionic core. The term UM +UAM breaks the parabolic symme-
try. However, for R�Rc�1 this symmetry is satisfied ap-
proximately. Namely, the potential U=UA+Fz+UM +UAM
�U�� ,� ;R ,Z ,F� along the � axis forms the barrier, which
is shifted upwards �with broadening� with the increasing of
�; see Fig. 2. Accordingly, the “transparency” of the barrier

decreases rapidly with the increasing of �. Taking into ac-
count that the potential U along the � axis corresponds to the
finite electronic motion, we conclude that the � axis is the
tunneling direction, i.e., the condition ��� for the tunneling
process in the critical region is satisfied.

With this condition, in the range �� �0,�0�2�R−z0�
�4R /3�, see Figs. 1�c� and 2�b�, relevant for the “etalon-
method integrals,” we have

UM + UAM = 	−
1

4
R −
�

2
� +

Z

2R −
�

2
�1 + O
 �

R
�� .

�2.2a�

The approximation given by Eq. �2.2a� enables the separa-
tion of variables in the parabolic coordinates, i.e., the viola-
tion of the parabolic symmetry is localized within the term
O�� /R�. Note that in the far asymptotic �deep sub-barrier�
region �R�Rc�1� we have

UM + UAM �
2Z − 1

4R
−

Z − 1

8R2 �� − �� , �2.2b�

so that the corresponding eigenvalue problem reduces to the
Stark-like one. For the higher-order terms in the expansion
�2.2b� over zA /R and � /R see, for example, Ref. �6�.

The complex eigenenergies of Ĥ, with the parabolic sym-
metry approximately conserved, are labeled by the parabolic
index set �= �n1 ,n2 ,m� of the approximately good quantum
numbers �16�, i.e., we have

E� = Re E� −
i

2
�, �2.3�

where � is the corresponding ionization rate.

FIG. 1. �a� A schematic presentation of the ionization process in
the critical region, R�Rc�Rc

I �1. The quantity Rc is defined in the

text, Eq. �2.9�. �b� The total ionization rate ̃� determining the
ionization distance Rc

I . �c� The potential U along the z axis for R
=Rc

I and the corresponding position of the electronic energy level
Re E�.

FIG. 2. �a� Relevant regions for electron transitions in the � ,�
plane. The positions of the ionic core and solid surface are given by
�=�=0 and �=�−2R, respectively. �b� Potential barrier
U�� ,� ;R ,Z ,F� for R�Rc�1 a.u. and Z=1 along the � axis for
�=0, �=R /2, and �=R. The energy Re E��R� and the corresponding
turning points �dots� are also presented in �b�. The Fermi level of
the solid is far below the Re E��R� level.
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B. Separation of variables for RÉRc

In the separation of variables procedure, concerning the

complex energy eigenvalue problem of Ĥ for R�Rc, we use

the scaled parabolic coordinates �̃=� /2R� and �̃=� /2R�.

The scaling parameter � is defined by �=−2Ẽ�R / �Z−1/4�,
where Ẽ�=E��R�−FR. For convenience, instead of �̃ we
introduce the variable u=��̃ to represent the effective elec-

tron coordinate. We take the quantity b=�−2Ẽ��2R�� as a
large parameter of the eigenvalue problem.

By omitting the small term O�� /R� in Eq. �2.2a�, and
taking that �=X���Y���exp�±im�� /���, we obtain the fol-

lowing differential equations with respect to the variables �̃
and u:

d2X

d�̃2
+ P2�b,�̃�,�,F̃; �̃�X = 0, �2.4a�

d2Y

du2 + Q2�b,�,�,F̃;u�Y = 0, �2.4b�

where P2=−b2p2��̃� /4+b�̃� / �̃+ �1−m2� /4�̃2 and Q2

=b2h�u ,d�−b� /4d+ �1−4m2� /4u2. By p2 and h we denoted
the following functions:

p2 = 1 + F̃�̃ , �2.5a�

h =
1

4d
− u2 +

u2�u2 − ū2�
�1 − �u2��1 − �u2/2�

+ F̃u4, �2.5b�

where F̃=2FR2 / �Z−1/4� and ū2= �Z−1/2� / �Z−1/4��. The
quantity d in Eqs. �2.4b� and �2.5b� is introduced for conve-
nience; it can be determined from the condition h�u0 ,d�=0,
where u0 is the position of minimum of the function h, i.e.,
h��u0 ,d�=0. For given d and Z, the quantity h is a function

of � and F̃.

The quantities �̃� and � in Eqs. �2.4a� and �2.4b� are spec-
tral parameters �adapted to the critical region R�Rc� of ef-

fective one-dimensional eigenvalue problems along the �̃ and
u axis. The parameter � is defined by

� = b − 16�̃�d , �2.6�

where �̃� is in relation with the spectral parameter �̃� by the
equation

��̃� + �̃���− 2Ẽ��1/2 = Z . �2.7�

An important feature of the complex parameter � is that it
is very sensitive to the turning point configuration along the
u direction. For that reason, it can be used to define the
critical distance Rc. In the critical region we have ��R�
=�0�R�+O�1/b�. In the case of R=Rc, corresponding the
confluence of the turning points, we have Re �0�Rc�=0. For
R
Rc and R�Rc, i.e., for the under-barrier and over-barrier
transitions, the parameter Re �0 satisfies the inequalities

Re �0
0 and Re �0�0, respectively. With the above defini-
tion, the parameter Rc has a somewhat similar role as that in
the the classical over-barrier model �3�.

C. Function � and the ionization distance Rc
I

In the case of the electron tunneling in the vicinity of the
potential barrier top, it is possible to obtain the analytical
expressions for Re E��R� and ��R� for a given set � of
parabolic quantum numbers as well as the parameters Z and
F. Simultaneously, we obtain the spectral parameter �
=��R�.

Instead of ��R�, in the present paper we shall use a more
convenient function ��R�, appearing as a spectral parameter
in the etalon equation method �see the Introduction�. What
will be demonstrated in Sec. III A is the following relation
between � and �:

� = �� , �2.8�

where �
0 is a given constant. Consequently, up to the
O�1/b� term, we have

Re ��Rc� = 0, �2.9�

so that Re ��R�
0 for R
Rc, and Re ��R��0 for R�Rc.
The relation �2.8� reflects the proportionality in the distances
between turning points of the original and etalon equations,
for the close turning point configuration.

In order to relate the ionization distance Rc
I and the func-

tion Re � we assume that the ionization probability P��R� is
determined by the rate equation dP� /dt=��R��1− P��R��.
The solution of this equation, satisfying the condition
P����=0, is given by

P��R� = 1 − exp
−
1

v�
�

R

�

��R�dR� . �2.10�

The ionization distance R=Rc
I is defined as a position of

maximum of the total ionization rate ̃��R�=dP� /dt; see
Fig. 1�b�. Accordingly, we have d2P� /dR2=0 for R=Rc

I . By
inserting Eq. �2.10� in the last expression we get


d�

dR
�

Rc
I
+

1

v�

�
2 �Rc

I� = 0. �2.11�

Using the expansion ��R�=��Rc�+ ��� /� Re ��Rc
IRe �

+O��Re ��2�, which is valid for R�Rc�Rc
I when �Re ���1,

from Eq. �2.11� we obtain

Re ���,Rc
I ,Z,F� � �0��,v�,Z,F� , �2.12a�

where

�0 = −
1


 � ln �

� Re �
�

Rc

−�−
v�


 ��

� Re �
�

Rc


d Re �

dR
�

Rc

.

�2.12b�

In writing the last expression we took into account that
�d Re � /dR�Rc

I ��d Re � /dR�Rc
because of the almost linear
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behavior of Re � in the vicinity of Rc, see Figs. 3–8 in Sec.
IV.

Using the analytical form for the ionization rate in Eq.
�2.12b�, we calculate the function �0. With the known �0, Eq.
�2.12a� gives an approximate expression for the ionization
distance. A more exact expression for Rc

I follows directly
from the numerical treatment of the relation �2.11�; see Sec.
IV.

III. IONIZATION DYNAMICS

A. Etalon equation method for RÉRc

The one-dimensional effective eigenvalue problems �2.4a�
and �2.4b�, with the variables �̃ and u, describe the finite and
semi-infinite electron motions, respectively. Formally, Eq.

�2.4a� has a form of a �̃ component of the standard Stark
problem in parabolic coordinates. Equation �2.4b� expresses
a specific feature of surface ionization for R�Rc because the
tunneling process in the vicinity of the effective potential
barrier top takes place along the u axis.

Both these equations can be solved within the framework
of the etalon equation method. However, while Eq. �2.4a� is
tractable by the standard etalon equation procedure �20,21�
and will not be considered in detail here, the solving of Eq.
�2.4b� requires the particular methodology used in Refs.
�23,24�. The two similar ionization problems have previously
been analyzed by this approach: the ionization of an atomic
particle in the critical electric field �23� and in the Coulomb
field of the ionic projectile �24�.

According to the etalon equation method �see the Intro-
duction�, the appropriate etalon equation of the problem
�2.4a� is the Whittaker differential equation. Hence the solu-

tion X��̃�, satisfying the boundary conditions X→0 for �̃

→0 and �̃→�, can be expressed in terms of the Whittaker
function Ma,b�z�, i.e., we have X=KM��,m/2�b�� /���, where
K is a constant and ��=n1+ �m+1� /2. We denote by �

=���̃� a new “etalon” variable, and ��=d� /d�̃. Expanding

the variable � and spectral parameter �̃� of Eq. �2.4a� in
asymptotic series in terms of inverse powers of the large
parameter b, we can obtain these quantities with arbitrary
precision. For further calculations we need only the follow-
ing relation:

�̃� = �� + �3��
2 + ��

F̃

2b
+ O
 1

b2� , �3.1�

where �= �1−m2� /4; see, for example, Ref. �15�, Sec. III B.
Equation �2.4b� has two close turning points, u1 and u2,

determined by the condition Q2�b ,� ,� , F̃ ;u1,2�=0. For u1

�u2, the etalon equation method is significantly different in
comparison to the distant turning point case, previously used
in our analysis of the Rydberg level population of multiply
charged ions at solid surfaces �15�. Namely, if u1�u2, it is
not possible to define the regions encompassing separately
the points u1 and u2. Instead, we have to consider the region
A1 far from the points u1�u2, but which contains the point
u=0, as well as the region A2 containing both turning points,

but which is sufficiently far from the coordinate origin u=0
�23�.

The etalon equation method of solving Eq. �2.4b�, with
the boundary conditions

Y�0� = 0, Y�u� = outgoing wave, u 
 u2, �3.2�

adapted for u1�u2, consists of choosing appropriate etalon
equations in the regions A1 and A2 that have the same con-
figuration of transitions points as in Eq. �2.4b�. Note that the
second condition in Eq. �3.2� is determined by the function
Y�u� in the region A2; accordingly, the condition is not de-
pendent on the potential inside the solid. Also, the singularity
of the potential UM at z=0 does not affect this boundary
condition. Besides, the supposition on the outgoing wave
behavior of Y�u� for u
u2 along the u axis differs from the
Siegert’s diverging boundary condition used in CSM
�7–9,19�.

In the region A1, an appropriate etalon equation is the
Bessel-type differential equation

d2W

d�2 + 
1 +
1 − 4m2

4�2 �W = 0, �3.3�

with the etalon variable �. The solution of Eq. �3.3� is given
by W���=C��Jm���, where Jm��� is the Bessel function, and
C is a constant. The variable � is related to the u variable,
i.e., �=��u�. The concrete form of this relation can be ob-
tained by expanding the variable � in the asymptotic series in
terms of the large parameter b :��u�=�1�u�b+�0�u�
+O�1/b�. In the considered region A1, the solution Y1�u� of
Eq. �2.4b� is expressed via the etalon equation solution W���
by the relation Y1�u�=W��� /���, where ��=d� /du.

On the other hand, in the region A2 an appropriate etalon
equation is the Weber equation:

d2U

ds2 + �s2 − ��U = 0, �3.4�

where s=s�u� is the etalon variable in the A2 region and � is
the etalon spectral parameter for that region. Note that the
parameter � also represents a measure of the distance be-
tween turning points s1 and s2 of Eq. �3.4�. We recall that � is
a suitable parameter for the derivation of the ionization dis-
tance Rc

I , Eq. �2.12a�. By comparing the original equation
�2.4b� and the etalon equation �3.4�, we get the condition
s1,2=s�u1,2�, where u1,2 are the turning points of Eq. �2.4b�.
Taking into account that s1,2

2 =�, we have

� = s2�u1,2� . �3.5�

The general solution U�s� of Eq. �3.4� is a linear combination
of the functions of parabolic cylinder: U�s�
=AD−1/2+i�/2��2se−i3�/4�+BD−1/2−i�/2��2sei3�/4�, where A and
B are constants. According to the etalon equation method, we
have the asymptotic series s2�u�=w1�u�b+w0�u�+O�1/b�.
The solution Y2 of Eq. �2.4b� in the region A2 is given by
Y2=U�s� /�s�, where s�=ds /du.

By inserting the solutions Y1 and Y2 in Eq. �2.4b� and
equating the coefficients with the same power of b, we obtain
systems of the first-order nonlinear differential equations for
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�i and wi , i=0,1. The system of equations for wi can be
solved uniquely in each point of the u interval, including the
position u0 of minimum of the function h, Eq. �2.5b�, only if
the condition �=�� is satisfied, where �=2�2h��u0�d. The
proportionality of the parameters � and � has already been
used in Eq. �2.8�, from which we obtained Re ��Rc�=0. By
means of the relation �=��, together with the condition
�3.5�, we obtain the expansion coefficients �i and wi, i.e., we
calculate the functions ��u� and s2�u� up to the terms of order
O�1/b�. Using these functions as arguments in the etalon
solutions, we arrive at the functions Y1 and Y2 of the original
equation �2.4b� in the regions A1 and A2, respectively.

The functions Y1�u� and Y2�u� must be smoothly matched
in the region A1�A2. From the matching condition Y1 /Y1�
=Y2 /Y2�, using the asymptotic forms of the solutions Y1 and
Y2, we get

A = B expiD�b,�,�,F̃� − im� − i�/4 + O
1

b
�� ,

�3.6a�

where D�b ,� ,� , F̃� is a given function of the complex pa-

rameters b, �, �, and F̃. We have

D�b,�,�,F̃� = − 2b�
0

u1

h1/2du + �1 +
�

4d
�

0

u1

h−1/2du

−
1

2
ln
− 4b�

u1

u0

h1/2du�� . �3.6b�

The asymptotic form of the solution Y2�u� for u�u2 is a
sum of two terms representing the incoming and outgoing
waves along the u direction. The radiative condition, i.e., the
second boundary condition from Eq. �3.2�, will be satisfied if
the amplitude of the incoming wave is equal to zero. As a
consequence, besides Eq. �3.6a�, we get an additional rela-
tion between the constants A and B:

A = B
�2�


1 + i�

2
� exp
−

5�i

4
−

��

4
� , �3.7�

where �z� denotes the gamma function.
From Eqs. �3.6a� and �3.7� we obtain the following “dis-

persion” relation:

expiD�b,�,�,F̃� − i�m − 1�� + O
1

b
��

=
�2�


1 + i�

2
� exp
−

�

4
�� . �3.8�

Under the condition �Im ���1, Eq. �3.8� transforms into the
following system of two real equations:

Re D = ��2n2 + m + 1� − arg 
1 + i Re �

2
� �3.9a�

− Im D −
1

2
Im � Re �
1 + i Re �

2
� =

1

2
ln�1 + exp�− � Re ��� ,

�3.9b�

where ��z�=d ln �z� /dz represents the digamma function of
the complex variable z.

The system of Eqs. �3.9a� and �3.9b� represents a math-
ematical background of our description of the ionization dy-
namics at R�Rc. Namely, this system of equations enables
us to obtain the energies and ionization rates of the active
electron, as well as the function Re � necessary for determin-
ing the ionization distances Rc

I and the critical distances Rc.
Note that these physically relevant quantities will not be ex-
pressed in terms of the volume CSM integrals, but by
“etalon-method integrals,” figuring in Eq. �3.6b� and, accord-
ingly, contained in Eqs. �3.9a� and �3.9b�. The most impor-
tant feature of these integrals, from the standpoint of the
etalon equation method, is that they are not sensitive to the
form of electronic potential in the near-surface region �z
�0�.

B. Explicit expressions for the functions Re �, ��, and Re Ẽ�

The obtaining of explicit expressions for the R-dependent

functions Re �, �, and Re Ẽ� is possible through the follow-
ing procedure. For a given R, we determine Re D and Im D
by using Eq. �3.6b�. Inserting these expressions into Eqs.
�3.9a� and �3.9b� we arrive at the relations for Re � and �,
respectively. Thus the quantities Re � and � are expressed
in terms of Re E�. The function Re E� can be obtained by
using Eqs. �2.6� and �2.8�, as well as Eqs. �2.7� and �3.1�.

According to this general scheme we obtain the following

system of equations for the variables Re �, � and Re Ẽ�:

Re � =
f1Re b + 2��2n2 + m + 1�

f2 − ln�Re b� 1 + O
1

b
�� ,

�3.10a�

� =
− 2 Re Ẽ�

Re b

ln�1 + exp�− � Re ���

�ln�Re b� − f2�
a1 +
a2

Re b
� + f3 + O
 ln b

b2 � ,

�3.10b�

Re Ẽ� = −
Z2

2
Re �̃� +

Re b

16 Re d
− a3Re � + O
 1

b2��−2

,

�3.10c�

where Re b=2�−2 Re Ẽ��3/2R2 / �Z−1/4�. The quantity Re �̃�

from Eq. �3.10c� is given by Eq. �3.1�, where b is replaced by
Re b.

The functions f1 and f2, figuring in Eqs. �3.10a� and
�3.10b�, are defined by the following integrals:

f1 = 4 Re�
0

u0

h1/2du , �3.11a�

and
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f2 = 2�2Re
��
0

u0

hr
−1/2du� − ln�2�2�u0

2� + ��1/2� ,

�3.11b�

where hr
−1/2=h−1/2−1/��2�u−u0� is the regular part of the

function h−1/2 and �=�h��u0 ,d� /2. We recall that the quan-
tities u0 and d are defined in Sec. II B; see the text followed
by Eq. �2.5b�. By ��1/2� we denoted the value of the di-
gamma function for z=1/2. The function f3 is defined by

f3 =
3

2
f1 + 
�

df1

d�
�

�=Re �

. �3.11c�

In Eqs. �3.10b� and �3.10c� we denoted by ai , i=1, 2, and 3,
the smoothly varying functions of the parameters b, �, �, and

F̃. Explicit expressions of the quantities ai and Re d, as well
as the expressions for f i , i=1, 2, and 3, are given in the
Appendix.

From Eqs. �3.10a�, �3.10b�, and �3.10c� we see that the

quantities Re ��R�, ��R�, and Re Ẽ��R� must be determined
simultaneously; this is characteristic for the etalon equation
method when solving the quasistationary eigenvalue problem
for R�Rc. Bearing in mind that f i, ai, and Re d represent the

known functions of Re Ẽ� �see the Appendix�, the numerical
treatment of the system �3.10a�, �3.10b�, and �3.10c� be-
comes relatively simple. Namely, Eqs. �3.10a� and �3.10c�
have the following structure: Re �=F1�Re Ẽ�� and Re Ẽ�

=F3�Re � ,Re Ẽ��, where F1 and F3 represent known non-
linear functions of the variables indicated. Accordingly, for

Re Ẽ� we get the transcendental equation Re Ẽ�

=F3(F1�Re Ẽ�� ,Re Ẽ�), which can be easily solved numeri-

cally for any relevant value of R. With the known Re Ẽ�, we
return to Eq. �3.10a� and calculate Re �. Finally, Eq. �3.10b�
has the following structure: �=F2�Re � ,Re Ẽ��, where F2

is the known nonlinear function of the Re � and Re Ẽ�. Con-

sequently, with the known Re � and Re Ẽ�, we arrive to the
ionization rate �. In this way we obtain the R-dependent

functions Re ��R�, ��R�, and Re Ẽ��R�. Of course, these
results are valid in the physically most relevant region
around the R=Rc; we have focused on this region from the
very beginning of our analysis.

In the far asymptotic region, i.e., for R�Rc�1, we have
a deep sub-barrier tunneling; in that case the surface poten-
tial UM +UAM is given by Eq. �2.2b�. The corresponding en-
ergy eigenvalue problem overcomes into the Stark-like one

with the �shifted� eigenenergies denoted by Ẽ0,�. For the hy-
drogenlike atom �core charge Z� in a weak electric field F,
satisfying the condition n2F�1, we have

Ẽ0,� � −
Z2

2n2 +
3

2Z
Fn�n1 − n2� +

2Z − 1

4R
−

3

8

�Z − 1�
ZR2 n�n1

− n2� . �3.12�

In the absence of the field, the energies Ẽ0,� turn into the
hydrogenlike energies E0=−Z2 /2n2 when R→�.

C. Explicit form of the condition Re �„Rc
I
…=�0

The ionization distances Rc
I can be obtained approxi-

mately from Eq. �2.12a� providing that the function �0 is
known. We calculate the quantity �0 using the relation
�3.10b� for � expressed in the form ��R�=A�Re ��ln�1
+exp�−� Re ���. Taking into account that Re ��Rc�=0, from
Eq. �2.12b� we get

�0 =
2 ln 2

� 1 + � −�2 ln 2

�

d Re �

dR
�

Rc

v�

��Rc�
1

1 + �� ,

�3.13a�

where

� =
�0

1 − �0
, �0 =

2 ln 2

�

 d ln A

d Re �
�

Rc

. �3.13b�

Considering the function A�Re �� as a smoothly varying
function of Re �, we have ��0. Furthermore, for the veloci-
ties v��10−5 a.u. relevant in the experiment �1�, the third
term in Eq. �3.13a� is also a small quantity. As a result, we
get

Re ��Rc
I� � �0 �

2 ln 2

�
, �3.14�

i.e., we obtain an approximative, but simple, equation for
determining the ionization distances Rc

I from the known
graphs for Re ��R�.

Let us note that the quantity �0, Eq. �3.13a�, increases
with the decreasing of the velocity v�, which results in an
increasing of the ionization distances Rc

I .

IV. RESULTS

A. Energies and ionization rates for RÉRc

From the results presented in Sec. III, various quantitative
details concerning the ionization dynamics around the criti-
cal ion-surface distances R�Rc can be explicated.

In Fig. 3 we present the relevant physical quantities in the
case of ionization of the hydrogen atom �Z=1� states with
n=8, 12, 16, and 20, and for n1=0 and m=0 in the absence
of electric field �F=0�. Figure 3�a� exposes the function
Re ��R� whose zeros are the critical distances Rc �circles in
Fig. 3�a��. The corresponding ionization distances Rc

I �dots in
Fig. 3�a�� are obtained as intersections of the curve Re ��R�
with Re �=�0, see Eq. �3.14�. We see that the ionization dis-
tances Rc

I are localized in the vicinity of Rc. Taking into
account that Rc

I −Rc
0, we conclude that the ionization is
mainly a tunneling process. With the increasing of n the ion-
ization distances increase following the quadratic law. A
more detailed analysis of the quantity Rc

I as a function of n is
given in Sec. IV B.

In Figs. 3�b� and 3�c� we present, respectively, the ioniza-

tion rates and the �shifted� energy terms Re Ẽ�=Re E�−FR
�solid curves� for the electron transitions in the vicinity of
the potential barrier top. In Fig. 3�c� we also expose the

�shifted� energies Ẽ0,� �dot-dashed curves� given by Eq.
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�3.12�, valid for R�Rc, i.e., in the case of deep sub-barrier
electron tunneling. In the critical region R�Rc the energy
terms Re Ẽ� increase with the increasing of R; in the far
asymptotic region R�Rc, the terms Ẽ0,� have a decreasing
character. The energy terms from the critical region and from
the far asymptotic region intersect at ion-surface distances
larger that Rc

I . A unique energy curve can be constructed as a
combination of the two types of curves presented in Fig.
3�c�.

The influence of the external electric field is illustrated in
Fig. 4, in which we consider the ionization of hydrogenic
�Z=1� Rydberg state n=10, n1=0 , m=0 for the electric
fields F1=0, F3=1.0�10−6 a.u., and F5=2.0�10−6 a.u. In
Fig. 4�a� we present the function Re ��R� for the electric
fields F=F1, F3, and F5. The ionization distances Rc

I �marked
by dots�, mainly localized at Rc

I �340 a.u., are very close to
the critical distances Rc �circles� and they slightly increase
with the increasing of F.

In Figs. 4�b� and 4�c� we present the ionization rates

��R� and the shifted energies Re Ẽ��R� obtained in the criti-

cal region R�Rc, as well as asymptotic energies Ẽ0,��R�,
determined by Eq. �3.12�. In the same figures we present the
corresponding theoretical rates and energies �9,18,19� ob-
tained within the framework of the CSM. In order to com-
pare the cited results with our parabolic energies and rates
with n1=0, we present the curves from Refs. �9,18,19� for
the shortest lived states. The ordering of the CSM-curves in
Figs. 4�b� and 4�c� is the same as that of solid curves. From
Fig. 4�b� we see that the rates ��R� obtained in our model
follow the CSM curves almost over the entire R region. The
coinciding of these curves is most notable for R�Rc

I , dots in
Fig. 4�b�. We obtain the same agreement by comparing our
rates for Z=1, n=13, n1=0, and m=0 with the CSM rates
taken from Ref. �1� for H�n=13� the “reddest” m=0 state.

From Fig. 4�c� we conclude that, in the region of validity

of our model �R�Rc�, the energy terms Re Ẽ��R� obtained
here �solid curves� and the CSM terms �9,19,18� �dashed
curves� have the same characteristic increasing behavior with
the increasing of R. Outside the mentioned critical region, for
larger R, the terms from the cited references are in agreement
with the asymptotic terms �dot-dashed curves�. On the other
hand, outside the critical region, and for smaller R, the en-

ergy terms Re Ẽ��R� and those from CSM have the same
increasing behaviors with the decreasing of R. However, our
curves, extrapolated from the critical region, are shifted to-
wards smaller R in comparison to CSM curves. Of course, in
the region R�Rc, we are in the far over-barrier region. In
this case, the turning points are distant and localized in the
complex plane, so that the main assumptions of our model
are no longer valid; the energy terms from this region are
irrelevant for the calculation of ionization distances Rc

I �Rc.
In Fig. 5 we present the same quantities as in Fig. 4, but

for the hydrogenic Rydberg state n=15. The general behav-
iors of the function Re �, energies and rates are the same as
in Fig. 4, except the effect of the field F is more pronounced.
The obtained values are compared with the theoretical results
of CSM �22� corresponding to the hydrogenic case in which
the states of the considered manifold are fully hybridized.

FIG. 3. Ionization of the hydrogenic �Z=1� Rydberg states n
=8, 12, 16, and 20 in the absence of electric field �F=0�; �a� the
function Re ��R�, �b� ionization rates ��R�, and �c� shifted energies

Re Ẽ��R� �solid curves� and Ẽ0,��R� �dot-dashed curves�. Dots and
circles indicate the positions of ionization distances Rc

I and critical
distances Rc, respectively.
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FIG. 4. �a� The function Re ��R�, �b� the ionization rates ��R�,
and �c� the energies Re Ẽ��R� �solid curves� and Ẽ0,��R� �dot-
dashed curves� of the state n=10, n1=0, m=0 in the electric fields
F1, F3, and F5. Dots and circles indicate the positions of Rc

I and Rc,
respectively. Dashed curves are the CSM results from Ref. �19� �or
Ref. �18�� for F=F3 and F=F5, and from Ref. �9� for F=F1=0.

FIG. 5. �a� The function Re ��R�, �b� the ionization rates ��R�,
and �c� the energies Re Ẽ��R� �solid curves� and Ẽ0,��R� �dot-
dashed curves� of the hydrogenic state n=15, n1=0, m=0 in the
electric fields F1, F3, and F5. Dots and circles indicate the positions
of Rc

I and Rc, respectively. Dashed curves are the CSM results for
F=F1=0; see Fig. 1�b� in Ref. �22�.
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The comparison of our curves and those of CSM leads to the
same conclusion as in the case of n=10 discussed in Fig. 4.
Namely, the agreement of the rates exists almost over the
entire region of the R axis; the energies Re Ẽ��R�, solid

curve 1, and Ẽ0,��R�, dot-dashed curve 1, constitute a unique
curve in agreement with the energy term of Ref. �22� �dashed
curve�.

In Fig. 6 we illustrate the situation in the parabolic mani-
fold of a given n and m. We consider the Rydberg state n
=10, m=0 in the field F3=1.0�10−6 a.u. restricting our-
selves to the low values of n1 �n1=0, 1, and 2�. In Fig. 6�a�
we present the function Re � by indicating the corresponding
ionization distances Rc

I �dots� and critical distances Rc
�circles�. With the increasing of n1, the Rc

I values decrease in
agreement with the values obtained in Ref. �19� for v�

=2.1�10−5 a .u : Rc
I �360 a.u. for the shortest lived state

and Rc
I �120 a.u. for the longest lived one; see also our dis-

cussion in Sec. IV B.
In Fig. 6�b� we present the ionization rates via the ion-

surface distance R for n1=0,1,2 and m=0. From the pre-
sented curves we conclude that �at a given ion-surface dis-
tance R� the Rydberg state with n1=0 represents the shortest
lived state, i.e., it gives the main contribution to the ioniza-
tion process. On the other hand, considering the values of the
ionization rates at R=Rc

I �dots in Fig 6�b��, we conclude that
they are of the same order. The obtained rates are compared
with the theoretical CSM results �19�; we present only the
three largest rates from the manifold obtained in cited refer-
ence. Our predictions are in agreement with those of Ref.
�19�.

The parabolic energy manifolds Re Ẽ�=Re E��R�−FR

from the critical region and Ẽ0,��R� from the far asymptotic
region, in the external field F=F3, are presented in Fig. 6�c�.
In the same figure we also expose the lowest three terms of
the theoretical CSM energies �19� �the ordering of the CSM
curves is the same as that of solid curves�. Note that, like in

Figs. 4 and 5, the energy terms Re Ẽ� obtained in the present
paper and the terms from Ref. �19� have the same behavior
for R�Rc �circles�. Again, the unique curves that can be
constructed on the base of the critical and asymptotic values
of the energies reproduce the CSM terms.

The energies and rates of the Rydberg states with different
m can also be obtained from our model. Although less pro-
nounced we found these behaviors to be similar to the ones
in the above presented n1 case. Some aspects of the m de-
pendence of the ionization distances are discussed in Sec.
IV B.

The results presented in Figs. 3–6 show that the rates and
energy terms, for different n, n1, and F, are in agreement
with those of the complex scaling method almost over the
entire R region. In this sense we conclude that the parabolic
quantum numbers can be used as approximately good quan-
tum numbers for a classification of the “Stark-like” states of
the CSM approach �9,18,19,22�, at least for lower n1 values.

B. Ionization distances Rc
I and comparison with

experiments

The most important output of our calculations concerns
the ionization distances Rc

I which give basic physical infor-

mation about the ionization process. In the model presented,
the ionization distances depend on the set of parabolic quan-
tum numbers �= �n1 ,n2 ,m�, where n1+n2+ �m�+1=n. Be-

FIG. 6. �a� The function Re ��R�, �b� ionization rates ��R�, and

�c� the parabolic energy manifolds Re Ẽ��R� �solid curves� and

Ẽ0,��R� �dot-dashed curves� of the state n=10, m=0 in the electric
field F=F3. Numbers indicate the values of n1. Dots and circles
indicate the positions of Rc

I and Rc, respectively. Dashed curves are
the CSM results from Ref. �19�.
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sides, the values of Rc
I depend on the ionic velocity v�, the

core charge Z, and the strength of the electric field F.
In the first approximation, the ionization distances are de-

termined by Eq. �3.14�, in which the velocity dependence is
neglected. The corresponding data are sufficiently accurate
for a discussion on the general behavior of the quantity Rc

I

and for a comparison with the critical distance Rc. In Table I
we present the Rc

I values, calculated by Eq. �3.14�, for n1
=0 , m=0, and the electric fields F1=0, F2=5.0�10−7, F3
=1.0�10−6, F4=1.5�10−6, and F5=2.0�10−6 �in atomic
units�. In Table II we consider two cases: the case n

=10, m=0 for n1=0,1,2,… 6, and the case n=10, n1=0 for
m=0,1,2,…, 6.

The trend we see in Tables I and II is the increasing of
distance Rc

I with the increasing of principal quantum number
n, scaled as n2. The influence of other parameters on the Rc

I

values is not so evident: in some cases we have an interplay
of several different behaviors. In principle, the Rc

I values in-
crease with the increasing of the electric field F, see Table I.
In the absence of the field �F=F1=0�, and for lower values
of F, the ionization distances corresponding to a given n
decrease with the increasing of the first parabolic quantum
number n1; see Table II. The influence of the quantum num-
ber m is similar, but less pronounced.

The obtained numerical results for Rc
I can be summarized

by the following expression: Rc
I =3.3f�� ,v� ,Z ,F�n2 /Z. In

the absence of the field F, for the hydrogenic case �Z=1�,
from the approximative Eq. �3.14� we get f =1. The direct
numerical calculation of the ionization distances on the base
of Eq. �2.11�, applied to the case v��1, gives somewhat
larger Rc

I values. Namely, in the absence of the field, for Z
=1 and v��10−5 a.u., instead of f =1 we get f =1.15, i.e.,
we have Rc

I �3.8n2, in agreement with CSM results; see
comments in Ref. �1�. Note that the classical over-barrier
model �2� gives Rc

I =Rc�3n2. With the increasing of F, the
value of function f increases; for the field F=F5 and n1=0,
m=0 and for larger n we get f =1.8, i.e., Rc

I �6n2.
In Fig. 7 we present graphically the ionization distances

Rc
I from Table I as a function of n, for different values of F

indicated. We see that the curves corresponding to different
values of F�0 represent the branches of the “basic” zero-
field curve �F=F1=0�. The branching becomes more pro-
nounced with increasing of n. Under the experimental con-
ditions, the ionization distance Rc

I for a given n corresponds
to the threshold �critical� value of electric field, F=Fc�n�.

In Fig. 8 we present the ionization distances Rc
I for the

Rydberg states with the principal quantum numbers n=13,

TABLE I. The ionization distances Rc
I �in a.u.� according to Eq.

�3.14�. The cases of Rydberg state �n ,n1=0,m=0� of the hydro-
genic �Z=1� atom in the external electric field Fi , i=1,2,…5 are
presented; the values of the field are given in the text.

n 4 8 12 16 20 24

Rc
I�F1� 54 216 487 866 1356 1949

Rc
I�F2� 54 216 493 907 1594 3024

Rc
I�F3� 54 217 500 976 2202 3071

Rc
I�F4� 54 218 510 1118 2255 3159

Rc
I�F5� 54 218 519 1523 2339 3355

TABLE II. The ionization distances Rc
I �in a.u.� according to Eq.

�3.14�, for the state n=10, m=0 as a function of n1 �first row�, and
n=10, n1=0 as a function of m �second row�. The value of the
external electric field is given by F3=1.0�10−6 a.u.

n1 or m 0 1 2 3 4 5 6

Rc
I�n1� 343 311 279 247 212 178 142

Rc
I�m� 342 327 311 295 279 262 246

FIG. 7. The ionization distance Rc
I via principal quantum num-

ber n in the external electric field F; the values of the field are
marked �in atomic units�.

FIG. 8. The ionization distances Rc
I for Z=1 with the principal

quantum number n=13,15,17, and 20 in the threshold external elec-
tric fields F=Fc�n�: the approximate �dot-dashed curve� and “exact”
�solid curve� results, Eqs. �3.14� and �2.11�, respectively. The values
of the field Fc�n� �in atomic units� are taken from the experiment
�1�. Circles are the experimental data taken from Ref. �1�. Symbols
��� are the CSM theoretical predictions according to Ref. �1�. The
case Zef f =0.8 is also presented �dotted curve�.
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15, 17, and 20 and the electric field F=Fc�n�, for which the
experimental data �1� are available. Note that the Fc�n� val-
ues correspond to the branches which are very close to the
zero-field branch F1=0 exposed in Fig. 7. The experiment
was performed with the thermal beam of xenon Rydberg at-
oms in the near grazing incidence �v�=7�10−6 a .u . � onto
Au�111� surface. The ionization distances for the “reddest”
m=0 states �the states mainly oriented towards the surface�
of each Xe�n� “Stark manifold” have been measured. In our
model, these states are labeled by the parabolic quantum
numbers n1=0 , m=0. The experimental data �1� for the ion-
ization distances are marked with circles. The theoretical
�dot-dashed� curve obtained approximately in the present pa-
per by Eq. �3.14� follows the law Rc

I =3.3n2. On the other
hand, for the velocity v� used in the experiment �1�, direct
numerical calculation of the ionization distance by Eq. �2.11�
gives the solution �full line� that follows the law Rc

I �3.8n2.
In the same figure we present the results of CSM hydrogenic
theory �symbols� reported in Ref. �1�: Rc

I =3.8n2. The exact
full-line solution presented is practically identical with the
result of CSM. This agreement was expected because the
rates calculated in the present paper �Sec. IV A� follow the
complex scaling rates.

Strictly speaking, a direct comparison of the results pre-
sented here with the experimental data �1� is not possible
because the experiment has been performed with Xe atoms
which are unlike the hydrogen ones. An extension of ioniza-
tion models from the hydrogenic to the Xe-case represents a
nontrivial problem both within the framework of CSM and
the etalon equation method. In CSM, an effort to resolve the
problem has been made by including the quantum defects of
free Xe atoms, using appropriate pseudopotentials �22�.
These results, however, could not be taken as sufficiently
conclusive; in particular, only the prediction for Xe�n=15�
has been reported, giving Rc

I �700 instead of the experimen-
tal value Rc

I �1000. The problem also remains open in the
etalon equation method. It is peculiar that the presented hy-
drogenlike model with effective core charge Z=Zef f =0.8 �es-
timated on the base of approximative calculation of Rc

I� re-
produces formally the experimental data Rc

I = �4.5±0.9�n2,
see Fig. 8, dotted curve.

V. CONCLUDING REMARKS

In this paper we proposed a “tunneling model” of ioniza-
tion of the hydrogenlike Rydberg atom in an external �weak�
electric field. This model points out that a decisive role in the
ionization process is that of the critical region R�Rc�1.
For that reason, our etalon equation asymptotic procedure
has been focused on that region of ion-surface distances R.
The method offers sufficiently accurate analytical expres-
sions for the rates ��R� and energy terms Re E��R�, as well
as the critical distances Rc and ionization distances Rc

I .
The main practical conclusion of the present paper is that

the parabolic quantum numbers can be used as approxi-
mately good quantum numbers for a complete classification
of the decaying states. Accordingly, the “reddest states” of
CSM �22�, can be identified with the parabolic state with
n1=0: the states numerated in Ref. �22� as second, third, etc.

correspond to the parabolic quantum numbers n1=1 , n1=2,
etc., respectively. Note that the same conclusion, but for F
=0 and multiply charged ions with lower values of n, has
been obtained �6� by comparing the CAM method with the
perturbation method.

Few additional concluding comments may be relevant for
further investigations of the Rc

I problem.
First, the calculations exposed in Sec. III can be extended

from the hydrogenic case �Z=1�, to the case of arbitrary ions
�Z�1� approaching to �or escaping from� solid surfaces. In
particular, the values of the ionization rates and the Rc

I dis-
tances for Z�1 would be relevant. Besides, further elabora-
tion of the concept of effective core charge Z=Zef f �1 is
possible. The concept of the effective core charge could
rather be related with the external electric field effect than
with recent estimations addressed to the isolated Xe+ �22�.

Second, the relevance of various members of a parabolic
�Stark-like� manifold is still an open problem; the additional
experiments �25� with xenon Rydberg atoms report that the
“extreme red” and “extreme blue” states of the manifold are
ionized at nearly the same distances Rc

I . A theoretical expla-
nation, based on the avoided crossings between neighboring
levels, calculated with the aid of CSM using the pseudopo-
tentials, has been proposed in Ref. �26�. The results obtained
in the present paper are not sufficiently accurate for large n1
values �n1�n1,max=n−1�. The situation is somewhat similar
to the case of large-l Rydberg states treated recently within
the framework of the two-state population-reionization
model �17�. Namely, in the large-n1 case, like in the large-l
case, a wide space region around the projectile trajectory
could contribute to the electron exchange process. In that
case, the approximation ��� used in Sec. II A is not appli-
cable, so that additional theoretical investigations are needed.

Third, within the framework of the two-state vector model
�14–17� a generalized expression for the ionization distances
Rc

I can be obtained. Namely, the two wave functions, ��
�1�

and ��
�2�, which simultaneously define the instant state of an

active electron at intermediate stages of the ion-surface in-
teraction, could be labeled by two different sets of quantum
numbers � and �, respectively. Consequently, the ionization
distances depend on two sets of quantum numbers, i.e., we
have Rc

I =Rc
I�� ,��. For the ionization process discussed in

the present paper, the appropriate sets of quantum numbers
are the sets of spherical and parabolic quantum numbers. We
expect that a new insight into the ionization process can be
obtained from the behaviors of the Rc

I�� ,�� curves for a
given n and m.
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APPENDIX

We shall expose the analytical expressions for the quanti-
ties ai, Re d, and f i, introduced in Sec. III B. For the sake of
simplicity, we use the notation � for Re � , b for Re b, etc.

For a1 and a3 we have
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a1 =
u0

2

2�2�
, �A1a�

a3 =
�

2�2
. �A1b�

The quantity a2 is given by

a2 =
�2

�d

�̃�d −

�

16
�� + �

�d

2�2
�3 − 8du0

2�� −
3

�2�
�3��

2 + ��
F̃

b
.

�A2�

The parameter � figuring in the above expressions, defined
by �=�h��u0� /2, can be rewritten in the following form:

� = 2u0
1/�4Z − 1�
�1 − �u0

2�3 −
8Z/�4Z − 1�
�2 − �u0

2�3 +
F̃

2
�1/2

, �A3�

where the quantities u0 and d are defined in Sec II B. By
using these definitions we obtain the following equation for
u0 and d:

1 =
2

�

1/�4Z − 1�

�1 − �u0
2�2 −

8Z/�4Z − 1�
�2 − �u0

2�2 � + 2F̃u0
2, �A4�

1

4d
= u0

2 −
2

�2
1 +
1/�4Z − 1�
�1 − �u0

2�
−

8Z/�4Z − 1�
�2 − �u0

2�
� − F̃u0

4.

�A5�

An approximative expression for the function f1, defined
by Eq. �3.11a�, is given by

f1 � −
2u0

�d
P0, �A6a�

P0 =
1

2�2 + k�
1 +
�1 + k�2

��2 + k�k
arcsin

��2 + k�k
1 + k

� ,

�A6b�

where k=−2�2d�u0. The functions f2 and f3, defined by Eqs.
�3.11b� and �3.11c�, can be expressed as

f2 � 2�1 − 2�2d�u0� − ln�2�2�u0
2� + ��1/2� , �A7a�

f3 �
3

2
f1 + 4u0
3 − 1/�2

4�d
− u0

2�d�P0, �A7b�

where ��1/2��−1.963.
Note that the quantities ai, d=Re d, and f i represent the

known functions of Re Ẽ�. Indeed, from Eq. �A4� we see that

u0 depends on �=��Re Ẽ��, so that the quantity d from Eq.

�A5� is the known function of Re Ẽ�. Also, the quantity �,

given by Eq. �A3�, is the Re Ẽ�-dependent function. Accord-
ingly, from Eqs. �A1a�, �A1b�, and �A2� we conclude that the

quantities a1, a2, and a3 depend on Re Ẽ�. The same holds
for the functions f1, f2, and f3; see Eqs. �A6a� and �A6b�, as
well as Eqs. �A7a� and �A7b�.
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