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We consider the three-boson problem with �-function interactions in one spatial dimension. Three different
approaches are used to calculate the phase shifts, which we interpret in the context of the effective range
expansion, for the scattering of one free particle off a bound pair. We first follow a procedure outlined by
McGuire in order to obtain an analytic expression for the desired S-matrix element. This result is then com-
pared to a variational calculation in the adiabatic hyperspherical representation, and to a numerical solution to
the momentum-space Faddeev equations. We find excellent agreement with the exact phase shifts, and com-
ment on some of the important features in the scattering and bound-state sectors. In particular, we find that the
1+2 scattering length is divergent, marking the presence of a zero-energy resonance which appears as a feature
when the pairwise interactions are short range. Finally, we consider the introduction of a three-body interac-
tion, and comment on the cutoff dependence of the coupling.
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I. INTRODUCTION

The three-body problem with short-range interactions has
been of considerable interest for many years in nuclear phys-
ics �1–7�. More recently, with the realization of Bose-
Einstein condensates �BECs� in dilute alkali-metal gases, and
the ability to tune the two-body scattering length for such
atoms near a Feschbach resonance, it is of increasing interest
in atomic physics �8–12�. In light of the relatively recent
development of effective field theory �EFT�, we reconsider
the old model of three particles in one dimension interacting
via �-function interactions. While this model has been con-
sidered previously by many authors, we believe this work
provides some unique insights with regard to both atomic
and nuclear physics.

Consider the regime where typical nucleon momenta lie
well below the pion mass. In this limit, it is possible to
construct a nonrelativistic EFT in which the pionic degrees
of freedom are integrated out. This leaves only nucleon fields
with contact interactions, and higher-order derivative correc-
tions. Regarding such an EFT in the two-nucleon sector, a
great deal of literature has emerged over the past decade
�13–16�. More recently, there has been a focus on the three-
nucleon sector �7,17,18�. For a recent review see �19�. Fur-
ther, there are now a family of high-precision nucleon-
nucleon �NN� potential models which reproduce NN
scattering phase shifts up to laboratory energies of 350 MeV
�see �20� and references therein�. Each of these potentials
treat the long-range portion of the interaction in the same
way via one-pion exchange, but differ in the treatment of the
less understood short-range physics. Hence, matrix elements
of such interactions are said to be model dependent. It is
possible, however, to decimate the high-momentum degrees
of freedom by a sequence of renormalization group transfor-
mations in order to arrive at a model-independent low-energy

effective interaction �21�. This suggests that low-momentum
potential models with only nucleons as explicit degrees of
freedom may provide a sufficient description of few-nucleon
systems. Further, EFT may be used to systematize calcula-
tions of low-energy phenomena, in principle, allowing calcu-
lations of arbitrarily high accuracy.

For atomic systems, one-dimensional Bose gases are of
particular interest since phase fluctuations are enhanced. It
may seem that one-dimensional geometries require a radial
confinement of order the Bohr radius, but this is in fact not
the case. All that is required is that the energy gap in the
transverse direction be much greater than the gap in the lon-
gitudinal direction �22�. Also, one-dimensional geometries
have been observed to display higher critical transition tem-
peratures to a BEC �23�, and substantially reduced three-
body recombination rates �24�. These developments under-
score the importance of the three-body problem with short-
range interactions in one dimension.

This paper is the first of a pair that investigate EFT and
low-momentum effective interactions in one dimension. For
simplicity, we consider only spinless bosons. Scattering
theory in one dimension plays a central role in all of our
calculations. Of particular importance is the effective range
expansion �25,26�, which takes a slightly unfamiliar form.
We refer the reader to �27� for the relevant one-dimensional
derivation.

We calculate the exact symmeterized S-matrix element for
the scattering of one boson off a bound pair, and derive an
analytic expression yielding the effective range expansion to
all orders for this 1+2 process. Having found an exact solu-
tion, we proceed to calculate the adiabatic hyperspherical
potential curves in a manner similar to Ref. �28�. We use the
eigenchannel R-matrix method �29,30� in order to determine
the scattering phase shifts, and find good agreement with the
exact solution. Our results for the phase shifts, however, dif-
fer in a critical way from those presented in Ref. �31�. We
trace this disparity to varying definitions for the S-matrix
element itself. We argue that our definition for the S-matrix
element is consistent with the threshold behavior of the ef-
fective range expansion and with the statement of Levinson’s
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theorem in one dimension �32,33�. Finally, we derive and
solve �numerically� the momentum-space Faddeev equations
for the 1+2 scattering amplitude, and find excellent agree-
ment with the exact result. This approach also provides a
convenient way to analyze the cutoff dependence of the scat-
tering amplitude and determine the running of the three-body
coupling constant.

II. EXACT SOLUTION

McGuire �34� has shown that when the masses of three
identical bosons are the same, and the strengths of the pair-
wise �-function interactions are equal, then the elements of
the scattering matrix can be found by simple geometric op-
tics. Here, we briefly sketch his original arguments to calcu-
late the S matrix, and go one step further to show how this
result can be examined in the context of the effective range
expansion.

We begin with the interaction expressed in hyperspherical
coordinates � and � �see Appendix A�:

V��,�� =
c0

�2�
����cos ���

+ ���cos � − �/3�� + ���cos � + �/3��� . �1�

In the two-dimensional plane covered by � and �, this inter-
action is nonzero on three lines which intersect at angles of
� /3. Each of the resulting six regions corresponds to a
unique ordering of the three particles along the real line. The
elements of the scattering matrix are calculated by tracing an
arbitrary ray through the potential diagram, and keeping
track of the reflection and transmission amplitudes at each
intersection. S is then a 6�6 matrix which is indexed by a
given ordering of the three particles. The situation is further
simplified by choosing one particular initial ordering and cal-
culating the six corresponding elements indexed by the final
ordering. All other elements are readily found by permuta-
tions of the original ordering.

We write the familiar transmission and reflection ampli-
tudes as

T =
�

� + 1
, �2�

R =
− 1

� + 1
, �3�

with

� =
2k cos �

imc0
= ika2 cos � , �4�

where k cos � now denotes the momentum component of the
initial ray which is normal to the surface of the �-function
line. The incoming ray can be traced through the potential
diagram with the introduction of three angles �1, �2, and �3
denoting the angle with respect to the normal for the first,
second, and third �-function lines, respectively. If we let Ti
=T��i� and Ri=R��i� be indexed by the wave vector

k cos �i, and let the initial ordering of the particles be �123�
from left to right, then we find the elements of the S matrix
tabulated in Table I.

Boundary conditions for fragmentation states in which
two particles are bound by B2=1/ma2

2 are imposed by taking
one component of the wave vector to be imaginary, so that �
goes to −1. For example, if particles 1 and 2 are a bound pair
at large �, then we take �1=−1, so that T1 and R1 are both
divergent. In order to evaluate the scattering amplitude, we
then are free to set T1 and R1 to unity while any amplitude
not containing either T1 or R1 is set to zero. In order to
facilitate this, we label the momenta of the individual par-
ticles with the following kinematics:

k1 =
i

a2
+

q
�6

, �5�

k2 =
− i

a2
+

q
�6

, �6�

k3 = −�2

3
q . �7�

This particular choice satisfies k1+k2+k3=0 for center-of-
mass coordinates, and E= �1/2m��k1

2+k2
2+k3

2�=q2 /2m−B2,
which defines q in terms of the total energy. If we consider
particle 3 scattering off a bound state of particles 1 and 2,
then there are three available options. Either there is total
transmission and the ordering goes from ��12�3� to �3�21��
with direct amplitude

AD = T2T3 =
�6qa2 + 2i
�6qa2 − 6i

, �8�

or there is rearrangement where the ordering goes from
��12�3� to either ��23�1� or ��13�2�, each of which occurs
with the same exchange amplitude

AX = T2R3 =
�6�qa2� + 4i

− 3i�qa2�2 − 4�6�qa2� + 6i
. �9�

For the identical-boson case, the coherent sum of these three
amplitudes yields the desired 1+2 S-matrix element:

TABLE I. S matrix for the �-function interaction; note that there

is a common factor in each element, and we have defined S̃=S��1

+1���2+1���3+1�.

��outgoing��S��incoming�� Amplitude S̃

��123��S��123�� R1R2R3+T1R2T3 −1−�1�2

��213��S��123�� R1R2T3+T1R2R3 �2

��132��S��123�� R1T2R3 �2

��231��S��123�� T1T2R3 −�1�2

��312��S��123�� R1T2T3 −�2�3

��321��S��123�� T1T2T3 �1�2�3
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AD + 2AX = exp�2i�� = 1 −
8�6�qa2�

3i�qa2�2 + 4�6�qa2� − 6i
.

�10�

By utilizing the relation

exp�2i�� − 1 =
2i tan �

1 − i tan �
, �11�

we obtain

qa2 tan � = 4�2

3

�qa2�2

�qa2�2 − 2
. �12�

Expanding this quantity in powers of q2 yields the effective
range expansion to all orders. The crucial feature is that the
first term equal to the inverse of the scattering length is miss-
ing, indicating the presence of a zero-energy resonance. To
be more precise, we would expect q tan �=1/a3+r3q2 /2
+O(�q�4), but upon inspection of Eq. �12�, we see that the
three-body scattering length is infinite, and the expansion
begins with a term O(�qa2�2). It should be stressed that this
feature persists regardless of the strength of the �-function
interaction. There is a state at zero 1+2 collision energy for
all attractive zero-range interactions, no matter the value of
the scattering length.

III. FADDEEV EQUATION

The Faddeev approach provides an independent way to
analyze the threshold behavior of the scattering amplitude.
While many readers are familiar with Faddeev methods, in
the interest of making the discussion self-contained, we pro-
vide a brief derivation of the integral equation describing 1
+2 scattering in Appendix B. If we define the amplitude
K�p ,k ;E� to satisfy Eq. �B23� with the i� replaced by a
principal-value prescription, and include the normalization of
the two-body bound state from Eq. �B10�, then we may iden-
tify k tan �=−2K�k ,k� to obtain an expression which is con-
venient in the context of the effective range expansion. A
manifestly three-body interaction parametrized as 2V3 /	2

can be included in the kernel in a straightforward manner:

Z̃�q,p,E� = 	 mE − q2 − p2

�mE − q2 − p2� − p2q2

+
2V3

	2 
 4

3a2
2�− mE +

3p2

4

�	1 + a2�− mE +
3p2

4

 . �13�

In Appendix C, we present an alternative derivation of the
kernel above starting from a many-body Lagrangian density.

The numerical solution to principal-value integral equa-
tions of the form

K�p,k;E� = U�p,k� + P� dq

2�
U�p,q�

1

k2 − q2K�q,k;E�

�14�

is accomplished by letting q=qn, so that the integral may be
written in terms of matrix multiplication, and the principal-
value prescription is enforced by restricting the sum:

Kn,m = Un,m + �
l�n

dqUm,l
1

pn
2 − pl

2Kn,l. �15�

This can be written more succinctly as

MK = U �16�

where

Mm,l
n = �m,l −

dq

�
Um,l

1

pn
2 − pl

2 , �17�

Kn,l = K�pn,pl� . �18�

Inversion of the kernel M is required for each energy �in-
dexed above by n� for calculation of the on-shell K matrix,
and hence the phase shifts. When the interaction has many
high-momentum components, a linear spacing of grid points
becomes inefficient, and the inversion of the kernel becomes
computationally cumbersome. By performing a change of
variable p=exp�t�, it is possible to space the grid points loga-
rithmically, facilitating the solution for such interactions. If
p=exp�t�, then dp= p dt, and the kernel will carry an extra
factor of the internal momentum q:

Mm,l
n = �m,l −

dt

�
Um,l

pl

pn
2 − pl

2 . �19�

The minimum and maximum momenta may now be chosen
to define a domain p� �exp�tmin� , exp�tmax��. The results us-
ing the above procedure are plotted in Fig. 1. Clearly, as the
size of the matrix is increased, the amplitude approaches the
exact result of Sec. II.

FIG. 1. The effective range expansion found by numerical solu-
tion of the Faddeev equation is shown.
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IV. ADIABATIC CURVES AND THE EIGENCHANNEL
R-MATRIX SOLUTION

The final apprach involves the adiabatic representation
and the eigenchannel R-matrix method. We refer the inter-
ested reader to Appendix A for a review of these tools. For
�-function interactions, the eigenstates of the adiabatic
Hamiltonian inside one of the six regions are simply solu-
tions to the free Schrödinger equation. As long as we restrict
our analysis to one of the six regions, the solution may be
found by separation of variables and must be of the form
�28�

�0��,�� = A0���cosh�q0�� �20�

�n��,�� = An���cos�qn�� �21�

We must treat �0 as a special case since it represents the only
channel with a two-body bound state. The eigenvalue is
found by demanding continuity of the wave function at the
�-function surface. If we restrict our analysis to the region
�� �0,� /3�, then integration of the Schrödinger equation
from � /6−� to � /6+� leads to the following transcendental
equations for qn:

q0 tanh	q0�

6

 =

�2�

a2
, �22�

qn tan	qn�

6

 = −

�2�

a2
. �23�

Normalization of �n gives

A0��� = 
� +
3

q0
sinh	q0��

3

�−1/2

, �24�

An��� = 
� +
3

qn
sin	q0��

3

�−1/2

. �25�

The adiabatic potential Un is related to qn by

U0��� =
− q0

2

2m�2 , �26�

Un��� =
qn

2

2m�2 . �27�

We have verified that our potential curves are in agree-
ment with those presented in �28�. We provide a plot of the
first few in Fig. 2. As expected, there is only one attractive
channel which is open below the dimer �two-body bound
state� breakup threshold. This model supports one true bound
state with energy E=−4B2. We have found that a calculation
with one adiabatic channel underbinds this state by about
0.03B2. Further, the inclusion of more coupled adiabatic
channels does not serve to improve result. A calculation
without the diagonal coupling term gives a second bound
state at −1.002 13B2, very close to threshold. When the re-
pulsive diagonal coupling is included, this bound state is no
longer supported and its eigenenergy is above the two-body
binding. The presence of such a state is of course consistent

with the fact that the exact scattering solution indicates a
divergent scattering length. These results are shown in Table
II.

For the case in question, the matrix elements in Eqs.
�A23� and �A24� take the forms �compare with Eq. �A13��

	m,n = �0Fm��0�Fn��0� , �28�


m,n = �
0

�0

� d��m,n	−
�Fm

��

�Fn

��
+ FmFn„k

2 − 2mUn���…

+ �

0

�0

� d�
Pm,n���Fm	2
�

��
+

1

�

Fn + Qm,nFmFn� .

�29�

We choose a set of seventh-order b splines as our basis set in
the expansion for the the functions Fn���. Basis splines have
proven to be a versatile and efficient basis set for a wide
variety of systems �35–37�. See �38� for mathematical de-
tails, fast algorithms, and FORTRAN code. The results pre-
sented in Fig. 3 and Table II are for a set of 40 splines with
a quadratic distribution of knot points over the region �
� �0,20a2�.

In the scattering sector, there are a number of subtleties
involved with the matching of the wave function in the
asymptotic region. If the diagonal coupling term is ignored,
then the Schrödinger equation in the ground-state channel for
�→� takes the form

FIG. 2. The adiabatic potential curves for the �-function inter-
action are shown.

TABLE II. Eigenenergies for the �-function model using the
adiabatic representation. All energies are in units of the two-body
binding B2.

Level Exact
One channel,

no Q00

One channel
with Q00

Five
channels, full

calculation Faddeev

1 −4 −3.96902 −3.96106 −3.96106 −3.9998

2 −1 −1.00213 −0.99587 −0.99587 −1.0000
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	−
�2

��2 −
1

�

�

��
+ k0

2 − k2
F0��� = 0. �30�

This is recognized as the zeroth-order Bessel’s equation, and
hence f must be of the form

F0��� = AJ0�q�� + BY0�q�� �31�

where q2=k2−k0
2. If the diagonal coupling is included, then

the solution must satisfy

	−
�2

��2 −
1

�

�

��
+ k0

2 − k2 − Q00���
F0��� = 0. �32�

Q00 behaves asymptotically as 1/4�2, meaning that the solu-
tions must now be fractional-order Bessel functions,

F0��� = AJ1/2�q�� + BY1/2�q�� . �33�

Reference �31� defines the scattering matrix in terms of
the outgoing wave function as

F0��� → ��q���H1/2
�2� �q�� + e2i��H1/2

�1� �q��� , �34�

which, ignoring overall normalization and taking q��1, can
be written

F0��� → e−iq� − e2i��eiq�. �35�

Reference �31� asserts that the minus sign appearing above
adds an extra � /2 to the phase shift, so that the total phase
shift starts at 3� /2. This assertion would indeed be consis-
tent with Levinson’s theorem in three dimensions, where one
would obtain a � from the known bound state and a � /2
from the zero-energy resonance. However, in one spatial di-
mension, we note that there is no additional � /2 for the
zero-energy resonance. The statement of Levinson’s theorem
in one dimension for the even-parity solution takes the form
�32,33�

lim
k→0

�e = �ne − 1/2��, noncritical case, �36�

lim
k→0

�e = ne�, critical case. �37�

The critical case applies when there is a zero-energy reso-
nance. The statement for the odd-parity solution is identical
to that for three-dimensional S waves:

lim
k→0

�o = no�, noncritical case, �38�

lim
k→0

�o = �no + 1/2��, critical case. �39�

We are concerned only with the even-parity case. We define
our scattering matrix in the following fashion. We require S
to be the coefficient multiplying the outgoing eiq� in the limit
q��1. In terms of the outgoing wave function, this means

F0��� →
1

�q�
�e−iq� + e2i�eiq�� . �40�

We justify our choice by considering the limit 
1�
2, which
is appropriate when particles 1 and 2 are bound and particle
3 is far away, in which case, ��
2�1+ 1

2
12/
2
2
¯

�. In this
way, the product F0����0�� ,�� represents a two-particle
bound state in one relative coordinate and an oscillatory
wave in the second relative coordinate, symmetrized over all
permutations of particles. Note also that the extra factor of
1 /�q� appearing in our asymptotic solution is different from
the convention of Ref. �31�; this is because we choose to
work with the full wave function instead of the reduced wave
function; hence our integration measure remains �� d� d�.

In terms of standing wave solutions, the definition of the
phase shift above is consistent with the following expression
involving tan���:

F0��� →
1

�q�
�cos�q�� − tan���sin �q��� . �41�

The form in Eq. �41� leads to the desired product state cor-
responding to 1+2 scattering in one dimension. By identify-
ing

b = −
� ln F0���

��
, �42�

one may easily solve for tan �. An alternative argument may
be formulated by simply noting that the normalization con-
dition ��d� /2���0

2�� ,��=1 requires that �0 scale like ��.
This means that the full wave function is proportional to the
quantity ��F0���. If we consider the wave function at a par-
ticular angle, and let ��� ,�=�0�→A cos�q�+��, which is
the proper asymptotic form for an even solution, then

� ln ���,� = �0�
��

= − b +
1

2�
= − q tan�q� + �� . �43�

This expression is entirely equivalent to the matching condi-
tion Eq. �42�. We note that our phase shift � is related to ��
by

FIG. 3. The effective range expansion for 1+2 scattering with
�-function interactions calculated using the eigenchannel R-matrix
method is shown. A calculation with five coupled channels is well
converged such that the inclusion of more channels does not alter
the results.
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tan � =
− 1

tan ��
. �44�

Clearly, this will alter the behavior at threshold. We note that
with our definition, the presence of a zero-energy resonance
is consistent with the threshold behavior of the effective
range expansion, namely, that the 1+2 scattering length is
divergent.

V. DISCUSSION

The most striking feature of these results is the presence
of the zero-energy resonance marked by the divergent scat-
tering length. As the cutoff is lowered and the range of the
interaction becomes finite, the scattering amplitude in the
limit k→0 becomes nonzero. This behavior is illustrated in
the off-shell amplitude calculated numerically via Eq. �B23�
�except with a principal-value prescription� shown in Fig. 4,
which is the one-dimensional �1D� analog of the 3D version
appearing as Fig. 5 in Ref. �7�. There is clearly a fixed point
in the limit 	→�. The presence of the zero-energy reso-
nance is further substantiated by the variational calculations
of Sec. IV. When the repulsive second-derivative coupling
Q0,0��� is omitted, the interaction supports a second bound
state with energy E=−1.002 13B2. When Q0,0��� is included,
the bound state is no longer supported and a solution to Eq.
�A12� gives E�−B2, consistent with the upper bound theo-
rem. These results are also consistent with the threshold be-
havior of qa2 tan � shown in Fig. 6. The eigenchannel
R-matrix method gives limqa2→0qa2 tan ��0.065 when the
diagonal coupling is excluded, and limqa2→0qa2 tan ��
−0.008 when it is included. Finally, the exact effective range
expansion calculated in Sec. II indicates a divergent scatter-
ing length in perfect agreement with the numerical calcula-
tions. It is again of considerable note that the zero-energy

resonance is present regardless of the value of the �-function
coupling, or equivalently the two-body scattering length. It
appears at exactly zero relative energy in the 1+2 system as
long as the two-body interactions are of zero range, and
moves away from threshold as the interactions become of
finite range.

It is now instructive to consider the on-shell results when
various cutoffs are enforced in Eq. �B23�. As the cutoff is
lowered, we require that 1 /a3=0 �a3 being the 1+2 scatter-
ing length�. This quantity is proportional to the scattering
amplitude satisfied by the principal-value version of Eq.
�B23�. With the introduction of a three-body interaction, the
cutoff dependence of the amplitude can be absorbed into the
three-body coupling V3, yielding a largely cutoff-invariant
amplitude as seen in Figs. 4 and 5.

This paper has treated three bosons only at zeroth order in
EFT. In a second paper, we shall extend the analysis to
include the two-body effective range and shape parameter.
Predictions from the resulting EFT will be compared to

FIG. 4. The off-shell amplitude for our one-dimensional model
is shown. The black curve which should be considered the “exact”
result is for 	a2=104. As the cutoff is lowered to 	a2=5, a three-
body term with V3=−0.0516 brings K�0,0� into agreement with the
exact result. As the cutoff is lowered further to 	a2=2, a three-body
term with V3=−0.175 95 is required. Finally, V3=−1.907 produces
the exact K�0,0� for 	a2=1.

FIG. 5. The on-shell amplitude for our one-dimensional model
is shown for various values of the cutoff. As the cutoff is lowered,
a three-body contact interaction of natural size is introduced to fix
the 1+2 scattering length.

FIG. 6. The effective range expansion near the region qa2→0 is
shown for various calculations.
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calculations using a realistic phenomenological NN interac-
tion. Three-nucleon observables will serve as a testing
ground for the effective theory.
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APPENDIX A: REVIEW OF THE ADIABATIC
HYPERSPHERICAL REPRESENTATION AND THE

EIGENCHANNEL R-MATRIX METHOD

The essential strategy for solving the Schrödinger equa-
tion in coordinate space is to transform the partial differential
equation �PDE� into a set of coupled ordinary differential
equations �ODEs�. While there are a variety of representa-
tions that realize this goal, the one best suited to the present
problem is the adiabatic hyperspherical representation �39�
�see also �40��.

Let us first introduce the appropriate relative and hyper-
spherical coordinates. Jacobi coordinates in one dimension
for equal masses are defined via

�X


1


2
� =�

1
�3

1
�3

1
�3

1
�2

− 1
�2

0

1
�6

1
�6

− 2
�6

��x1

x2

x3
� �A1�

where X marks the position of the total center of mass, 
1 is
the relative coordinate for the first two particles, and 
2 is the
relative coordinate between the third particle and the center
of mass of the first two. Hyperspherical coordinates in one
dimension are simply circular polar coordinates:


1 = � cos � , �A2�


2 = � sin � , �A3�

�2 = 
1
2 + 
2

2. �A4�

Here, � is a measure of the general size of the system. At
small values of �, all three particles are in close proximity,
while at large values of �, the situation depends on the angle
�. There are some values of � that correspond to two of the
three particles being near each other, and other values of �
where all three particles are far apart.

With this transformation, the Schrödinger equation be-
comes �compare with Eq. �1��


1

�

�

��
	�

�

��

 +

1

�2

�2

��2 + k2 − U��,������,�� = 0 �A5�

where k2=2mE and

U��,�� = 2m�V„�2��cos����… + V„�2��cos�� + �/3��…

+ V„�2��cos�� − �/3��…� . �A6�

This potential has a very high degree of symmetry:

U��,�� = U	�,� ±
�

3

, exchange, �A7�

U��,�� = U��,− ��, parity. �A8�

The combination of exchange and parity result in a sixfold
symmetry allowing the angular part of the wave function to
be represented as a sum over terms proportional to cos 6n�.

The reduction of the PDE Eq. �A5� into a set of coupled
ODEs is accomplished by expanding the wave function into
a sum over different adiabatic channels:

���,�� = �
n

�n��,�� = �
n

�n��,��Fn��� , �A9�

where �n are defined as eigenstates of the adiabatic Hamil-
tonian

Had��,���n��,�� = kn
2����n��,�� �A10�

with

Had��,�� =
− 1

�2

�2

��2 + U��,�� . �A11�

It is important to note that Eq. �A10� depends only para-
metrically on �. We impose boundary conditions such that �n
is even at �=0 and �=� /6. Inserting the expansion in Eq.
�A9� into a variational expression of the form

k2 =

�
V

dV �†�− �2 + U��

�
V

dV �†�

�A12�

and demanding that the solution be stationary with respect to
variations in the functions Fm

† , one arrives at the following
matrix equation:

�T + U�F = k2F . �A13�

We have defined

Tm,n = − �m,n	 �2

��2 +
2

�

�

��

 − Pm,n���	2

�

��
+

2

�

 − Qm,n���

�A14�

and

Um,n��� = �m,n�km
2 ���� . �A15�

Also, we have introduced the nonadiabatic channel couplings
defined as
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Pm,n��� = ��m� �

��
��n� , �A16�

Qm,n��� = ��m� �2

��2 ��n� . �A17�

The solution of the adiabatic equation Eq. �A10� and the
evaluation of the first- and second-derivative couplings ac-
count for the vast majority of the computational effort in
solving the three-body problem using this approach. The
first-derivative couplings Pm,n can be evaluated using a
Feynman-Hellmann-like argument. For a �-parametrized
system defined by H����=E����, the Feynman-Hellmann
theorem states

dE

d�
= ��� �H

��
��� . �A18�

This relation can be used to find that

��m� �

��
�n� =

��m��H/����n�
kn

2��� − km
2 ���

�A19�

for m�n, and vanishes for m=n. The second-derivative cou-
plings Qm,n may be readily calculated by noting

Qm,n = �P2�m,n + 
 �P

��
�

m,n
. �A20�

Use of the above relation, however, requires calculating the
first-derivative couplings between many channels so that the
square of P converges. For calculations involving a single
adiabatic channel, it is more convenient to estimate Q0,0 by
using a three- or five-point rule. This involves solving the
adiabatic Hamiltonian at three consecutive nearby values of
the parameter �, and calculating the second derivative nu-
merically before evaluating the inner product.

In order to calculate wave functions and scattering ampli-
tudes in the scattering sector, we use the eigenchannel
R-matrix approach �29,30�, which is a variational calculation
for minus the logarithmic-derivative of the wave function on
the surface S of some reaction volume V. More precisely, this
method finds variational solutions that have a constant
logarithmic-derivative on the surface such that �� /�n+b�
=0.

Starting with Eq. �A12�, we define b=−� ln��� /�n̂, where
n̂ represents the unit normal vector to the reaction surface S
�n̂= �̂ in our case�; application of Green’s theorem to the
kinetic energy term in Eq. �A12� allows us to write an ex-
pression for b at a fixed k2:

b =

�
V

dV��− �� �† · �� �� + �†�k2 − U���

�
S

dS �†�

. �A21�

Note that we were able to factor b out of the surface integral
in the denominator only because the desired solution has a
constant logarithmic-derivative on the surface S. Equation
�A21� is an identity obeyed by exact eigenstates of the

Schrödinger equation Eq. �A5� that have a constant b on S.
By taking the first-order variation of this expression with
respect to small deviations in �, this expression can be
shown to be a variational expression for b.

In the adiabatic representation, we expanded the wave
function according to Eq. �A9�. Now we expand Fn
=��cn,�B�, and Eq. �A21� is cast into the form of a general-
ized eigenvalue equation:

b�c = �c, b = −
� ln ����

��
, �A22�

where

	m,n = �
S

dS� · n̂�m�n, �A23�


m,n = �
V

dV�− �� �m · �� �n + �m�k2 − U��n� . �A24�

APPENDIX B: DERIVATION OF FADDEEV
EQUATIONS

In this section, we derive the properly symmetrized inte-
gral equation satisfied by the scattering amplitude for one
free boson off a bound pair. Our derivation relies heavily on
the original work of Faddeev �41�, Lovelace �42�, and
Amado �43�; however, we largely hold to the notation con-
ventions of Watson and Nuttall �44�. We shall begin by cal-
culating the two-body scattering amplitude for a separable
interaction of the form

V = c0�g��g� , �B1�

with momentum-space matrix elements

�q��V�q� = c0g�q��g�q� . �B2�

The T-matrix element �q��T�E��q� satisfies the Lippman-
Schwinger equation

T�q�,q,E� = c0g�q��g�q� + c0g�q�� � dq�

2�

mg�q��T�q�,q,E�
mE − q�2 .

�B3�

The solution is found by defining the energy-dependent func-
tion �44�

h�q,E� =� dq�

2�

mg�q��T�q�,q,E�
mE − q�2 , �B4�

which satisfies the algebraic equation:

h�q,E� = 	� dq�

2�

mg2�q��
mE − q�2
�c0g�q� + c0h�q,E�� . �B5�

Solving for h�q ,E� and substituting the result into the
Lippman-Schwinger equation quickly yields the solution
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T�q�,q,E� = g�q��g�q�	 1

c0
−� dq�

2�

mg2�q��
mE − q�2
−1

. �B6�

Taking the limit g�q�→1 is equivalent to solving the corre-
sponding Schrödinger equation with contact interactions.
This yields a T-matrix element independent of q and q�:

mT�E + i�� = mc0	1 +
mc0

2�− mE − i�

−1

. �B7�

In the center-of-mass frame, the energy is written E=k2 /m
and the scattering amplitude f for the even-parity wave is
related to the on-shell T matrix by

f =
1

2
�e2i� − 1� =

i tan �

1 − i tan �
=

mT�k,k,E�
2ik

=
mc0/2ik

1 − mc0/2ik
.

�B8�

The cross section is a normalized probability in one dimen-
sion and is given by �= �f �2.

If the coupling is negative, the interaction supports a
bound state. The T-matrix element will exhibit a pole at the
binding energy E=−B2. From inspection of Eq. �B7�, it is
clear that this requires B2=mc0

2 /4=1/ma2
2. The state vector

for the bound state is

��B� = �NG0�− B2��g� , �B9�

where G0�−B2�= �−B2−H0�−1 is the free-particle propagator
evaluated at the bound-state energy. The normalization con-
stant is easily evaluated by contour integration to be

N−1 = �g�G0
2�− B2��g� =

m2a2
3

4
. �B10�

The indices in the three-body sector follow the convenient
“odd-man-out” notation. When considering matrix elements
of two-body operators in the three-body state space, the two-
body operator V� with �=1 will denote the interaction be-
tween particles 2 and 3. We are only concerned with internal
degrees of freedom, and will therefore work in the total
center-of-momentum frame p1+ p2+ p3=0. Matrix elements
will be taken with respect to state vectors of the form
�p� ,q��, where p� represents the momentum of the spectator
particle �, and q� represents the relative momentum of the
remaining two particles. Let ���

+�= ���
�1��+ ���

�2��+ ���
�3�� de-

scribe an eigenstate of the full Hamiltonian H which corre-
sponds to an initial state ���� with the two particles not equal
to � forming a bound state. The solution is found by solving
the Faddeev equations for the components ���

����:

���
���� = G0�E���,p����� + �

���

G0�E�T����
���� . �B11�

We write the two-body T matrix in the three-body state space
as

T��E� =� dp�

2�
��,p����	E −

3p�
2

4m

��,p�� �B12�

where ���E� is the dimer propagator in the � channel:

���E� = 	 1

c0
+� dq

2�

mg�
2�q�

q2 − mE

−1

. �B13�

For g��q�→1, ���E� is equal to the two-body T matrix found
in the previous section. Left multiplying Eq. �B11� by �� , p��
and summing over ��� leads to

X�,��p�,p�� = Z�,��p�,p�� + �
�
� dp�

2�
Z�,��p�,p����

�	E −
3p�

2

4m

X�,��p�,p�� . �B14�

The amplitudes X�,��p� , p�� and Z�,��p� , p�� are defined as

X�,��p�,p�� = �
���

��,p����
���� , �B15�

Z�,��p�,p�� = �1 − ������,p��G0�E���,p�� . �B16�

The Born amplitude Z�,��p� , p�� describes the interaction
mediated by the exchange of a single particle, and requires
calculating q� in terms of p� with ���. The kinematics for
a given case must be determined by cyclic permutation of the
particles �42�. For example,

Z2,1�p2,p1� =

g2	− p1 −
1

2
p2
g1	p2 +

1

2
p1


E − 3p1
2/4m −

1

m
	p2 +

1

2
p1
2 . �B17�

For identical bosons the quantity of interest is the symme-
trized amplitude given by the sum of the direct and exchange
pieces X�p ,k ;E�=X�D��p ,k ;E�+2X�N��p ,k ;E�. This ampli-
tude satisfies the following integral equation:

X�p,k;E� = 2Z�p,k;E� + 2� dq

2�
Z�p,q;E�

��	E −
3q2

4m

X�q,k;E� �B18�

where the Born term for g�q�→1 is given by

Z�p,q;E� =
m

mE − q2 − p2 − q · p
, �B19�

and the total energy is E=3k2 /4m−B2. Next we perform an
angle average over the dot product. In one dimension the

angle average of an arbitrary function f�p ·q� is f̄ = 1
2 �f�pq�

+ f�−pq��, and so the Born amplitude becomes

Z�p,q;E� =
mE − q2 − p2

�mE − q2 − p2�2 − p2q2 . �B20�

The desired amplitude now satisfies the integral equation

THREE BOSONS IN ONE DIMENSION WITH SHORT-… PHYSICAL REVIEW A 72, 032728 �2005�

032728-9



X�p,k,E + i��
2m

= Z�p,k,E� + 4� dq

2�
Z�p,q,E�	− a2

+
1

�− mE + 3q2/4 − i�

−1X�q,k,E + i��

2m
.

�B21�

It is desirable to remove the pole in the dimer propagator and
bring this equation into the form of the Lippman-Schwinger
equation; to this end we define the amplitude

X̃�p,k,E�
k2 − p2 = 	− a2 +

1
�− mE + 3p2/4


−1X�p,k,E�
2m

.

�B22�

A bit of algebra shows that the new amplitude satisfies the
equation

X̃�p,k,E + i�� = Z̃�p,k,E + i�� −
4

�
�

0

�

dq Z̃�q,p,E

+ i��
X̃�q,k,E + i��
q2 − k2 − i�

�B23�

with

Z̃�q,p,E� = 	 mE − q2 − p2

�mE − q2 − p2� − p2q2
 4

3a2
2�− mE +

3p2

4

�	1 + a2�− mE +
3p2

4

 . �B24�

It is computationally more convenient to deal with an ampli-
tude that is real below the breakup threshold by writing the
above integral equation in terms of a principal-value pre-
scription using the well-known formula

1

� ± i�
= P � i����� �B25�

APPENDIX C: ALTERNATIVE DERIVATION
OF EQ. (B18)

Bedaque et al. �7� have considered the three-dimensional
�3D� three-body problem with short-range interactions in a
ground-breaking paper. It is instructive to consider their ap-
proach in a 1D context, and that is the purpose of this ap-
pendix; a complete analytic sum of the series arising in per-
turbation theory has been found by Thacker �45�.

Consider the Feynman rules resulting from the Lagrang-
ian density

L = �†�x�	i�0 +
�x

2

2m

��x� −

c0

2
��†�x���x��2

−
d0

6
��†�x���x��3. �C1�

Let us first sum the perturbative series of bubble diagrams

for the two-body problem with d0=0. Let �p0 , p��= (�1/4m�
��k1−k2�2 ,k1+k2) with �k1�=k denote the two-vector in the
center-of-momentum frame. The following loop integral is
readily evaluated by contour integration:

L =� dq�

2�

dq0

2�

i

p0/2 − q0 − �1/2m��p� /2 − q��2 + i�

�
i

p0/2 + q0 − �1/2m��p� /2 + q��2 + i�
�C2�

=
− im

2�− mp0 + p�2/4 − i�
=

m

2k
, �C3�

and the geometric series is easily summed to reproduce the
result of Appendix B:

iA = − iT = − ic0�1 + �− ic0L� + �− ic0L�2
¯ �

=
− ic0

1 + ic0L
=

− ic0

1 − mc0/2ik
. �C4�

Kaplan �15� suggested that the Lagrangian Eq. �C1� may be
conveniently rewritten in terms of a dummy field D:

L = �†	i�0 +
�x

2

2m

� + �D†D −

g
�2

�D†�� + �†�†D�

+ h�D†D�†� + ��†DD†� . �C5�

Gaussian path integration over the auxiliary field D shows
that the couplings appearing in Eq. �C5� are related to those
in Eq. �C1� by g2 /�=c0 and −3hg2 /�2=d0. The bare dimer
propagator is i /�, while the sum of diagrams shown in Fig.
7 yields

i��p0,p�� =
i

�

1 + 	− ig2L

�

 + 	− ig2L

�

2

+ ¯ � �C6�

=
i

� + �mg2/2��− mp0 + p�2/4 − i��−1/2 . �C7�

For the 1+2 integral equation, we choose the same kine-
matics as Bedaque et al. �7� �Fig. 8�. Let the incoming par-
ticle and dimer have two-momenta �k2 /2m ,−k�� and �k2 /4m
−B2 ,k��, respectively. The outgoing particle and dimer are off
shell with two-momenta �k2 /2m−� ,−p�� and �k2 /4m−B2

+� , p��, respectively. Our integral equation is identical to Eq.
�5� in �7�, except that the integration measure is ��dq /2��
��dq0 /2�� for 1+1 dimensions:

FIG. 7. The dressed dimer propagator determined by the geo-
metric series of loop insertions.

FIG. 8. The diagrammatic representation of the integral equation
for the 1+2 scattering amplitude is shown.
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it�k�,p� ,�� = − 2g2iS�− k2/4m − B2 + �,p� + k�� + ih

+ �
−�

� dq

2�

dq0

2�
iS�k2/2m − � − q0,− q��

���− 2g2�iS�− k2/4m − B2 + 2� + q0,p� + q�� + ih�

�i��k2/4m − B2 + � + q0,q��it�k�,q� ,� + q0� . �C8�

The �dq0 /2� integral is readily evaluated by contour inte-
gration since the two nucleon propagators have poles in op-
posite half planes. The result is

it�k�,p�� = i2mg2	 1

k2 + p2 − mE + p� · k� − i�
+

h

2mg2
 − i2mg2

��
−�

� dq

2�
	 1

q2 + p2 − mE + p� · q� − i�
+

h

2mg2

�

t�k�,q��
� + �mg2/2��3q2/4 − mE − i��−1/2 . �C9�

With the chosen kinematics, the total energy is E=3k2 /4m
−B2. We’ve set �= �k2− p2� /2m, and as in Ref. �7�, defined
t�k� , p��= t(k� , p� , �k2− p2� /2m). Now, averaging over the p ·k
brings us to

t�k�,p�� = 2mg2 k2 + p2 − mE

�k2 + p2 − mE�2 − p2k2 + h + 4

��
−�

� dq

2�
	 q2 + p2 − mE

�q2 + p2 − mE�2 − p2q2 +
h

2mg2

�

t�k�,q��
a2 − �3/4�q2 − k2� + mB2 − i��−1/2 . �C10�

The on-shell amplitude must include the wave-function nor-
malization for the two-body bound state, which in field
theory is conventionally written

Tk = �Zt�k,k��Z �C11�

with

Z−1 = i
�

�p0
��i��p��−1�p0=−B2

=
mg2

2

− 1

2

− m

�mB2�−3/2 =
m2g2�a2�3

4
.

�C12�

It is desirable to bring this equation into the form of the
standing-wave Lippman-Schwinger equation. To this end, we
define the function a�k , p�:

a�k,p�
p2 − k2 =

t�k,p�/2mg2

a2 − �3p2/4 − mE�−1/2 . �C13�

Since the integral is even in q �indeed, it is only a function of
q2�, the limits may be taken from zero to 	 provided that we
multiply by an overall factor of 2. This of course introduces
a sharp cutoff 	. The integral equation is now written in
terms of a principal-value prescription as

a�k,p� = M�k,p;E� −
4

�
P�

0

	

d qM�q,p;E�
a�k,q�
q2 − k2 ,

�C14�

where the kernel M�q , p ;E� is defined as

M�q,p;E� = 	 mE − q2 − p2

�mE − q2 − p2�2 − q2p2 −
h

2mg2

�	 4

3a2
2
�− mE + 3p2/4�1 + a2

�− mE + 3p2/4�
 .

�C15�

It is now clear that a�k , p� satisfies the same integral equation
as K�k , p ;E�.
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