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A vector � is introduced in such a manner that the equilibrium rotational distribution function for a general
rigid body has a simple quadratic form both from a body-fixed and space-fixed frame of reference. It is shown
that when considering nonequilibrium distribution functions, representations employing the components of �
generalize more easily than those employing the components of the angular momentum or angular velocity,
and lead to forms with greater accuracy. The behavior of � and its relation to the angular momentum of the
system is explored in some detail. Comparisons are made with distribution functions generated from molecular
dynamics simulations of H2O+ drifting in a helium bath gas under the influence of a uniform electric field.
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I. INTRODUCTION

There are many physical scenarios in which particles
move in an axially symmetric environment. In the present
case, motivation was provided by ion mobility experiments,
in which ions drift in a bath gas under the influence of a
constant, external electric field �1�. The distribution function
for the drifting ions is axially symmetric about the field di-
rection, even in the nonequilibrium situation when the field
strength is large. A similar situation exists in a molecular
beam expansion, in which seed molecules are subjected to
the unidirectional slip velocity of an expanding bath gas
�2–6�. Injecting ions with large momenta along a fixed axis
into a thermalized bath gas also produces an axially symmet-
ric environment along the injection axis �7,8�. In fact, any
experiment in which particles move through a gas preferen-
tially in one direction will produce similar distributions.

As a specific case, mobility experiments will be consid-
ered from this point onwards, although the results generalize
beyond this limit. In a mobility experiment, the distribution
function is typically expressed as a function of the velocity
and angular momentum of the ion, that is f�v ,J�, and we are
interested in describing this function in the space-fixed �SF�
frame. This frame is synonymous with the lab frame in
which the experiment is performed, and in which a constant,
uniform electric field is produced. Define the SF frame z axis
to lie along the electric field direction.

In this paper, the ions are treated as rigid bodies, and their
densities are assumed to be low enough that ion-ion interac-
tions can be ignored. Because the ions drift into regions of
fresh bath gas, it is also assumed that the ions always en-
counter bath gas particles that are at equilibrium at the bath
gas temperature.

The rotationally averaged velocity distribution for the
ions at equilibrium �that is with no electric field present� is
simply the Maxwellian distribution, namely

fT�v� = � m

2�kBTt�3/2

exp�−
mv2

2kBTt� , �1�

in which m is the mass of the ion, kB is Boltzmann’s con-
stant, and Tt is the �translational� temperature of the ions.
Because the ions are at equilibrium and the kinetic energy

part of the Hamiltonian has a quadratic form, equipartition of
energy occurs, so that

m�vx
2� = m�vy

2� = m�vz
2� = kBTt. �2�

These relations define the ion temperature, which at equilib-
rium is an isotropic property and is equal to the bath gas
temperature.

When an electric field is applied, the ion motions eventu-
ally reach a steady state and the ions adopt a fixed drift
velocity. The distribution function describing this nonequi-
librium situation becomes axially symmetric, and clearly
cannot be represented by the isotropic form of Eq. �1�. How-
ever, because the equilibrium distribution of Eq. �1� depends
upon the square of the velocity, it naturally separates into
components that are parallel and perpendicular to the field
direction. As a first approximation, a nonequilibrium distri-
bution function can be formed by simply treating these two
components independently, that is �9,10�

fT�v�,v	� = � m

2�kBT�
t �� m

2�kBT	
t�1/2

�exp�−
mv�

2

2kBT�
t −

m�v	 − vD�2

2kBT	
t � , �3�

in which vD= �vz� is the drift velocity of the ions, v�

=
vx
2+vy

2 and v	 =vz are the velocity components perpen-
dicular and parallel with the field direction, respectively, and
T�

t and T	
t are the corresponding temperatures associated

with those directions, that is

kBT�
t =

m

2
�v�

2 � , �4�

kBT	
t = m��v	 − vD�2� . �5�

The perpendicular and parallel temperatures simply reflect
the anisotropy in the energy distribution due to the nonequi-
librium state of the system, and their difference is a measure
of this. By generalizing the temperature concept in this man-
ner, it is possible to use equilibrium distribution functions as
templates for approximating nonequilibrium ones.
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The situation is similar for the velocity-averaged rota-
tional distribution function of linear ions, which in the equi-
librium case is given by

fR�J� = � 1

2�IkBTr�exp�−
J2

2IkBTr� , �6�

in which I is the moment of inertia of the ion, and J is its
angular momentum �Jx, Jy, and Jz will be used to denote the
components of the angular momentum expressed in the SF
frame�. At equilibrium, equipartition of energy occurs, so
that the rotational temperature Tr is the same as the transla-
tional temperature Tt, and is isotropic. As with Eq. �1�, the
distribution function depends upon the square of the angular
momentum, so that in the nonequilibrium situation, it can be
generalized, with the introduction of directionally dependent
temperatures, such as �11–14�

fR�J�,J	� = N exp�−
J�

2

2IkBT�
adf −

J	
2

2IkBT	
adf� , �7�

in which J�=
Jx
2+Jy

2 and J	 =Jz are the SF components of
the rotational angular momentum perpendicular and parallel
to the field direction, respectively. The temperatures T�

adf and
T	

adf are distinct from but related to the SF frame rotational
temperatures perpendicular and parallel to the field, T�

r and
T	

r, defined by

kBT�
r =

3

2

�J�
2 �

2I
, �8�

kBT	
r = 3

�J	
2�

2I
. �9�

The factors of 3 arise from the fact that for a linear ion at
equilibrium �J2� /2I=kBT since only two degrees of freedom
are present. We have found that the distribution function of
Eq. �7� is quite a good approximation to the nonequilibrium
one, even for high field strengths. Details of its derivation
and utility can be found in Refs. �11,13�.

One would like to apply this philosophy of generalizing
equilibrium distribution functions to the nonequilibrium case
for general rigid bodies. It is for this case that an immediate
problem arises, since the equilibrium rotational distribution
function for a general rigid body is

fR = � 1

2�kBT
�3/2� 1

IxIyIz
�1/2

exp�−
H

kBT
� �10�

in which the classical rotational Hamiltonian, H, is given by

H = 1
2� · I · � = 1

2J · I−1 · J , �11�

with � the angular velocity vector, I the moment of inertia
tensor, and I−1 its inverse. In the SF frame, I is a second-rank
tensor whose components depend upon the orientation of the
body relative to the SF axes. Unfortunately, in the SF frame,
this distribution function does not naturally separate into
components along the Cartesian directions, so that in a non-
equilibrium situation when the behavior in the z direction
distinguishes itself from the x and y directions, this function
will not be easily generalized, since it mixes all Cartesian
components.

If n is the unit vector in the direction of � so that
�=�n then the distribution function becomes

fR = N exp�−
I�2

2kBT
� , �12�

in which I=n·I ·n is the moment of inertia about the axis of
rotation n. This function does have a quadratic form in the
angular velocity but only when referenced to the direction n
rather than the SF frame. This direction changes as the body
moves, and in particular changes with respect to the symme-
try axis of the system.

One would like the express Eq. �10� in a form that natu-
rally separates into Cartesian coordinates of the SF frame, in
order to guide generalizations of the distribution function for
the nonequilibrium situation. Section II introduces a vector
quantity � that accomplishes this task. Its relation to other
classical quantities and the equations of motion is discussed
in Sec. III while Sec. IV demonstrates its utility for a par-
ticular system. The paper ends with summary conclusions in
Sec. V.

II. THE � VECTOR

Let the body-fixed �BF� frame reside within the rigid
body with its origin at the center of mass of the body, and its
axes along the principal axes. In this frame, the moment of
inertia tensor is diagonal, and for general ions, all three prin-
cipal moments of inertia Ix, Iy, and Iz are distinct and non-
zero. Let A be the matrix that transforms quantities between
the SF and BF frames, so that if L is a vector of components
of the angular momentum expressed in the BF frame, they
are related to the components in the SF frame by L=AJ. It
should be noted that in this context the SF frame has its
origin at the center of mass of the rigid body but its axes are
fixed in space along the lab coordinates. The Euler angles
�15� will be employed, �= �� ,� ,�� so that

A =  cos � cos � − cos � sin � sin � cos � sin � + cos � cos � sin � sin � sin �

− sin � cos � − cos � sin � cos � − sin � sin � + cos � cos � cos � cos � sin �

sin � sin � − sin � cos � cos �
� �13�
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In the BF frame, the distribution function of Eq. �10� be-
comes

fR�L� = � 1

2�kBT
�3/2� 1

IxIyIz
�1/2

�exp�−
1

2kBT
�Lx

2

Ix
+

Ly
2

Iy
+

Lz
2

Iz
�� , �14�

since L=I ·�. Note that the normalization constant in Eq.
�14� was chosen so that

1 =� fR�L�dL . �15�

Define the vector � whose components in the BF frame
are given by

�x
BF =

Lx


Ix

, �y
BF =

Ly


Iy

, �z
BF =

Lz


Iz

, �16�

so that in matrix notation

�BF = I−1/2L = I1/2� . �17�

In terms of �BF, the distribution function of Eq. �14� be-
comes

fR��� = � 1

2�kBT
�3/2

exp�−
1

2kBT
��x

BF2
+ �y

BF2
+ �z

BF2
��

= � 1

2�kBT
�3/2

exp�−
�BF2

2kBT
� , �18�

with the normalization constant chosen so that

1 =� fR���d� . �19�

The distribution function of Eq. �18� is now expressed in
terms of a purely quadratic function that treats equally all
components in the BF frame. More importantly though, it
maintains this form when transformed to the SF frame be-
cause this transformation is orthogonal, and preserves the
magnitude of all vectors. In other words, if the components
in the SF frame are denoted �SF then �SF=AT�BF and since
ATA=AAT=1, it follows that �SF2

=�BF2
so that the distribu-

tion function expressed in the SF frame is simply Eq. �18�
with �BF replaced by �SF. In other words, the form of the
distribution function is invariant to the frame of reference.

From this point forward, in order to simplify the notation,
the superscripts BF and SF will be dropped. Only the dis-
tinction in notation for the angular momentum vector will be
retained. Thus, in either frame of reference it follows that at
equilibrium

��x
2� = ��y

2� = ��z
2� = kBT . �20�

In the SF frame, a generalization of the rotational distri-
bution function for general ions to the nonequilibrium case
could take the form

fR���,�	� = � 1

2�kBT�
r �� 1

2�kBT	
r�1/2

exp�−
��

2

2kBT�
r −

�	
2

2kBT	
r� ,

�21�

in which ��=
�x
2+�y

2, �	 =�z, and the rotational temperatures
in the directions perpendicular and parallel to the field are
given by

kBT�
r = 1

2 ���
2 � , �22�

kBT	
r = ��	

2� . �23�

Equation �21� now has a form that is analogous to Eqs. �3�
and �7�, and suggests that the best description of the nonequi-
librium situation will be with � rather than with the angular
momentum or angular velocity vectors.

Consider for a moment the case of linear rigid bodies. In
this case, one of the principal moments of inertia is zero, and
the remaining two are equal to a constant, I. In the BF frame,
Eq. �16� shows that �=L /
I so that in the SF frame,
�=J /
I. In other words, �	 =J	 /
I and ��=J� /
I, so that the
distribution functions in � given by Eqs. �18� and �21� reduce
to the forms already given by Eqs. �6� and �7�, respectively.
Note that with linear ions, the normalization must be done
carefully since only two components of J �or �� are linearly
independent. This affects details of the normalization con-
stant, and the form of the temperatures appearing in the dis-
tribution function. Details of this can be found in Refs.
�11,13�. The main point though is that a general formulation
in terms of � reduces in the linear case to the correct forms
that have already been developed, so that the linear case is a
subset of the more general formulation.

A similar reduction occurs for totally symmetric bodies
for which all moments of inertia are equal to the same con-
stant. In this case, as with the linear one, �=J /
I and the �
formalism reduces to a scaled angular momentum one.

In closing this section, consider the manner in which the �
vector is described in terms of angular quantities. The distri-
bution function for a general rigid body �Eq. �10�� depends
explicitly upon the angles that determine the orientation of
the body in the SF frame. This orientation determines the
instantaneous value of the moment of inertia tensor, which is
intimately coupled with the angular momentum �or angular
velocity� in the exponent of the distribution function. For
linear bodies, this angular dependence decouples from the
angular momentum dependence, and the rotational kinetic
energy depends only on the total angular momentum. Hence
the angular dependence would appear only as a multiplica-
tive constant in the distribution function, and disappears
upon normalization. However, this is not true in the general
case.

Let fR�J ,�� represent the distribution function of Eq.
�10� where now the explicit variable dependencies are
shown. In practice, one usually is interested only in the dis-
tribution function that is averaged over � but retains the
dependence on J. Because of the complex coupling between
J and �, it is difficult to find the angular average of
fR�J ,��. In the SF frame, �=I−1/2 ·J so that each component
of � is a combination of both angular momentum compo-
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nents and angular dependencies through I. Thus, following
paths of constant � corresponds to following complicated
combinations of both angular and angular momentum com-
ponents, in such a manner as to keep the components of �
constant. Using the relationship between J and � gives the
Jacobian for the transformation from �J ,�� to �� ,�� as
�I1/2�, so that dJ=
IxIyIzd�. The result of this transformation
is that the integrals over angular coordinates are decoupled
from the distribution, and reduce to unity after normaliza-
tion. This decoupling is the strength of the � formalism.

III. BEHAVIOR OF �

This section will consider the equations of motion for �,
as well as its relation to more commonly known descriptions
of rigid body motion. In the BF frame, it is straightforward to
transform the standard Euler equations of motion to give the
equations of motion for �, namely �15�


Ix�̇x − �y�z�
Iy

Iz
−
 Iz

Iy
� = 	x,


Iy�̇y − �z�x�
 Iz

Ix
−
Ix

Iz
� = 	y ,


Iz�̇z − �x�y�
Ix

Iy
−
Iy

Ix
� = 	z, �24�

in which 	x, 	y, and 	z are the components of the torque on
the body, expressed in BF frame coordinates. For linear ions
�when Ix= Iy = I and Iz=�z=0� or spherical ions �when
Ix= Iy = Iz= I�, the angular velocity, angular momentum, and �
vectors are all parallel, and differ only by a scaling of I, so
that the equations of motion predict the same motions. How-
ever, for a general rigid body, the motion of � is distinct from
that of either the angular velocity or the angular momentum.

Consider the motion of a body when all external torques
are zero. In this case, the energy of the system, H, is con-
served, as is the total angular momentum J in the SF frame.
In the BF frame, imagining that the axes measure the com-
ponents of �, these conserved quantities are expressed as

2H = �x
2 + �y

2 + �z
2, �25�

J2 = L2 = Ix�x
2 + Iy�y

2 + Iz�z
2. �26�

The first equation defines a sphere of radius 
2H, while the
second describes an ellipsoid with semimajor axes L /
Ix,
L
Iy, and L /
Iz. The intersection of these two surfaces gives
the paths along which the motion of � is constrained. This
geometrical interpretation is completely analogous to the
usual construction of the Binet ellipsoid �15�, except that in
the latter case the BF frame angular momentum is used as a
reference rather than �. In this regard, the description of the
motion in the BF frame can be equally well described by �,
as with other standard approaches.

In the SF frame, the situation differs. The Poinsot con-
struction is the usual means to analyze geometrically the
motion of torque-free rigid bodies �15�. This relies upon cer-

tain relationships between the angular velocity and angular
momentum vectors. These same relationships do not exist for
�. For example, it can be shown that in the SF frame that � ·J
and � ·� both vary in time, even when J is fixed. Thus, in the
general case, the motion of � does not maintain any fixed
relationship with either the angular velocity or angular mo-
mentum.

What can be said with certainty is that the components of
� in the SF frame, for a torque-free body, lie on a sphere of
radius 
2H, precisely as in the BF frame. Since �=I−1/2 ·J,

when J is constant, �̇= İ−1/2 ·J. Even when J is constant, �
changes with time. The change in � is linked solely with the
change in the moment of inertia tensor as the body moves in
space. More specifically, the changes that are along the an-
gular momentum vector are the ones that will contribute to
changing the direction of �. Unfortunately, there is no simple
way to gauge the magnitude of these changes, and even a
qualitative description of them is difficult in the general case.

Finally, a few words should be said concerning the rela-
tionship between � and the usual action-angle coordinates
used to describe rigid body motion. If p�, p�, and p� denote
the momenta conjugate to �, �, and �, and p is a vector of
these momentum components, then p is related to J by

p = CJ , �27�

in which

C =  0 0 1

cos � sin � 0

sin � sin � − sin � cos � cos �
� . �28�

The z components of the angular momentum in the SF and
BF frames are equal to p� and p�, respectively. The relation
of Eq. �27� can be inverted, so that from a SF frame perspec-
tive the rotational Hamiltonian can be written as

2H = J · ISF
−1 · J = JTATIBF

−1AJ = pTDTIBF
−1Dp , �29�

in which IBF is the diagonal moment of inertia tensor in the
BF frame, and

D = AC−1 =
1

sin � sin � sin � cos � − cos � sin �

cos � − sin � sin � − cos � cos �

0 0 sin �
� .

�30�

Substituting the expression for D into Eq. �29� then allows
one to express H in terms of a proper set of conjugate vari-
ables, from which equations of motion could be obtained
using Hamilton’s equations. Using Eq. �27� also gives a re-
lation between p and �, namely

� = ISF
−1/2J = ATIBF

−1/2AC−1p = ATIBF
−1/2Dp . �31�

Equation �31� relates the components of � in the SF frame to
the momenta conjugate to �. Inverting this equation then
relates these momenta to �, and one might be tempted to find
a generating function of the F2 type �15� to transform from
the �� ,p� conjugate set to a new one involving � and a, as
yet undetermined, set of conjugate coordinates. However, it
is easy to show that such a generating function does not
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exist, implying that the relation of Eq. �31� is not a canonical
transformation. That is, there is no set of coordinates conju-
gate to �.

This must be the case because it is well known that using
components of the angular momentum in the BF frame, H
can be written �17,18�

2H =
1

Iy
L2 −

1

2
� 1

Ix
−

1

Iz
�
2, �32�

in which


2 = �1 + ��Lz
2 − �1 − ��Lx

2, �33�

with

� =

2IxIz

Iy
− Iz − Ix

Iz − Ix
. �34�

The set �L ,
� of momentum variables are proper action vari-
ables with corresponding conjugate angles, and the equations
of motion derived from Eq. �32� using Hamilton’s equations
will depend upon them. One cannot specify the Hamiltonian
with fewer than these two action variables. In the � formal-
ism, 2H=�2 so that the Hamiltonian depends upon only one
variable. This therefore cannot be a proper action variable. In
other words, one cannot obtain equations of motion by em-
ploying Hamilton’s equations using the Hamiltonian ex-
pressed in terms of �. Rather one must resort to one of the
usual formulations either in terms of angular frequencies or
action-angle variables. The BF frame description still re-
mains as one of the best ways for solving the equations of
motion, and in practice we calculate the angular frequency
components using Eq. �24�, and then calculate the BF and SF
frame components of � for analysis purposes.

The net result of this extended discussion is to show that
� is not a new dynamical variable, in the sense of serving as
part of an action-angle variable pair. While the BF or SF
components of � can be related to well established descrip-
tions of rotational motions, the real utility of the formalism is
in simplifying the form of the general rotational Hamil-
tonian, thereby leading to a simple form for the equilibrium
distribution function. This was the purpose in constructing
the � formalism, and in this regard, it leads to simplifications
that are not possible with any of the other variables used to
describe general, rigid body motion.

IV. DISCUSSION

In order to test the utility of the � formalism, distribution
functions will be examined from ion mobility simulations. In
particular, the drifting of H2O+ in a bath of helium atoms will
be used as an example. The details of this simulation are
given elsewhere �16,19�. For the present purpose, it suffices
to say that the system is described classically using a mo-
lecular dynamics algorithm that correctly accounts for the
energy exchange of the ion with the bath gas. In all cases, the
bath gas is maintained at a constant temperature of 300 K
and a constant number density of 0.1 particles/nm3. Two
scenarios will be considered: ion motion with no external

field present �the equilibrium case�, and ions drifting with an
external electric field of 30 Td �the townsend unit �Td� ex-
presses the electric field strength relative to the bath gas
number density�. This field strength is sufficient to signifi-
cantly perturb the system from equilibrium, so it will provide
a good example of a nonequilibrium scenario. While these
two cases are clearly not exhaustive, they will demonstrate
quite effectively the utility of the � formalism. Note that the
ion is treated as a rigid body in the simulations, and that all
three of its principal moments of inertia differ from each
other.

Note that this case is not the most general since the bath
gas is atomic. For a molecular ion in an atomic bath, the total
rotational and translational temperatures are the same �20�.
However, this equality does not generally hold if the bath gas
is molecular, with rotational and vibrational degrees of free-
dom. Even in the more general situation though, the � for-
malism should apply equally well.

Table I reports the values of a number of averaged quan-
tities for the equilibrium and nonequilibrium cases both mea-
sured within the BF and SF frames. In all cases, the averages
of the components of either the angular momentum or � are
zero. In the ion mobility system there is no mechanism to
induce a preferred direction for the angular momentum, that
is in an ensemble of ions equal numbers are spinning clock-
wise as anticlockwise. This causes the ensemble average of
the components of the angular momentum to be zero. This
same argument applies to the components of �, and demon-
strates that while � is not precisely the same as either the
angular velocity or the angular momentum, it still retains the
characteristics of these angular quantities.

Consider first the equilibrium case when no external field
is present. In this case, the rotational temperature should be
the same as the bath gas temperature �300 K�, and this value
should be isotropic. In the BF frame, the angular momentum
can be used to calculate this temperature since

�Lx
2�

Ix
=

�Ly
2�

Iy
=

�Lz
2�

Iz
= kBTr, �35�

and the results of Table I show that the predicted temperature
is essentially identical to the bath gas one, and that the pre-
diction of this temperature using the different components
each yield the same value. Note that the averages of the
squares of the components of L are not equal because the
principal moments of inertia in each direction differ. How-
ever, equipartition of energy has occurred, as demonstrated
by the calculated temperatures. This also shows that the mo-
lecular dynamics code correctly predicts the expected behav-
ior.

Alternatively, using the components of � one has

��x
2� = ��y

2� = ��z
2� = kBTr, �36�

which by construction in the BF frame leads to temperature
predictions that are identical to those obtained from averages
of L. Notice though that because the components of � al-
ready incorporate the principal moments of inertia, each
component is on an equal footing so that the averages of the
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squares of the components of � are the same in all three
Cartesian directions.

However, imagine one wanted to calculate these same
quantities in the SF frame. This is straightforward using the
SF components of � since Eq. �36� is valid in either frame so
that the temperatures are calculated in precisely the same
manner as in the BF frame. The entries in Table I show that
these values agree with the correct overall temperature. How
would the same quantities be calculated using the SF frame
components of the angular momentum? Unambiguously, the
total rotational energy must be related to the total rotational
temperature according to �H�=3kBTr /2 but �H� is not easily
decomposed into ensemble averages over angular momen-
tum components directly.

Instead, consider Eq. �35� from which it must follow that
�since the magnitude of the angular momentum is invariant
with respect to the frame of reference�

�L2� = �J2� = 3IeffkBTr, �37�

with

Ieff = 1
3 �Ix + Iy + Iz� , �38�

from which the general relation follows

�J�
2Ieff

= �J · I−1 · J� . �39�

In the SF frame, J=I1/2 ·� so that using the distribution func-
tion in terms of � allows the averages of the squares of the
angular momentum components to be evaluated. After some
straightforward but somewhat tedious algebra, one obtains

�Jx
2� = 1

5 �3Ieff + 2I����x
2� + 1

5 �Ieff − I����y
2� + 1

5 �Ieff − I����z
2� ,

�40�

�Jy
2� = 1

5 �Ieff − I����x
2� + 1

5 �3Ieff + 2I����y
2� + 1

5 �Ieff − I����z
2� ,

�Jz
2� = 1

5 �Ieff − I����x
2� + 1

5 �Ieff − I����y
2� + 1

5 �3Ieff + 2I����z
2� ,

in which

I� = 1
3 �
IxIy + 
IyIz + 
IxIz� . �41�

At equilibrium, Eq. �36� gives the averages of the SF frame
components of � which along with Eqs. �40� gives

�Jx
2� = �Jy

2� = �Jz
2� = IeffkBTr. �42�

Equations �37� and �42� are completely consistent and show
that Ieff is the proper moment of inertia to use when scaling
the angular momentum averages in the SF frame to give
rotational temperatures. The results of this scaling are shown
in Table I, where it can be seen that in the equilibrium case,
all the components predict a rotational temperature that is the
same as the bath gas temperature, as it should be.

Some distribution functions are examined for the equilib-
rium case in the top panels of Figs. 1–3. The upper panel of
Fig. 1 plots the equilibrium distribution functions in the BF
frame as a function of the angular momentum components.
The symbols give the values calculated from the molecular
dynamics simulation while the solid lines plot the corre-

TABLE I. Values of calculated ensemble averages for
H2O+

uHe at 300 K with no external field present �labeled “Equi-
librium”� and with an external field of 30 Td �labelled “Nonequi-
librium”�. Bracketed numbers indicate the estimated error in the last
digit of the reported values. Note that for these calculations, the
principal moments of inertia of the ion, in units of amu nm2, were
Ix=1.933 12�10−2, Iy =5.929 35�10−3, and Iz=1.340 18�10−2, so
that Ieff=1.288 74�10−2 and I�=1.190 54�10−2.

Parameter Equilibrium Nonequilibrium

Body-fixed frame values

�Lx� �amu nm2/ps� 0.000�1� 0.000�1�

�Ly� �amu nm2/ps� 0.000�1� 0.000�1�

�Lz� �amu nm2/ps� 0.000�1� 0.000�1�

�Lx
2� ��amu nm2/ps�2� 0.04836�8� 0.127�1�

�Ly
2� ��amu nm2/ps�2� 0.01483�2� 0.0385�1�

�Lz
2� ��amu nm2/ps�2� 0.03357�4� 0.0877�1�

�Lx
2� / IxkB �K� 300.9�5� 790�5�

�Ly
2� / IykB �K� 300.8�4� 780�5�

�Lz
2� / IzkB �K� 301.3�4� 787�3�

��x� �amu1/2 nm/ps� 0.000�1� 0.000�1�

��y� �amu1/2 nm/ps� 0.000�1� 0.000�1�

��z� �amu1/2 nm/ps� 0.000�1� 0.000�1�

��x
2� �amu�nm/ps�2� 2.502�4� 6.57�4�

��y
2� �amu�nm/ps�2� 2.501�3� 6.48�4�

��z
2� �amu�nm/ps�2� 2.505�3� 6.54�3�

��x
2� /kB �K� 300.9�5� 790�5�

��y
2� /kB �K� 300.8�4� 780�5�

��z
2� /kB �K� 301.3�4� 787�3�

Space-fixed frame values

�Jx� �amu nm2/ps� 0.000�1� 0.000�1�

�Jy� �amu nm2/ps� 0.000�1� 0.000�1�

�Jz� �amu nm2/ps� 0.000�1� 0.000�1�

�Jx
2� ��amu nm2/ps�2� 0.03225�3� 0.0862�1�

�Jy
2� ��amu nm2/ps�2� 0.03227�5� 0.0862�2�

�Jz
2� ��amu nm2/ps�2� 0.03224�6� 0.0807�2�

�Jx
2� / IeffkB �K� 301.0�3� 804�1�

�Jy
2� / IeffkB �K� 301.2�6� 804�2�

�Jz
2� / IeffkB �K� 300.9�6� 753�2�

��x� �amu1/2 nm/ps� 0.000�1� 0.000�1�

��y� �amu1/2 nm/ps� 0.000�1� 0.000�1�

��z� �amu1/2 nm/ps� 0.000�1� 0.000�1�

��x
2� �amu�nm/ps�2� 2.502�3� 6.66�1�

��y
2� �amu�nm/ps�2� 2.504�4� 6.65�1�

��z
2� �amu�nm/ps�2� 2.502�4� 6.28�1�

��x
2� /kB �K� 300.9�4� 801�1�

��y
2� /kB �K� 301.2�6� 800�1�

��z
2� /kB �K� 300.9�5� 755�1�
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sponding functions derived from integrating Eq. �14�,
namely

fR�Li� = � 1

2�IikBT
�1/2

exp�−
Li

2

2IikBT
� , �43�

in which i=x, y, or z. The agreement is excellent. Identical
agreement would have been obtained had the distribution
functions been plotted as functions of the components of �,
except that the curves for each component would have been
identical.

In the SF frame, the situation differs. In terms of �, the
distribution function nicely separates into Cartesian compo-
nents, each of which has the same functional form, namely

fR��i� = � 1

2�kBTr�1/2

exp�−
�i

2

2kBTr� , �44�

in which i=x, y, or z. The calculated distributions and pre-
dictions of Eq. �44� for each component is shown in the
upper panel of Fig. 2. All the components predict precisely
the same function, and the agreement with the equilibrium
function is excellent. Again, this simply verifies that the mo-

lecular dynamics code is functioning properly.
On the other hand, the distribution functions as a function

of angular momentum are not so easy to quantify. Integrating
analytically the distribution function of Eq. �10� over all the
Euler angles is not easily done analytically. However, a dif-
ferent approach can be used, considering that both the first
and second order moments �via Eq. �42�� are known pre-
cisely. One can construct an approximate form that will
match these moments, that is

gR�J� = � 1

2�IeffkBTr�3/2

exp�−
J2

2IeffkBTr� . �45�

This form has a number of attractive qualities. The form
separates the contributions to the distribution along the Car-
tesian directions, so that one can easily associate perpendicu-
lar and parallel components. It also reduces to the known
forms for the linear and fully symmetric ion cases. In the
upper panel of Fig. 3, the z component of this distribution is
compared with the simulation results. The agreement is rea-
sonable but Eq. �45� underestimates the correct distribution

FIG. 1. Plots of the rotational distribution function as a function
of angular momentum in the BF frame. In both panels, the circles,
pluses, and crosses represent values for the i=x, y, and z compo-
nents, respectively, obtained from molecular dynamics calculations.
The corresponding solid lines are predictions of Eq. �43�. The upper
panel shows results for the equilibrium case when the system is
equilibrated at 300 K. The lower panel shows results for the non-
equilibrium case when the total rotational temperature is 786 K.

FIG. 2. Plots of the rotational distribution function as a function
of the components of � in the SF frame. In the upper panel, the
equilibrium case, the circles, pluses, and crosses represent values
for the i=x, y, and z components, respectively, obtained from mo-
lecular dynamics calculations. The corresponding solid lines are
predictions of Eq. �44� using a temperature of 300 K. In the lower
panel, the nonequilibrium case, the circles represent molecular dy-
namics values for the z component while the dashed line gives the
x and y component values. The solid line is the prediction of Eq.
�44� using a temperature of 755 K for the z component.
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when Jz is near zero. The agreement is certainly not as good
as that seen in the upper panel of Fig. 2.

One major drawback of Eq. �45� is that at best it is a good
approximation but it can never match the correct distribution
function. This can immediately be seen by considering
the value for J=0. When J=0, Eq. �45� gives
gR=1/ �2�IeffkBTr�3/2. However, the correct distribution
function of Eq. �10� gives in this limit fR
=1/ �2�kBTr�3/2 /
IxIyIz. These two values are the same only
if Ieff

3 = IxIyIz. A short analysis shows that this equality cannot
be satisfied for real and positive numbers Ix, Iy, and Iz unless
Ix= Iy = Iz. Thus, in the general case, Eq. �45� cannot match
the correct distribution precisely.

Consider now the nonequilibrium case. The electric field
is applied along the SF frame z axis, and the averages in this
frame, as seen in Table I, immediately develop cylindrical
symmetry about this direction, with the z component aver-
ages differing from those in the x and y directions, which
themselves are equal. In the BF frame, though, this distinc-
tion between the Cartesian directions does not exist. The
collision environment in the drifting process ensures that eq-
uipartition of energy occurs within the BF frame even in the

nonequilibrium case. This does not occur in the SF frame
because as the ion drifts, the angular momentum becomes
aligned perpendicular to the electric field, and this produces
an anisotropy in the energy distribution in different Cartesian
directions.

Returning to the BF frame results, although there is more
fluctuation in the molecular dynamics results, the tempera-
tures calculated from the averages of the components of L
�as per Eq. �35�� or the values of the averages of the squares
of the components of � show that equipartition occurs. The
total rotational temperature is an average of the values for the
three components, yielding a value of Tr=786 K. This tem-
perature is significantly higher than the bath gas temperature.
The ion gains energy from the field, and this is eventually
deposited, via collisions, into translational and rotational de-
grees of freedom, causing heating.

Although in a steady state, the drifting ion is far from
thermal equilibrium, the distribution function in the BF
frame is simply the equilibrium of Eq. �43� evaluated with
the total rotational temperature Tr, as seen from the excellent
agreement in the lower panel of Fig. 1.

Although this simple form exists in the BF frame, it is not
easily transformed to the SF frame because of the nonuni-
form sampling of ion orientations. In the SF frame, the �
formalism again produces reasonable results. It allows one to
formulate rotational temperatures in the parallel and perpen-
dicular field directions through averages of the components
in the different Cartesian directions, that is applying Eq. �36�
to the averages of each component of � gives ��x

2�= ��y
2�

=kBT�
r and ��z

2�=kBT	
r. The results in Table I show that the

average rotational temperature perpendicular to the field is
800 K while that parallel to the field is 755 K. A similar
extension can be made using the averages of the components
of the angular momentum by generalizing Eq. �42� to the

nonequilibrium case giving �Jx
2�= �Jy

2�= IeffkBT̃�
r and

�Jz
2�= IeffkBT̃	

r. The results in Table I show that these rota-
tional temperatures perpendicular and parallel to the field are
804 and 753 K, respectively.

These temperatures are similar but distinct from T�
r and

T	
r. In fact, these can be related using Eqs. �40� to give

T̃�
r = T�

r +
1

5
� I� − Ieff

Ieff
��T�

r − T	
r� ,

T̃	
r = T	

r −
2

5
� I� − Ieff

Ieff
��T�

r − T	
r� . �46�

It can be seen that each temperature from one set is a mixture
of both the perpendicular and parallel temperatures in the
other set, and that this depends upon the difference between
the moments of inertia Ieff and I�. Interestingly, these two
distinct ways of specifying the perpendicular and parallel
temperatures exist only for general bodies. For linear or fully
symmetric bodies the two sets of temperatures are identical.
However, it should be pointed out that even for general bod-
ies, the total rotational temperature is the same regardless of
the set one chooses, since it is straightforward to show that

FIG. 3. Plots of the rotational distribution function as a function
of the z component of the angular momentum in the SF frame. In
the upper panel, the equilibrium case, the circles represent values
obtained from molecular dynamics calculations. The solid line is a
plot using Eq. �45� with a temperature of 300 K and a value Ieff

=1.288 74�10−2 amu nm2. In the lower panel, the nonequilibrium
case, the circles represent molecular dynamics values. The solid line
is the prediction of Eq. �45� using the Ieff above and a temperature
of 753 K.
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Tr = 1
3 �2T�

r + T	� = 1
3 �2T̃�

r + T̃	
r� . �47�

Although both sets of temperatures are well defined, their
utility in forming distribution functions differ. Using the tem-
peratures associated with averages of � allows one to gener-
alize the distribution function for the nonequilibrium case
using the form of Eq. �21�. The z component of this distri-
bution is compared with simulation results in the lower panel
of Fig. 2, where very good agreement can be seen. For com-
parison, the simulation derived distribution in the x and y
directions is shown as a dashed line. There is clearly a dif-
ference between the distributions in these directions, and the
results in either direction can be accurately described by Eq.
�21� with the appropriately defined temperatures.

In contrast, the distributions as functions of the SF com-
ponents of J have the same difficulty as encountered in the
equilibrium case. If one wishes to use the rotational tempera-
tures defined with the angular momentum components, then
the distribution function of Eq. �45� can be employed as an
approximation, since it will correctly reproduce these tem-
peratures. Using this form, generalized with differing parallel
and perpendicular temperatures in analogy with Eq. �3�, al-
lows predictions to be made once Ieff is calculated. This pre-
diction for the z component is compared with simulation
results in the lower panel of Fig. 3. As with the equilibrium
case, the predicted curve underestimates the correct distribu-
tion function near Jz=0, giving agreement that is at best
moderately good.

While the temperatures defined using the angular momen-
tum components are well defined, and may be very relevant
for experimental measurements, there is no well-defined pro-
cedure for using them to generalize the rotational distribution
function. The temperatures defined using the components of
� directly correlate with a well-defined distribution function
generalized for nonequilibrium situations. However, they
may not be as clearly connected with experimental measure-
ment. The relation between the two sets, given by Eqs. �46�,
can be used to relate these. In practice, for mobility experi-
ments, the difference between the perpendicular and parallel
temperatures is typically 10–15% of the total, and given the
relative closeness of the I� and Ieff values, it happens that the
temperatures predicted using either the J or � formalisms are
almost identical. This is seen in the data of Table I.

In closing, one caveat must be given concerning Eqs.
�46�. Strictly speaking, these relations are approximate be-
cause they were derived from Eqs. �40� which was obtained
by integrating angular functions over a uniform distribution.
In the nonequilibrium situation, the distribution function be-
comes a nonuniform function of � so that the integrals per-
formed analytically in obtaining Eqs. �40� then become ap-
proximate. While the relations used to define the rotational

temperatures with either J or � still are valid, the relationship
between the two sets, given by Eqs. �46�, could break down
if the angular part of the distribution function deviates sub-
stantially from uniformity.

V. CONCLUSIONS

A variety of experiments require the description of the
motion of general rigid bodies from the perspective of a
space-fixed frame. In many cases, the description of the ro-
tational motion of such bodies is simple and straightforward
in a body-fixed frame of reference. However, information in
this frame �apart from the total rotational temperature or
other averages that are invariant under the transformation
from the body-fixed to the space-fixed frame� is difficult to
transform to the space-fixed frame. While the angular mo-
mentum is a natural and appropriate variable for describing
rotational motion, its components in the SF frame appear
coupled with angular variables in the distribution function.
For this reason, the vector � was defined so that �=I−1/2 ·J
=I1/2 ·�. The rotational Hamiltonian for a general rigid body
adopts a simple quadratic form in both the body-fixed and
space-fixed frames when expressed in terms of the compo-
nents of �, and this form naturally delineates contributions in
the different Cartesian directions.

For this reason, it is particularly attractive for generalizing
distribution functions for systems having cylindrical symme-
try. It was demonstrated that when expressed in terms of the
components of � the distribution function, even in a system
far from equilibrium, can be approximated by simple func-
tional forms. This is possible because the components of �
are particularly well suited to this task. The same distribu-
tions expressed as functions of some other variable, such as
the angular momentum, become complex and difficult to
analyze and approximate analytically.

In special cases, such as for linear or spherically symmet-
ric bodies, the � formalism simply reduces to a scaling of the
angular momentum, in terms of which distributions are al-
ready well established. Thus, in all cases, the � formalism
should be employed to describe rotational motions, since it
performs correctly both for general bodies, and those with
special symmetry.
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