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matrix elements of many-body operators. The split-and-pair method allows also for the diagonalization of the
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tween the split-and-pair method and quantum group theory is clarified.
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I. INTRODUCTION

Many-body calculations are often combinatorially com-
plex. One of the causes of this complexity is the fact that
Wick’s theorem �1� is stated in combinatorial terms �taking
all possible contractions�. A new approach is introduced here
to simplify such calculations: the split-and-pair method. It
consists of two operations: the splitting of a normal product
into all its possible pairs of factors and the pairing of two
normal products u and v, which is simply �0�uv�0� �i.e., the
vacuum expectation value of the operator product of u and
v�. These two operations lead to a powerful expression of
Wick’s theorem because they replace its combinatorial struc-
ture by an algebraic structure.

Using the split-and-pair method, we first rederive a clas-
sical result: we calculate general matrix elements of the form
�K�Ok�L�, where Ok is a k-body operator and �K� and �L� are
Slater determinants. Then the split-and-pair method is used
to derive two new results: �i� a closed expression for the
generating function of all matrix elements between �K� and
�L�, which is useful in nonequilibrium many-body theory; �ii�
the eigenvalues and rank of the matrix obtained when Ok is a
k-body density operator :n�x1�¯n�xk�:, with n�x�
=�†�x���x�. This last result can be used to calculate the
k-point correlation function for a quantum system in a gen-
eral state.

The paper starts with a definition of normal products and
a description of how they can be split into two factors. The
pairing of two normal products is introduced and calculated
explicitly, and Wick’s theorem is written in terms of the split-
ting and the pairing. Several simple examples are treated, in
detail, to familiarize the reader with this new technique.
Then three calculations are carried out as mentioned in the
previous paragraph: �K�Ok�L�, the generating function and
the k-body density correlation function. Finally, the split-
and-pair method is linked to general algebraic concepts.

II. SPLITTING OF NORMAL PRODUCTS

In this section, we show that the normal products of cre-
ation and annihilation operators can be split into factors in a
useful way.

A. Normal products

The creation and annihilation operators of an electron in
orbital i are denoted by bi

† and bi. We call B the set of linear
combinations of terms of the form u=bi1

†
¯bim

† bj1
¯bjn

for
m�0 and n�0. The term corresponding to n=m=0 is de-
noted by 1. All bi

† anticommute with all bj
† and all bi anti-

commute with all bj. Thus, to define a basis of B we need to
choose a definite order for the operators. It is convenient to
choose the basis u=bi1

†
¯bim

† bj1
¯bjn

, where now i1� ¯

� im and j1� ¯ � jn. Such elements of B are said to be
normally ordered and they are called the monomials of B.
The space B is convenient because Wick’s theorem tells us
that the product of operators can always be written in terms
of normally ordered elements, so that products of operators
are also defined in B. Apart from the operator product, we
can define now another product on B: the normal product. If
u and v are monomials of B, the normal product of u and v
is written :uv: and it is calculated as follows: if u contains
only creation operators and v only annihilation operators
then :uv : =uv; otherwise, creation operators are brought to
the left of annihilation operators by assuming that creation
operators anticommute with annihilation operators. For ex-
ample, if u=bi

†bk and v=bl
†, we have :uv : = : �bi

†bk��bl
†� : =

−bi
†bl

†bk. The vector space B equipped with the normal prod-
uct is an algebra. Of course, 1 is the unit of this algebra.

We define now the parity of a monomial u of B. If u
=bi1

†
¯bim

† bj1
¯bjn

, the parity of u is denoted by �u� and is 0
if n+m is even and 1 if n+m is odd. The parity is useful
because of the identity

:vu: = �− 1��u��v�:uv: . �1�

B. The splitting

We saw that for two monomials u and v, we can define a
normal product :uv:. The trick that will be useful for explicit
calculations is that we can also split any monomial w of B
into two factors u and v such that :uv : =w. The splitting of w
into all possible pairs of monomial factors will be called the
coproduct of w.
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To define more precisely the coproduct, we denote by a
an operator that can be either an annihilation operator bi or a
creation operator bi

† for some i, or, more generally, a linear
combination of creation and annihilation operators: a
=�i�ibi+�ibi

†, where �i and �i are complex numbers. In the
rest of the papers, all variables denoted by a1 ,a2 , . . . ,an will
be such linear combinations.

For pedagogical reasons, we shall give three definitions of
the coproduct. The coproduct of u will be denoted by �u.

1. Elementary definition of the coproduct

As mentioned in the Introduction, the coproduct of u is
the sum of all the ways to write u as a normal product of two
monomials. For instance, :a1a2: can be written as the normal
product of a1 and a2 or of a2 and a1 �but with a minus sign�
or of :a1a2: and 1 or of 1 and :a1a2:. Therefore, we write

�:a1a2: = a1 � a2 − a2 � a1 + :a1a2: � 1 + 1 � :a1a2:.

�2�

The reader should not worry about the presence of the tensor
symbol �, which could be considered as just a way to sepa-
rate the left-hand side of the product from its right-hand side
�2�. The minus sign in the second term of � :a1a2: is due to
the fact that :a1a2 : =−:a2a1:.

Similarly, 1 can only be written as :11:, thus �1=1 � 1, a
can only be written as :a1: or :1a:, so that �a=a � 1+1
� a.

If we now have u= :a1¯an:, let Pk by any subset of
elements of the list 	a1 , . . . ,an
. There are 2n such subsets
�the empty set being allowed� so that k runs from 1 to 2n. Let
v1

k be the normal product of the elements of Pk and v2
k be the

normal product of the elements of 	a1 , . . . ,an
, which are not
in Pk. The coproduct of u is

�u = �
k=1

2n

± v1
k

� v2
k , �3�

where we replace v1
k by 1 if Pk is the empty set and v2

k by 1
if Pk is the full set 	a1 , . . . ,an
 and where “�” is determined
so that u= ± :v1

kv2
k:. For n=0 to 3, we have

�1 = 1 � 1,

�a = a � 1 + 1 � a ,

�:a1a2: = :a1a2: � 1 + 1 � :a1a2: + a1 � a2 − a2 � a1,

�:a1a2a3: = :a1a2a3: � 1 + 1 � :a1a2a3: + :a1a2: � a3

− :a1a3: � a2 + :a2a3: � a1 + a1 � :a2a3:− a2

� :a1a3: + a3 � :a1a2:.

This definition of the coproduct is elementary, but it looks
very cumbersome. This will be improved with the second
definition, which is recursive. Before leaving this section, we
note that the coproduct was defined only for monomials. This
definition is extended to the whole vector space B by linear-
ity: if u and v are elements of B and 	 is a complex number
then ��u+v�=�u+�v and ��	u�=	�u.

2. Recursive definition of the coproduct

The first step is to find a nice notation for the coproduct of
a monomial of B. We shall write �3�

�u = � u�1� � u�2�.

Here u�1� stands for ±v1
k, u�2� stands for v2

k, the sum means a
sum over the subsets Pk, but k is implicit. This notation en-
ables us to give a recursive definition of the coproduct as �4�

��:uv:� = � �− 1��u�2���v�1��:u�1�v�1�: � :u�2�v�2�: . �4�

The meaning of this formula is the following: if you know
the coproduct of u and v to be �u=�u�1� � u�2� and �v
=�v�1� � v�2�, then the coproduct of :uv: is obtained by tak-
ing all terms u�1� � u�2� and v�1� � v�2� of each sum, set the
normal product of u�1� and v�1� on the left of the tensor sym-
bol, and the normal product of u�2� and v�2� on the right, and
multiply by the sign �−1��u�2���v�1��, where �u�2�� is the parity of
u�2� and �v�1�� the parity of v�1�.

We can illustrate this rule with our favorite example. We
want to calculate ��:uv : �, where u=a1 and v=a2. We start
from �u=a1 � 1+1 � a1 and �v=a2 � 1+1 � a2. Now we
mix them using Eq. �4�. Take first the first term of �u, for
which u�1�=a1 and u�2�=1, and the first term of �v, for which
v�1�=a2 and v�2�=1; the product in Eq. �4� gives us
�−1��1��a2� :a1a2 : � 1. If we repeat this for all terms of �u and
�v, we obtain

�:a1a2: = �− 1��1��a2�:a1a2: � 1 + �− 1��1��1�a1 � a2

+ �− 1��a1��a2�a2 � a1 + �− 1��a1��1�1 � :a1a2:.

Now we use the fact that �1�=0 and �a1�= �a2�=1 to conclude
that

�:a1a2: = :a1a2: � 1 + a1 � a2 − a2 � a1 + 1 � :a1a2:.

The identity �4� is important because it is the basis of recur-
sive proofs. This second definition is very useful, but it is not
always explicit enough, therefore we give now the third defi-
nition in terms of permutations.

3. Definition in terms of permutations

A �p ,n− p�-shuffle permutation is a permutation 
 of the
set 	1, . . . ,n
 such that 
�1�� ¯ �
�p� and 
�p+1�� ¯

�
�n�. The name comes from the fact that if you have a
deck of n cards, p of them in the left hand and n− p in the
right hand, and if you shuffle these cards, then the shuffled
deck is a �p ,n− p�-shuffle permutation of the original deck.
A precise definition of the coproduct of u= :a1¯an: can
now be given as

�u = u � 1 + 1 � u + �
p=1

n−1

�



�− 1�
:a
�1� ¯ a
�p�:

� :a
�p+1� ¯ a
�n�: , �5�

where the sum over 
 is the sum over �p ,n− p� shuffles and
�−1�
 is the signature of the permutation 
. To simplify the
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notation, we consider that the first and second terms on the
right-hand side of Eq. �5� come from the �n ,0� shuffle and
the �0,n� shuffle, respectively, and we write

�u = �



�− 1�
:a
�1� ¯ a
�p�: � :a
�p+1� ¯ a
�n�: ,

where the sum is now over all shuffles. It must be stressed
that this definition is exactly equivalent to Eq. �3�. Its main
advantage is that “�” in Eq. �3� is now given explicitly.

After these painful definitions, the reader can relax be-
cause the rest of the paper uses only standard concepts of
many-body theory.

III. THE PAIRING

Up to now, we know only the normal product and the
coproduct. To do quantum calculations, we need to also cal-
culate the operator product, which is given by Wick’s theo-
rem in terms of normal products. To obtain a handy form of
Wick’s theorem, we define the pairing. If u and v are ele-
ments of B, we can take their operator product uv. The pair-
ing of u and v, denoted by �u �v�, is the vacuum expectation
value of uv. In other words,

�u�v� = �0�uv�0� .

For example, from the standard results �0�bibj
†�0�=�ij and

�0�bibj�0�= �0�bi
†bj�0�= �0�bi

†bj
†�0�=0, we obtain the pairings

�bi�bj
†� = �ij, �bi�bj� = �bi

†�bj� = �bi
†�bj

†� = 0. �6�

More generally, Grosshans et al. �5� proved the following
important identity:

�:a1 ¯ am:�:a1� ¯ an�:� = �mn�− 1�n�n−1�/2det�ai�aj�� , �7�

where �ai �aj�� denotes the matrix with matrix elements ob-
tained by taking the pairing of ai and aj�. The possible values
of �ai �aj�� are deduced from the values given in Eq. �6�.
Equation �7� is extended to the case m=n=0 by �1 �1�
= �0�1�0�=1.

For instance, we have

�:bibj:�:bk
†bl

†:� = − det��ik �il

� jk � jl
� = �il� jk − �ik� jl. �8�

This explicit expression will prove quite powerful for the
calculation of more general matrix elements. Note that be-
cause of Eqs. �6� and �7�, �u �v� is zero if u contains creation
operators or v annihilation operators.

The right-hand side of Eq. �7� involves a determinant. In
1772, Laplace derived the so-called Laplace identities, which
express the determinant of a matrix in terms of minors of this
matrix �see Refs. 6 and 7, p. 26, and Ref. 8, p. 93�. The
Laplace identities take an elegant form in terms of the co-
product �4,5�

�:uv:�w� = � �− 1��v��w�1���u�w�1���v�w�2�� , �9�

�u�:vw:� = � �− 1��u�2���v��u�1��v��u�2��w� , �10�

for any monomials u, v, and w of B. Equation �9� is called
expansion by rows and Eq. �10� expansion by columns. Be-

cause of its relations with the Laplace identities, Rota called
�u �v� the Laplace pairing. For example, using Eqs. �9� and
�10� we can check that

�:bibj:�:bk
†bl

†:� = − �bi�bk
†��bj�bl

†� + �bi�bl
†��bj�bk

†�

= − �ik� jl + �il� jk,

and we recover Eq. �8�.
Note that the definition of the Laplace pairing implies that

it is bilinear

�u�v + w� = �u�v� + �u�w�, �u + v�w� = �u�w� + �v�w� ,

�	u�v� = �u�	v� = 	�u�v� .

IV. WICK’S THEOREM

We now have all the concepts we need and can write
Wick’s theorem as: if u and v are two elements of B with a
definite parity, then

uv = � �− 1��u�2���v�1���u�1��v�1��:u�2�v�2�: . �11�

This formula is much easier to manipulate than the standard
form of Wick’s theorem where one must take all possible
contractions between u and v. The fact that Eq. �11� is
equivalent to Wick’s theorem was proved in �4,9�. It is useful
to get acquainted with this version of Wick’s theorem by
working out examples. The reader can check that

a1a2 = :a1a2: + �a1�a2� ,

�:a1a2:�a3 = :a1a2a3:− �a1�a3�a2 + �a2�a3�a1,

a1�:a2a3:� = :a1a2a3: + �a1�a2�a3 − �a1�a3�a2,

�:a1a2:��:a3a4:� = :a1a2a3a4:− �a1�a3�:a2a4: + �a1�a4�:a2a3:

+ �a2�a3�:a1a4:− �a2�a4�:a1a3:

+ �:a1a2:�:a3a4:� .

We prove the simple case: from Wick’s theorem �11� and
from the coproduct of a1 and a2, we have

a1a2 = �− 1��a1��1��1�1�:a1a2: + �− 1��a1��a2��1�a2�:a11:

+ �− 1��a1��1��a1�1�:1a2: + �− 1��1��a2��a1�a2�:11:.

a1 and a2 are odd and 1 is even, moreover 1 is the unit
element; thus, we obtain

a1a2 = �1�1�:a1a2:− �1�a2�a1 + �a1�1�a2 + �a1�a2�1.

Because of formula �7�, the Laplace pairing is zero if both
sides do not contain the same number of creation and anni-
hilation operators. Thus, �1 �a2�= �a1 �1�=0, and we obtain
the desired result.

V. EXAMPLES

In this section, we shall become familiar with this tool by
calculating simples examples in detail. We first derive a use-
ful identity
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� �1�u�1��u�2� = � �u�1��1�u�2� = u , �12�

for any element u of B. By linearity of the coproduct, it is
enough to consider an element u= :a1¯an:. The coproduct
of u is given by Eq. �5�, which gives us

� �1�u�1��u�2� = �1�u�1 + �1�1�u + �
p=1

n−1

�



�− 1�
�1�:a
�1� ¯ a
�p�:�:a
�p+1� ¯ a
�n�: .

Equation �7� tells us that �1 � :a
�1� , . . . ,a
�p� : �=0 if p�0.
Therefore, the only nonzero term of the right hand side is
�1 �1�u=u, which proves the result.

A. Action of the number operator

We call N=�ibi
†bi the number operator and for any ele-

ment u of B we show that

Nu = :Nu: + N+�u�u , �13�

where N+ counts the number of creation operators in u. We
first use Wick’s theorem �11� to write

Nu = � �− 1��N�2���u�1���N�1��u�1��:N�2�u�2�: .

From the definition of N and Eq. �2�, we find that the co-
product of N is

�N = N � 1 + 1 � N + �
i

bi
†

� bi − �
i

bi � bi
†.

According to identity �7�, �N�1� �u�1��=0 for the first and third
terms because N�1� contains a creation operator. Thus, we are
left with

Nu = � �1�u�1��:Nu�2�:− �
i

�− 1��u�1���bi�u�1��:bi
†u�2�: .

From Eq. �12� we obtain Nu= :Nu : +F�u� with

F�u� = �
i

� �bi�u�1��:bi
†u�2�: ,

where we used the fact that, for �bi �u�1�� to be nonzero, u�1�
must be a single creation operator so the parity of u�1� is 1
and �−1��u�1��=−1. We must now show that F�u�=N+�u�u.
This will be proved recursively. If N+�u�=0, u does not con-
tain creation operators, so that �bi �u�1��=0 and the identity is
proved. Now assume that it is satisfied up to N+�u�=k and
take u= :bj

†v:, with N+�v�=k, so that N+�u�=k+1. Using the
recursive definition of the coproduct, we have �u
=� :bj

†v�1� : � v�2�+��−1��v�1��v�1� � :bj
†v�2�: and

F�u� = �
i

� �bi�:bj
†v�1�:�:bi

†v�2�:− �bi�v�1��:bi
†bj

†v�2�: .

Using identity �7�, we see that the first term on the right-hand
side is nonzero only if v�1�=1 and i= j. We interchange bi

†

and bj
† in the second term and get

F�u� = :bj
†v: + �

i
� �bi�v�1��:bj

†bi
†v�2�: = :bj

†v: + :bj
†F�v�: ,

where we used the definition of F. We can now use the
recursion hypothesis to conclude

F�u� = :bj
†v: + N+�v�:bj

†v: = N+�u�u .

The identity is now proved.
The foregoing proof is not really shorter than the proof

using standard methods, but it shows the main characteristics
of the new approach: calculations are more algebraic and less
combinatorial; general terms, such as u, are manipulated in-
stead of explicit terms, such as bi1

†
¯bik

† .

B. Matrix elements

If we call N− the operator that counts the number of an-
nihiliation operator, a similar proof leads to the result

uN = :uN: + N−�u�u = :Nu: + N−�u�u . �14�

The fact that :uN : = :Nu: is showed using the parity equation
�1� and the fact that the parity of N is zero. This will enable
us to prove a classical but useful identity. Consider two states
�K�=bi1

† , . . . ,bim
† �0� and �L�=bj1

† , . . . ,bjn
† �0�, so that N�K�

=m�K� and N�L�=n�L� �the first term of Eq. �13� being anni-
hilated by �0��.

We want to calculate �K��N ,u��L�. By acting on the state
vectors, we have

�K��N,u��L� = �K�Nu�L� − �K�uN�L� = �m − n��K�u�L� .

On the other hand,

�N,u� = Nu − uN = �N+�u� − N−�u��u .

Therefore

�K��N,u��L� = �m − n��K�u�L� = �N+�u� − N−�u���K�u�L� .

�15�

We conclude that, if �K� and �L� have the same number of
particles �i.e., m=n� and if �K�u�L��0, then u must have as
many creation operators as annihilation operators. This result
is physically clear and will be useful in the sequel.

VI. APPLICATIONS

In this section, we give some applications of the present
approach to the calculation of matrix elements and generat-
ing functions. We consider matrix elements between two
states �K�=biN

† , ¯bi1
† �0� and �L�=bjN

†
¯ ,bj1

† �0�, where N is
the number of electrons in the system. We assume that the
indices are ordered as i1� ¯ � iN and j1� ¯ � jN.

A. Matrix elements

We want to calculate the general matrix element

AKL = �K�bn1

†
¯ bnk

† bm1
¯ bmk

�L� .
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Set u=bi1
, ¯ ,biN

, v=bjN
† , ¯ ,bj1

† , s=bn1

† , ¯ ,bnk

† , and t
=bm1

, ¯ ,bmk
. Now AKL becomes �0�u�:st : �v�0�, and we can

use Wick’s theorem �11� to write

:st:v = � �− 1��v�1����s�2��+�t�2����:st:�1��v�1��:�:st:�2�v�2��:

= � �− 1��v�1���s�2��+�v�1���t�2��+�t�1���s�2��


�:s�1�t�1�:�v�1��:s�2�t�2�v�2�: .

Therefore,

AKL = �u��:st:�v� ,

=� �− 1��v�1���s�2��+�v�1���t�2��+�t�1���s�2���:s�1�t�1�:�v�1��


�u�:s�2�t�2�v�2�:� .

From identity �7�, we know that s�1� cannot contain creation
operators and t�2� cannot contain annihilation operators.
Therefore, s�1�= t�2�=1, so that s�2�=s and t�1�= t and the ex-
pression becomes

AKL = � �− 1��v�1���s�+�t��s��t�v�1���u�:sv�2�:� ,

=� �− 1��v�1���s�+�t��s�+�u�2���s�


�t�v�1���u�1��s��u�2��v�2�� , �16�

where we used the Laplace identity �10� to expand
�u � :sv�2� : �. We rewrite v= �−1�N�N−1�/2bj1

† . . .bjN
† so

�u = �
p=0

N

�



�− 1�
bi
�1�
¯ bi
�p�

� bi
�p+1�
¯ bi
�N�

,

�v = �− 1�N�N−1�/2�
q=0

N

�
�

�− 1��bj��1�

†
¯ bj��q�

†
� bj��q+1�

†
¯ bj��N�

† ,

where 
 runs over the �p ,N− p� shuffles and � over the
�q ,N−q� shuffles. Equation �7� applied to �16� gives us p
=k and q=k so that �v�1��= �s�= �t�=k, �u�2��=N−k and

AKL = �− 1�N�N−1�/2+�N−k�k+k�k−1�+�N−k��N−k−1�/2


�

�

�− 1�
+�det��mp,j��q�
�det��i
�p�,nq

�det��i
�p�,j��q�
� ,

�17�

where p and q run from 1 to k in the first two matrices and
from k+1 to N in the last one.

The next transformation is first illustrated with the case
k=N−2. The last factor of Eq. �17� becomes det��i
�p�,j��q�

�
=�i
�N−1�,j��N−1�

�i
�N�,j��N�
−�i
�N�,j��N−1�

�i
�N−1�,j��N�
. The permuta-

tion � is a �N−2,2� shuffle, so that j��N−1�� j��N�. The � func-
tions of the second term give us i
�N�= j��N−1�� j��N�= i
�N−1�.
Thus i
�N�� i
�N−1�, but this is impossible because 
 is also a
�N−2,2� shuffle so that i
�N�� i
�N−1�. Therefore, the second
term is zero and det��i
�p�,j��q�

�=�i
�N−1�,j��N−1�
�i
�N�,j��N�

.

A similar result can be proved for any value of k:
The determinant of a n
n matrix aij is det�a�

=�	�−1�	
i=1
n ai	�i�=�	�−1�	
i=1

n a	�i�i, where 	 runs over the
permutations of n elements. Therefore, to calculate the last
determinant in Eq. �17�, we must sum over all permutations
of ��k+1� , . . . ,��N�. By definition of the �k ,N−k� shuffles,
we have i
�k+1�� ¯ � i
�N� and j��k+1�� ¯ � j��N�; thus any
permutation of ��k+1� , . . . ,��N� would break this ordering
and the only nonzero term of det��i
�p�,j��q�

� is

�i
�k+1�,j��k+1�
¯�i
�N�,j��N�

. This gives us the following expres-

sion for AKL:

AKL = �− 1�k�k−1�/2�

�

�− 1�
+�det��mp,j��q�
�


det��i
�p�,nq
� 


p=k+1

N

�i
�p�,j��p�
, �18�

where 
 and � run over the �k ,N−k� shuffles. Equation �18�
is equivalent to the result obtained by Caianiello �10�.

B. Generating function

In the nonequilibrium many-body theory of systems with
initial correlations �11–13�, the generating function Z of the
Green’s functions is written as

Z = exp�− iHint�exp�− i�̄G0��Z0, �19�

where Hint is the interacting Hamiltonian �where fields are
replaced by functional derivatives with respect to the anti-
commuting external sources �̄ ,��, G0 is the free Green’s
function and Z0 is the generating function of the correlations
of the initial state of the system, before the interaction is
switched on. If the initial state is described by the density
matrix �̂=�KL�LK�L��K�, where �K� and �L� are N-particle
Slater determinants, then Z0=�KL�LKNKL

0 , with

NKL
0 = �K�:exp�i� �̄�x���x� + �†�x���x�dx�:�L� . �20�

In Eq. �20�, NKL
0 is the generating function of the matrix

elements of the k-body operators and ��x� is a field operator,
which can be expanded over the eigenstates �n�x� of the free
Hamiltonian

��x� = �
n

bn�n�x�, �†�x� = �
n

bn
†�*�x�

and where �̄�x� and ��x� are anticommuting sources. In the
following, NKL

0 will be calculated for the first time.
The importance of NKL

0 comes from the fact that all matrix
elements can be obtained by functional derivatives with re-
spect to the sources. For instance, the matrix elements of the
density are given by

�K�:�†�x���x�:�L� = � �2NKL
0

���x���̄�x�
�

�=�̄=0

.

We can rewrite NKL
0 as
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NKL
0 = �

l=0

�
il

l!
�K�:��

n
� �̄�x��n�x�dxbn

+ bn
†� ū�x���x�dx�l

:�L�

= �
l=0

�
il

l!
�K�:��

n

�̄nbn + bn
†�n�l

:�L� ,

where �̄n=��̄�x��n�x�dx and �n=��n
*�x���x�dx are anticom-

muting variables. To calculate NKL
0 , we first note that the

anticommutativity of bn, bn
†, �n, and �̄n for the normal prod-

uct gives us the commutation rules :�̄ibi�̄ jbj : = : �̄ jbj�̄ibi:,
:�̄ibibj

†� j : = :bj
†� j�̄ibi:, and :bi

†�ibj
†� j : = :bj

†� jbi
†�i:. Thus,

we can expand the power with the binomial formula

NKL
0 = �

l=0

�
il

l!�k=0

l � l

k
�


�
n1¯nl

�K�bn1

† �n1
¯ bnk

† �nk
�̄nk+1

bnk+1
¯ �̄nl

bnl
�L�

= �
l=0

�
il

l!�k=0

l � l

k
��− 1�k+l�l−1�/2 �

n1¯nl

�n1
¯ �nk

�̄nk+1
¯ �̄nl

�K�bn1

†
¯ bnk

† bnk+1
¯ bnl

�L� .

As we saw in Sec. V B, the transition between �K� and �L� is
zero if l�2k or l�2N because �K� and �L� contain N elec-
trons. Thus, we obtain the finite sum

NKL
0 = �

k=0

N
�− 1�k

�k!�2 �
n1,¯,mk

�n1
¯ �nk

�̄m1
¯ �̄mk


�K�bn1

†
¯ bnk

† bm1
¯ bmk

�L� . �21�

In the last term, we recognize the matrix element that we
calculated in Sec. VI A Therefore, we introduce Eq. �18� into
Eq. �21�.

NKL
0 = �

k=0

N
�− 1�k�k+1�/2

�k!�2 �
n1¯mk

�n1
¯ �nk

�̄m1
¯ �̄mk


�

�

�− 1�
+�det��mp,j��q�
�det��i
�p�,nq

�




p=k+1

N

�i
�p�,j��p�
. �22�

To calculate det��mp,j��q�
�, we write

det��mp,j��q�
� = �

	

�− 1�	�m	�1�,j��1�
¯ �m	�k�,j��k�

,

where 	 runs over the permutations of 	1, . . . ,k
 and we
obtain

�
m1,. . .,mk

�̄m1
¯ �̄mk

det��mp,j��q�
� = k!�̄ j��1�

¯ �̄ j��k�

because the anticommutation of the variables �i and �̄ j im-
plies that all permutations 	 give the same contribution.
Hence,

NKL
0 = �

k=0

N

�− 1�k�k+1�/2�

�

�− 1�
+��i
�1�
¯ �i
�k�

�̄ j��1�
¯ �̄ j��k�


 

p=k+1

N

�i
�p�,j��p�
.

Therefore, our final result is

NKL
0 = �

k=0

N

�− 1�k�k−1�/2�

�

�− 1�
+�




p=1

k

�̄ j��p�

p=1

k

�i
�p� 

p=k+1

N

�i
�p�,j��p�
,

=�
k=0

N

�

�

�− 1�
+�

p=1

k

��̄ j��p�
�i
�p�

� 

p=k+1

N

�i
�p�,j��p�
,

�23�

where we recall that 
 and � run over the �k ,N−k� shuffles.
We see that the generating function is rather simple. In the
Appendix, we show that a still simpler formula can be ob-
tained for NKL

0 .

NKL
0 = exp��

n

�2

��n��̄n
���̄i1

� j1
, . . . ,�̄iN

� jN
� . �24�

C. Diagonal matrix elements

It is interesting to consider the case where �K�= �L�. This
implies that ip= jp for all p=1, . . . ,N. We consider first the
diagonal elements of AKL. According to Eq. �18�, they are
given by

AKK = �− 1�k�k−1�/2�

�

�− 1�
+�


det��mp,i��q�
�det��i
�p�,nq

� 

p=k+1

N

�i
�p�,i��p�
,

The last product implies that 
�p�=��p� for p=k+1, . . . ,N.
The �k ,N−k� shuffles are entirely determined by their last
N−k values; thus, 
=� and we get

AKK = �− 1�k�k−1�/2�



det��mp,i
�q�
�det��i
�p�,nq

� ,

where p and q run from 1 to k and 
 runs over the �k ,N
−k� shuffles. To simplify this expression, we consider the
case where an mp does not belong to the set 	i1 , . . . , iN
, then
�mp,i
�q�

is zero for all q and det��mp,i
�q�
�=0. Therefore, AKK

is zero unless the set 	m1 , . . . ,mk
 is included in 	i1 , . . . , iN
.
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If this condition is satisfied, there is a unique �k ,N−k�
shuffle such that det��mp,i
�q�

� is not zero. To see this, con-

sider the permutation 	 of 	1, . . . ,k
 that orders 	m1 , . . . ,mk

�i.e., m	�1�� ¯ �m	�k��. We also have i
�1�� ¯ � i
�k� so
the determinant is nonzero if and only if m	�q�= i
�q� for q
=1, . . . ,k. This fully determines the shuffle 
. For a general
ordering of 	m1 , . . . ,mk
 we have �mp,i
�q�

nonzero if and only

if p=	�q�. To conclude, we use the fact that the product of
the determinant of two matrices is the determinant of the
matrix product �i.e., det��mp,i
�q�

� det��i
�p�,nq
�=det��mp,nq

��:

AKK = �− 1�k�k−1�/2 det��mp,nq
� if 	m1, . . . ,mk
 � 	i1, . . . ,iN
 ,

=0 otherwise. �25�

We now consider the diagonal matrix elements of the gen-
erating function NKL

0 . The Kronecker � functions in Eq. �23�
yields 
=� and

NKK
0 = �

k=0

N

�





p=1

k

��̄i
�p�
�i
�p�

�

= �
k=0

N

�
j1�¯�jk

��̄ j1
� j1

� ¯ ��̄ jk
� jk

� ,

where j1 , . . . , jk are k numbers taken in i1 , . . . , iN. We recog-
nize here �14� the definition of the elementary symmetric
polynomials ek, so that

NKK
0 = �

k=0

N

ek��̄i1
�i1

, . . . ,�̄iN
�iN

� .

The generating function for elementary symmetric polyno-
mials is well known �14�. It yields

NKK
0 = 


p=1

N

�1 + �̄ip
�ip

� .

Another expression can be obtained if we note that

ln�

p=1

N

�1 + �̄ip
�ip

�� = �
p=1

N

ln�1 + �̄ip
�ip

�

= �
i=1

N

�
n=1

�
�− 1�n+1

n
��̄ip

�ip
�n.

The variables �̄ip
and �ip

are fermionic, thus �̄ip
2 =�ip

2 =0 and
��̄ip

�ip
�2= �̄ip

�ip
�̄ip

�ip
=−�̄ip

�̄ip
�ip

�ip
=0. Consequently, only

the term n=1 remains in the sum and

ln�

i=1

N

�1 + �̄ip
�ip

�� = �
i=1

N

�̄ip
�ip

.

In other words,

NKK
0 = exp��

p=1

N

�̄ip
�ip� . �26�

The diagonal generating function NKK
0 arises when the initial

state of the system �without interaction� can be described by
a single Slater determinant. This is the situation met in stan-
dard many-body theory �15,16�. Equation �26� shows that, in
this case, Z0 is the exponential of a term linear in the external
sources �̄ and �. Thus, the free Green’s function G0 is modi-
fied by adding �p=1

N �̄ip
�ip

, i.e., by filling all the orbitals up to
the Fermi energy. This is exactly the standard way to calcu-
late the free Green’s function in many-body theory. In other
words, the reasoning leading to Eq. �26� can be considered as
a complete proof of the standard electron-hole transormation
�15�.

When the initial state is not described by a single Slater
determinant �i.e., for many-body theory with initial correla-
tions�, the orbitals are not either full or empty and partial
occupation is allowed. The probability of hoppping between
two partially occupied orbitals is also required. All this in-
formation is contained in Z0=�KL�LKNKL

0 , where the general
expression �24� must be used for NKL

0 . The logarithm of Z0 is
no longer linear in the external sources �11,17–19�. This is
the main source of the complexity of the many-body theory
with initial correlations �11,20,21�.

VII. DENSITY CORRELATION FUNCTIONS

The density operator is given by n�x�=�†�x���x�, where
��x� is a field operator. The k-density correlation operator is

nk�x1, . . . ,xk� = :n�x1� ¯ n�xk�:

= :�†�x1� ¯ �†�xk���xk� ¯ ��x1�: . �27�

A general N-particle state of the system can be described by
the density matrix �̂=�KL�LK�L��K�, where �K�, �L� are
N-particle Slater determinants and where �LK is a positive
Hermitian matrix with unit trace. Thus, the k-density corre-
lation in state �̂ can be calculated once we know the matrix
elements �K�nk�x1 , . . . ,xk��L�. We are going to find the eigen-
values of this matrix. In this calculation, the power and el-
egance of the split-and-pair method will be clear.

A. General case

We can rewrite the operators nk�x1 , . . . ,xk� defined in Eq.
�27� as nk�x1 , . . . ,xk�=u†u, where u=��xk�¯��x1�.

We start with a proof of the important identity

�u†u�2 = u†uu†u = �u�u†�u†u . �28�

We first use Wick’s theorem �11� to get

uu† = � �− 1��u�2���u�1�
† ��u�1��u�1�

† �:u�2�u�2�
† :.

We interchange u�2� and u�2�
† in the normal product, using Eq.

�1� and also use �u�1�
† �+ �u�2�

† �= �u†�= �u� to rewrite

uu† = � �− 1��u��u�2���u�1��u�1�
† �u�2�

† u�2�. �29�

The normal order symbols of :u�2�
† u�2�: were removed be-

cause u�2�
† contains only creation operators and u�2� annihila-
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tion operators, so that :u�2�
† u�2� : =u�2�

† u�2�. We multiply both
members of Eq. �29� by u† on the left and u on the right and
obtain

�u†u�2 = � �− 1��u��u�2���u�1��u�1�
† �u†u�2�

† u�2�u .

Now we use the fact that u�2�u=0 except when u�2�=1. To see
this, we consider the coproduct of u given by Eq. �5�

�u = u � 1 + 1 � u + �
p=1

k−1

�



�− 1�
��x
�k�� ¯ ��x
�p+1��

� ��x
�p�� ¯ ��x
�1�� .

If u�2� contains an operator ��xi�, then u�2�u=0 because ��xi�
is also contained in u and ��xi�2=0. The only term of �u
where u�2� does not contain any operator ��xi� is the term
u � 1. Similarly, the only term of u†u�2�

† that is not zero is the
term u�2�

† =1, so that u�1�
† =u. Therefore, the sum has only one

term and we obtain u†uu†u= �u �u†�u†u, which is the desired
result.

From Eq. �28� we deduce that P=u†u / �u �u†� satisfies
P2= P. Moreover, P†= P because �u �u†�= �0�uu†�0� is real.
Therefore, P is a projection operator and the density operator
n�x1 , . . . ,xk�= �u �u†�P is proportional to a projection opera-
tor. As a projection operator, P has the only eigenvalues 0
and 1. The number of eigenvalues 1, which is also the rank
of P, is given by trP that we calculate now.

To obtain a finite result, we consider the projected density
of states, which is often used in physics and chemistry. So
we select a number M of orbitals �1�x� , . . . ,�M�x� and define
projected fields

�p�x� = �
i=1

M

�i�x�bi.

For instance, we can be interested in the density of d elec-
trons in a system, then M =10 and �1�x� , . . . ,�M�x� are the
spin-orbitals of the d shell. We also assume that the Slater
determinants �K� and �L� contain only these orbitals �plus
possible closed shells that are common to all �K� and �L�, so
that the correlation functions concern only the valence elec-
trons�. If the system contains N electrons chosen among the
M orbitals, there are � M

N
� possible states �K�.

If we sum over a complete set of states �J� and use Eq.
�28�, we obtain

�K��u†u�2�L� = �
J

�K�u†u�J��J�u†u�L�

= �
J

�K�np
k�x1, . . . ,xk��J��J�np

k�x1, . . . ,xk��L�

= �u�u†��K�u†u�L� = 	p
k�x1, . . . ,xk�


�K�np
k�x1, . . . ,xk��L� ,

where

	p
k�x1, . . . ,xk� = „�p�xk� ¯ �p�x1���p

†�x1� ¯ �p
†�xk�… .

From �p�xk�¯�p�x1�= �−1�k�k−1�/2�p�x1�¯�p�xk�, Eq. �7�
gives us

	p
k�x1, . . . ,xk� = det„�p�xi���p

†�xj�… ,

with

„�p�xi���p
†�xj�… = �0��p�xi��p

†�xj��0� = �
n=1

M

�n�xi��n
*�xj� .

The sum over the intermediate states �J� can be much re-
duced because the projected density correlation operators use
only the orbitals from 1 to M. The reasoning leading equa-
tion �15� shows that matrix elements with �J� can be nonzero
only if �J� is a N-body Slater determinant formed from the
orbitals �1 , . . . ,�M. In other words, the sum over J can be
restricted to the finite sum over the � M

N
� states obtained by

choosing N electrons among the M orbitals.
We showed that np

k�x1 , . . . ,xk� is proportional to a projec-
tion operator. To know the number of nonzero eigenvalues of
np

k�x1 , . . . ,xk�, we just have to calculate its trace. We expand
the field operators

tr�np
k�x1, . . . ,xk�� = �

K

�K�np
k�x1, . . . ,xk��K�

= �
m1,. . .,nk

�m1
�xk� ¯ �mk

�x1�


�n1

* �x1� . . . �nk

* �xk��
K

AKK.

According to Eq. �25�, AKK is nonzero if and only if
	m1 , . . . ,mk
� 	i1 , . . . , iN
. This means that k elements of
	i1 , . . . , iN
 are fixed, and it remains to choose N−k elements
among M −k orbitals. In other words,

�
K

AKK = �− 1�k�k−1�/2�M − k

N − k
�det��mp,nq

�

= �M − k

N − k
��bm1

¯ bmk
�bn1

†
¯ bnk

† � .

Therefore,

tr�np
k�x1, . . . ,xk�� = �M − k

N − k
�	p

k�x1, . . . ,xk� ,

and the rank of the projected density correlation operator is
� M−k

N−k
�.

We can summarize our results as follows: the kth pro-
jected density correlation operator is a matrix of dimension
� M

N
� with two eigenvalues 	p

k�x1 , . . . ,xk� and 0, with multi-
plicity � M−k

N−k
� and � M

N
�− � M−k

N−k
�, respectively. As a consequence,

there exists a unitary matrix UK��x1 , . . . ,xk� such that

�K�np
k�x1, . . . ,xk��L� = 	p

k�x1, . . . ,xk� �
�=1

�M−k

N−k
�

UK��x1, . . . ,xk�


UL�
* �x1, . . . ,xk� . �30�
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B. Electron density

The simplest example is the case k=1, for which

	p
1�x� = �

i=1

M

��i�x��2.

The nonzero eigenvalue of np�x� is therefore the charge den-
sity of the closed valence shell. The reason that we have to
consider a projected density is now clear; if we take all pos-
sible orbitals �i.e., M =��, we obtain 	p

1�x�=��0�, which is
infinite.

We can illustrate this result with the case N=2 and M
=3. There are three Slater determinants for the two-particle
states: �1�= 	�1 ,�2
, �2�= 	�1 ,�3
, and �3�= 	�2 ,�3
, where
	�i ,� j
 is the Slater determinant

	�i,� j
�x,y� =
1
�2

��i�x�� j�y� − � j�x��i�y�� .

From the result �18� for AKL, we can calculate the projected
density matrix �K�n�x��L�

n = ���1�2 + ��2�2 �2
*�3 − �1

*�3

�3
*�2 ��1�2 + ��3�2 �1

*�2

− �3
*�1 �2

*�1 ��2�2 + ��3�2
� ,

where we omitted the argument x for notational convenience.
It can be checked that nn=	n, with 	= ��1�2+ ��2�2+ ��3�2.

There is a one-parameter family of solutions for the uni-
tary matrix UK� that diagonalizes n. A simple particular so-
lution is

UK1 =
1

�	���2�2 + ��3�2�
�− �1

*�3,�1
*�2, ��2�2 + ��3�2� ,

UK2 =
1

���2�2 + ��3�2
��2

*,�3
*,0� .

C. Density-density correlation

Let us consider now the density-density correlation
np

2�x ,y�. According to the general result, this is 	p
2�x ,y� times

a projection operator, where

	p
2�x,y� = 	p

1�x�	p
1�y� − ��

n=1

M

�n�x��n
*�y��2

.

Note that by Schwartz’ inequality 	p
2�x ,y��0 and that

	p
2�x ,y�=0 if and only if �n�x�=��n�y� for all n. This is a

general result. The matrix Mij = (�p�xi� ��p
†�xj�) is positive

definite because for any complex numbers �i we have
�ij�i

*Mij� j = �v* �v�= �0�v*v�0�= �v�0��2�0, where v
=�i�i�p

†�xi�. Therefore, its determinant is positive and
	p

k�x1 , . . . ,xk��0.
Note that the structure of the density correlation function

given by Eq. �30� might be relevant to solve the ensemble
N-representability problem for the second-order mixed-state
density matrix �22�.

VIII. CONCLUSION

The split-and-pair method was introduced to express
Wick’s theorem and simplify many-body calculations. It was
used to calculate the matrix elements of many-body opera-
tors between two Slater determinants and to derive a com-
pact expression for the generating function of many-body
matrix elements. It provided an elegant determination of the
eigenvalues of the density correlation functions.

The reader might wonder why the splitting of a normal
product and the pairing of two normal products can lead to
Wick’s theorem and provide a powerful calculation tool. The
key to this mystery is the fact that many-body theory has the
structure of a quantum group. Quantum groups have been
used for some time in molecular spectroscopy �see Ref. 23
for a review and Ref. 24 for recent developments�. They also
play a role in solid-state physics �25–28�. In particular, they
are the basic symmetry of the quantum-Hall effect �29,30�.
These quantum groups are q deformations of Lie algebras.
Recently, it was observed that more general quantum groups
provide a powerful tool for many-body calculations in mo-
lecular and solid-state physics, as well as in quantum-field
theory �4,31,32�. In particular, it was shown that many-body
theory has a natural quantum group structure �4�. The co-
product that we defined is indeed the coproduct of the Hopf
algebra of normal products. The pairing �1 �u� is the counit of
this algebra. The Laplace pairing is also called a co-
quasitriangular structure �33� because it is the dual of the
quasitriangular structure of a quantum group. Wick’s theo-
rem becomes an instance of the Drinfled twist of the comod-
ule algebra of normal products. The idea of using quantum
group concepts to write Wick’s theorem is due to Fauser
�34�. The quantum group structure was used to derive a gen-
eral expression for the time-ordered product of any number
of Wick polynomials in quantum-field theory �4�. The hidden
purpose of the present paper was to show that the quantum
group approach to many-body calculations can be introduced
at an elementary level without explicit reference to the con-
siderable conceptual apparatus of Hopf algebra.
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APPENDIX: ALTERNATIVE FORMULA

In this appendix, we are going to derive the alternative
formula for NKL

0 . But we first need to be able to calculate
derivatives with respect to anticommuting variables.

1. Derivations of �1¯�n

We want to calculate
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�k

��1 ¯ ��k
��1 ¯ �n� , �A1�

where �i and � j are anticommuting variables. We first state
the Leibniz rule when u is the product of m �i and v the
product of any number of �i

�uv
��

=
�u

��
v + �− 1�mu

�v
��

. �A2�

Now we consider Eq. �A1� for k=1, and we use the Leibniz
rule �A2�

���1 ¯ �n�
��1

= �
p=1

n

�− 1�p−1�1 ¯ �p−1
��p

��1
�p+1 ¯ �n,

=�
p=1

n

�− 1�p−1�1 ¯ �p−1�p+1 ¯ �n
��p

��1
,

=�− 1�n−1�



�− 1�
�
�1� ¯ �
�n−1�
��
�n�

��1
,

where the permutations 
 are such that 
�1�� ¯ �
�n
−1�. The second line is obtained from the first line by noting
that ��p /��1 is a commuting variable. At the next order we
have

�2��1 ¯ �n�
��1��2

= �− 1�n−1�



�− 1�

���
�1� ¯ �
�n−1��

��1

��
�n�

��2
,

=− �

�

�− 1�
+����
�1� ¯ ��
�n−2��
���
�n−1�

��1

��
�n�

��2
.

Here � is a permutation of 	
�1� , . . . ,
�n−2�
 such that
�(
�1�)� ¯ ��(
�n−2�). We extend � to a permutation ��
of n numbers by ��(
�i�)=�(
�i�) for i different from n and
��(
�n�)=
�n�. The signature of �� is the signature of �. We
call 
� the composition of �� and 


�2��1 ¯ �n�
��1��2

= − �

�

�− 1�
��
��1� ¯ �
��n−2�
��
��n−1�

��1

��
��n�

��2
,

where 
� is a permutation of 	1, . . . ,n
 such that 
��1�
� ¯ �
��n−2�. A recursive argument gives us

�k��1 ¯ �n�
��1 ¯ ��k

= �− 1�kn−k�k+1�/2�



�− 1�



�
�1� ¯ �
�n−k�
��
�n−k+1�

��1
¯

��
�n�

��k
,

where the permutations 
 are such that 
�1�� ¯ �
�n
−k�. For further application, it is useful to decompose the
permutations 
 as the product of a �n−k ,k� shuffle 
� and a
permutation � of 	
��n−k+1� , . . . ,
��n�
. Since the factors
��
�n−k+i� /��i commute we can rewrite this as

�k��1 ¯ �n�
��1 ¯ ��k

= �− 1�kn−k�k+1�/2�

,�

�− 1�
+���
�1� ¯ �
�n−k��

��
�n−k+1�

����1�
¯

��
�n�

����k�
, �A3�

where 
 is a �n−k ,k� shuffle and � is a permutation of
	1, . . . ,k
.

2. Alternative formula for NKL
0

With the above result, we can obtain an alternative ex-
pression

NKL
0 = exp��

n

�2

��n��̄n
���̄i1

� j1
¯ �̄iN

� jN
� . �A4�

To get this result, we reorder the anticommuting variables
and we expand the exponential in �A4�

NKL
0 = �− 1�N�N−1�/2�

k=0

�
1

k!
i=1

k
�2

��ni
��̄ni

��̄i1
¯ �̄iN

� j1
¯ � jN

� ,

=�− 1�N�N−1�/2�
k=0

�
�− 1�k�k+1�/2

k! �
n1. . .nk

�k

��̄n1
¯ ��̄nk

�k

��n1
¯ ��nk

��̄i1
¯ �̄iN

� j1
¯ � jN

� .

Using now the Leibniz rule, we obtain

NKL
0 = �− 1�N�N−1�/2�

k=0

�
�− 1�k�k+1�/2+kN

k! �
n1. . .nk

�k

��̄n1
¯ ��̄nk


��̄i1
¯ �̄iN

�
�k

��n1
¯ ��nk

�� j1
¯ � jN

� .

We use now equation �A3� to expand the derivations

NKL
0 = �− 1�N�N−1�/2�

k=0

N
�− 1�k�k+1�/2+kN

k! �


�

�− 1�
+
�

�̄i
�1�
¯ �̄i
�N−k�

� j
��1�
¯ � j
��N−k� �

n1. . .nk

�
���

�− 1��+��


��̄i
�N−k+1�

��̄n��1�

¯

��̄i
�N�

��̄n��k�

�� j
��N−k+1�

��n���1�

¯

�� j
��N�

��n���k�

.

The functional derivative of � j
��N−k+i�
with respect to �n���i�

is

� j
��N−k+i�,n���i�
. Thus, the last partial sum can be rewritten

X = �
n1. . .nk

�
���

�− 1��+���i
�N−k+1�,n��1�
¯ �i
�N�,n��k�


� j
��N−k+1�,n���1�
¯ � j
��N�,n���k�

.

For each �, we define mi=n��i�, so that n���i�=m�−1���i�. If we

call �=�−1��, we see that �−1��+��= �−1�� and the variable �
disappears. Therefore, the sum becomes
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X = k! �
m1. . .mk

�
�

�− 1���i
�N−k+1�,m1
¯ �i
�N�,mk


� j
��N−k+1�,m��1�
¯ � j
��N�,m��k�

.

Then we use the fact that i
�N−k+1�� ¯ � i
�N� and
j
��N−k+1�� ¯ � j
��N� to deduce that the only permutation �

which can give a nonzero result is the identity and

X = k!�i
�N−k+1�,j
��N−k+1�
¯ �i
�N�,j
��N�

.

Finally, we reorder

�̄i
�1�
¯ �̄i
�N−k�

� j
��1�
¯ � j
��N−k�

= �− 1��N−k��N−k−1�/2�̄i
�1�
� j
��1�

¯ �̄i
�N−k�
� j
��N−k�

,

and we obtain

NKL
0 = �

k=0

N

�


�

�− 1�
+
�

p=1

N−k

�̄i
�p�
� j
��p�


�i
�N−k+1�,j
��N−k+1�
¯ �i
�N�,j
��N�

,

which is indeed the expression for NKL
0 found in Eq. �23�,

once we replace k by N−k.
It must be admitted that the present derivation does not

share the elegance of the proofs using the split-and-pair
method. In fact, the split-and-pair method can be applied to
partial derivatives, and this yields a much shorter proof of
our last result �35�. However, the present proof was chosen
because it does not require the introduction of still more
concepts of quantum group theory.

�1� G. C. Wick, Phys. Rev. 80, 268 �1950�.
�2� In fact, the tensor product is a little bit more than that because

it is linear: X � �Y +Z�=X � Y +X � Z, �X+Y� � Z=X � Z+Y
� Z, �	X� � Y =X � �	Y�.

�3� M. E. Sweedler, Hopf Algebras �Benjamin, New York, 1969�.
�4� C. Brouder, B. Fauser, A. Frabetti, and R. Oeckl, J. Phys. A

37, 5895 �2004�.
�5� F. D. Grosshans, G.-C. Rota, and J. A. Stein, Invariant Theory

and Superalgebras �American Mathematical Society, Provi-
dence, 1987�.

�6� P. S. Laplace, Hist. Acad. R. Sci. 2, 267 �1772�.
�7� R. Vein and P. Dale, Determinants and their Applications in

Mathematical Physics �Springer, New York, 1999�.
�8� T. Muir, A Treatise on the Theory of Determinants �Dover,

New York, 1960�.
�9� C. Brouder and R. Oeckl, in Mathematical Physics Research

on the Leading Edge, edited by C. Benton �Nova Science,
Hauppauge, NY, 2004�, pp. 63–90.

�10� E. R. Caianiello, Combinatorics and Renormalization in Quan-
tum Field Theory �Benjamin, Reading, 1973�.

�11� A. G. Hall, J. Phys. A 8, 214 �1975�.
�12� P. Danielewicz, Ann. Phys. 152, 239 �1984�.
�13� K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. Rep. 118,

1 �1985�.
�14� I. G. MacDonald, Symmetric Functions and Hall Polynomials,

2nd ed. �Clarendon, Oxford, 1996�.
�15� A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems �McGraw-Hill, Boston, 1971�.
�16� E. K. U. Gross, E. Runge, and O. Heinonen, Many-Particle

Theory �Hilger, London, 1991�.

�17� P. A. Henning, Nucl. Phys. B 337, 547 �1990�.
�18� R. Fauser and H. H. Wolter, Nucl. Phys. B 584, 604 �1995�.
�19� R. Fauser and H. H. Wolter, Nucl. Phys. B 600, 491 �1996�.
�20� S. G. Thikhodeev, Sov. Phys. Dokl. 27, 624 �1982�.
�21� Y. A. Kukharenko and S. G. Tikhodeev, Sov. Phys. JETP 56,

831 �1982�.
�22� R. G. Parr and W.-T. Yang, Density-Functional Theory of At-

oms and Molecules �Oxford University Press, London, 1989�.
�23� P. P. Raychev, in Advances in Quantum Chemistry �Academic

Press, New York, 1995�, vol. 26, pp. 239–357.
�24� D. Bonatsos, B. A. Kotsos, P. P. Raychev, and P. A. Terziev,

Int. J. Quantum Chem. 95, 1 �2003�.
�25� P. B. Wiegmann and A. V. Zabrodin, Phys. Rev. Lett. 72, 1890

�1994�.
�26� F. C. Alcaraz, S. R. Salinas, and W. F. Wreszinski, Phys. Rev.

Lett. 75, 930 �1995�.
�27� M. A. Martin-Delgado and G. Sierra, Phys. Rev. Lett. 76,

1146 �1996�.
�28� F. Bonechi, E. Celeghini, R. Giachetti, E. Sorace, and M. Tar-

lini, Phys. Rev. Lett. 68, 3718 �1992�.
�29� I. I. Kogan, Int. J. Mod. Phys. A 9, 3887 �1994�.
�30� G. Grensing, Phys. Rev. B 61, 5483 �2000�.
�31� P. Cassam-Chenai and F. Patras, J. Math. Phys. 44, 4484

�2003�.
�32� A. C. Hirshfeld and P. Henselder, Ann. Phys. 308, 311 �2003�.
�33� S. Majid, Foundations of Quantum Group Theory �Cambridge

University Press, Cambridge, 1995�.
�34� B. Fauser, J. Phys. A 34, 105 �2001�.
�35� C. Brouder �2003�, e-print arXiv: cond-mat/0309558.

MATRIX ELEMENTS OF MANY-BODY OPERATORS AND… PHYSICAL REVIEW A 72, 032720 �2005�

032720-11


