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The scattering amplitude for positron-hydrogen collisions has been conveniently derived within the frame-
work of distorted-wave theory by approximating the distortion potential in a particular channel as the average
of perturbation of that particular channel over the bound states. A real advantage of this method is that a few
straightforward calculations yield the expression of scattering amplitude as a function of partial wave. The
method has been successfully applied to study 1s-2s excitation of hydrogen atom by positron impact and Ps
�ns� �n=1,2,3� formation in positron-hydrogen collisions in the intermediate and high energy range. Further to
bring the scattering amplitudes in tracktable forms we have formulated an effective and efficient method for
evaluating general three-denominator Lewis integral. The results compare nicely with other theoretical and
experimental results available in the literature.
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I. INTRODUCTION

Most of the theoretical calculations pertaining to the
quantum collisions theory can be broadly classified into two
categories, namely, nonperturbative calculations and pertur-
bative calculations. Variational methods and close-coupling
approximations that are being widely used in atomic colli-
sions problems are of nonperturbative nature. The ability of
such methods of obtaining definitive results of quantum col-
lision phenomena in low and intermediate energy range has
been firmly established over the years. On the other hand,
since the early days of quantum mechanics, attempts have
been made to suitably approximate the series resulting from
the iterative solution of the Lippmann-Schwinger integral
equation so that satisfactory results could conveniently be
obtained. In such a process of approximation, either the wave
function or the actual potential or both are perturbed consid-
ering the features of the system concerned in order to obtain
expressions that can be conveniently evaluated. Born series,
distorted-wave series, the eikonal Born series fall under such
perturbative calculations.

It is well known that the Born series converges too slowly
for direct collisions and is useful in practical calculations in
the high energy range. As a matter of fact all theoretical
calculations converge in Born series at very high energies.
Distorted-wave series, on the other hand, which replace
plane waves in the matrix of collision amplitude converges
more rapidly and has the efficiency for predicting reliable
results in intermediate and high energy region. This effi-
ciency, of course, rests on the fitness of distortion made upon
the wave function or the potential of the concerned system.

Over the past few years, the distorted-wave approxima-
tion �DWA� has been widely applied to calculate scattering
cross sections for electron-atom collisions �1–18�, electron-
molecule collisions �19–22� and positron-atom collisions
�25–30�. The first calculations with this approximation were
carried out by Erskine and Massey �1�. They calculated the
distorted-wave functions by the Kohn variational method to

compute 1s-2s excitation of hydrogen atom by electron im-
pact. Inclusion of distortion had the drastic effect of revers-
ing the relative importance of the symmetric and antisym-
metric cross sections as compared with the Born-
Oppenheimer approximation. Ochkur �2� repeated these
calculations using distorted-waves obtained by accurate nu-
merical solution, with electronic computation, of the integro-
differential equations involved. His results differ substan-
tially from those of Erskine and Massey �1�, particularly at
energies close to the thresholds.

Calculations using distorted-wave approximation, with
full allowance for exchange, have been carried out by Mas-
sey and Moiseiwitch for the excitation of the 2 1S ,2 3S �3�,
and 2 3P �4� states from the ground state of helium atom by
electron impact. Superelastic collisions, in which 2 1S meta-
stable atoms are deactivated to the 2 3S state, have been more
extensively studied by Marriott �5� using distorted-wave
theory. Levenson and Banerjee �23� also carried out a de-
tailed calculation using the full optical distorted-wave for-
mula to calculate the angular distributions of nucleons in-
elastically scattered in reaction C12�p , p��C12* from ground
state �O+� to the first excited state �2+�� at sufficiently high
energies. Later Khashaba and Massey �6� used distorted-
wave theory to calculate 1s-2p excitation cross section of
hydrogen by electron impact.

The first rigorous formulation of the distorted-wave
theory for rearrangement collisions was made by Bassel and
Gerjuoy �24�. Removing the unphysical internuclear Cou-
lomb interaction from the perturbation Hamiltonian they
were able to obtain an elegant expression for arbitrary rear-
rangement collisions. Applying the procedure to the problem
of electron capture by protons in atomic hydrogen in the high
energies they obtained results that are in good agreement
with experiment.

In another development Madison and Shelton �8� applied
the distorted-wave theory for electron-impact excitation of
6s6p 1P1 state of mercury and obtained results for polariza-
tion and differential cross section in accord with the experi-
mental data. They �8� also used this distorted-wave theory to
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calculate the excitation cross section of helium from its
ground state to the 1s2p 1P1 excited state for incident elec-
tron energies between 26.5–300 eV. Madison �13� and Madi-
son et al. �14� further carried forward this work. The authors
reported a second-order distorted-wave calculation �DWB2�
to explicitly sum over all contributing bound states and inte-
grate over all contributing continuum intermediate states.
Calculations were then performed for excitation of the 2p
�15� and 2s �16� states of hydrogen and the exact results
were used to examine the validity of the closure approxima-
tion and the pseudostate approximation.

In case of positron-hydrogen system, Mandal, Guha, and
Sil �25� applied an all-order distorted-wave theory to calcu-
late the ground-state positronium formation. Mandal and
Guha �26� further studied the same system using a first-order
distorted-wave theory. The integrated cross sections obtained
by using these two approximations agree nicely at interme-
diate and high energies.

Later Shakeshaft and Wadehra �27�, with distortion in-
cluded through first order, elaborately studied ground-state-
to-ground-state electron capture by positrons from hydrogen
atom. Their computed cross sections are close to those of
Mandal, Guha, and Sil �25�, and Mandal and Guha �26�.
Subsequently Khan and Ghosh �28� also evaluated the cross
section for the ground-state Ps formation in positron-
hydrogen collisions within the framework of distorted-wave
theory in which total incident wave function was determined
by the polarized orbital methods. Afterward Srivastava et al.
�29� investigated positron-hydrogen system employing a
first-order distorted-wave method which takes into account
long-range effects through the use of a polarization potential.

In a further development of the distorted-wave theory,
Madison, Bray, and McCarthy �17� elaborately demonstrated
the feasibility of the distorted-wave calculations exact to the
second order. Taking into account the second-order exchange
they were able to predict reliable results for elastic electron-
hydrogen scattering above 30 eV and 2s , 2p excitation of
hydrogen atom by electron impact above 50 eV. Later, using
this formulation for positron-hydrogen system, Bubelev and
Madison �30� reported results for elastic and inelastic scat-
tering in the intermediate energy range. Their reported results
were in close agreement with the other available theoretical
calculations.

To gain a deeper understanding of the validity of DWA,
Lee et al. �21� made a comparative study of the distorted-
wave approximation for electron-H2 collisions with the two-
channel Schwinger method. The authors observed a general
good agreement for the excitation cross section of
b 3�a

+ ,a 3�g
+, and c 3�a between both theories for the inci-

dent energies above 20 eV.
In a recent study, Colgan et al. �31� carried out distorted-

wave calculations for the electron-impact ionization of
atomic ions in the Mn isonuclear sequence. Of late, Zhangjin
et al. �18� analyzed the triple differential cross sections for
ionization of atomic hydrogen by electron impact in the case
of coplanar, asymmetric geometry within the framework of
second-order theory. They found that the second-order calcu-
lations represented a marked improvement over the results
obtained from the first-order theories for higher impact ener-
gies above 150 eV.

The objective of the present study is to formulate a viable
scheme within the framework of the distorted wave theory
that may be equally applicable to direct and rearrangement
collisions processes at intermediate and high energies. As
simple applications we study positron impact excitation of
atomic hydrogen and positronium formation in hydrogen.

In Sec. II we develop the underlying theory and in Sec. III
we apply this theory to the following processes:

�i� 1s-2s excitation of atomic hydrogen by positron im-
pact,

�ii� Ps�ns� �n=1,2,3� formation in positron-hydrogen
collisions.

The concluding remarks are made in Sec. IV and finally in
the Appendixes we present an effective and efficient method
for evaluating a general three-denominator Lewis integral to
bring the scattering amplitudes in a tractable form.

II. THEORY

We denote the incident positron as particle 1, the bound
electron as particle 2, and the proton as particle 3, considered
to be infinitely heavy at the center of the coordinate system
�Fig. 1�. Neglecting a very small correlation �of the order
electron mass and/or proton mass�, the positron-proton inter-
action only depends on the coordinate r1 and as such cannot
induce a transition in the internal state of the target atom.
The basic interaction responsible for such a transition in the
internal state of the atom is the positron-electron correlation.
In other words, if the positron-electron interaction is turned
off, the internal state of the atom will remain the same. The
only effect of the positron-proton interaction is to deflect the
incident positron. Since the mass of the proton is very large
compared to that of the positron and electron �1836:1�, this
deflection is of appreciable measure for low incident positron
energy and consequently indirectly influences the internal
structure of the atom. But with the increase in the incident
positron energy this effect gradually slows down and hardly
affects the probability of transition of the internal state of the
atom in the intermediate and high energies. For electron cap-
ture at high energies, Shakeshaft et al. �27� has shown that
the first and second order Born terms involving positron-
proton interaction very nearly cancel. For heavy projectile at
high energies it can be rigorously �37,38� proved that the
electron capture cross sections is independent of projectile-
proton interaction. It now appears legitimate to neglect the
positron-proton interaction at intermediate and high energies
to make our study more convenient. This is achieved by the

FIG. 1. Coordinate representation of positron-hydrogen
system.
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so-called distorted-wave method which provides convenient
means of removing the internuclear Coulomb interaction
from the perturbation whose matrix element yields the cross
sections. As a matter of fact the positron-proton interaction
as well as all its dependence can conveniently be removed
using the distortion potential as proposed by Bassel and Ger-
juoy �24�. They chose the distortion potential in the initial
channel as the average of actual perturbation of the initial
channel with respect to the initial bound states and the dis-
tortion potential in the final channel as the average of actual
perturbation of the final channel with respect to the final
bound states. In other words, the distortion potential in the
initial and final channels are the average �over internal mo-
tions� static interactions between the initial aggregates and
final aggregates, respectively. With such a choice of the dis-
tortion potential, it can be shown that any term, in the actual
potential, depending on r1 only will not appear in the effec-
tive perturbations, the difference of actual and distortion po-
tentials.

If H denotes the full Hamiltonian of the scattering system,
it can be expressed in terms of the channel Hamiltonians as

H = Hi + Vi = Hf + Vf

such that

Hi�i = Ei�i, Hf� f = Ef� f ,

where �i ,� f are the plane-wave states belonging to the
Hamiltonians Hi and Hf in the incident and final channel,
respectively, with residual interactions Vi and Vf having en-
ergies Ei and Ef,

E� =
�2

2��

k�
2 + �� �� = i, f� .

Here ��i ,� f� , ��ki ,�kf� are, respectively, the eigenenergies of
bound states and positron momenta in the �incident, final�
channels, whereas ��i ,� f� are the reduced masses for the
center of mass motion in the scattering system.

The energy conservation requires that, on the energy shell,
Ei=Ef =E, the total energy of the system. The Green’s opera-
tors are defined as

Gi
± =

1

E − Hi ± i�
, Gf

± =
1

E − Hf ± i�
, G± =

1

E − H ± i�
,

the full scattering wave functions, �	i
+� , �	 f

−� for the incident
and final channels satisfy the Lippmann-Schwinger integral
equations,

�	i
+� = ��i� + Gi

+Vi�	i
+�

and

�	 f
−� = �� f� + �	 f

−�Gf
−Vf .

The post and prior forms of the transition matrix from bound
state i in the initial channel to the state f in the final channel
may now be defined, on the energy shell, as

Tfi
�post��k� f, k�i� = �� f�Vf�	i

+� and Tfi
�prior��k� f, k�i� = �	 f

−�Vi��i�

and hence the the scattering amplitude Afi�k� f , k�i� is given by

Afi�k� f, k�i� = 	−
� f

2


Tfi

�post��k� f, k�i� = 	−
� f

2


�� f�Vf�	i

+�

�1�

=	−
� f

2


Tfi

�prior��k� f,k�i� = 	−
� f

2


�	 f

−�Vi��i� .

�2�

We now split the interactions Vi and Vf as

Vi = Ui + �Vi − Ui� and Vf = Uf + �Vf − Uf� .

The distorted-wave method is charaterised by the potential
Ui and Uf, called distortion potentials. Judicial approxima-
tion of these potentials, which represents the dynamics of the
scattering mechanism appropriately produces accurate re-
sults. As proposed earlier, we choose the potentials Ui, and
Uf, following Bassel and Gerjuoy �24�, as

Ui = ��i�Vi��i� , �3�

Uf = �� f�Vf�� f� , �4�

where �i ,� f are the bound state wave functions in the initial
and final channel, respectively, and the integration is per-
formed over the bound state coordinates. These types of po-
tential basically account for the rearrangement flux property
and is most appropriate for rearrangement collisions, because
we have neglected the positron-proton interaction. Now
when this rearrangement problem is viewed as an inverse
scattering problem such that a positronium is incident on a
proton the assumption that the positron-proton interaction is
negligible is quite natural to get the positron-hydrogen sys-
tem. However satisfactory results for inelastic collisions are
also to be expected by such potentials. With such choices of
Ui and Uf it can be easily verified that the effective pertur-
bations Vi−Ui and Vf −Uf are independent of the term 1/r1.
For instance, for normalized �i,

Vi − Ui = V2 + V3 − ��i�V2 + V3��i�

= V2 + V3 − ��i�V2��i� − ��i�V3��i�

= V2 + V3 − V2 − ��i�V3��i�

= V3 − ��i�V3��i� .

With such approximations, the eigenfunctions ��i
+� , �� f

−�,
called, respectively, the “distorted waves” by the potentials
Ui and Uf, of �Hi+Ui� , �Hf +Uf� satisfy the equations

��i
+� = ��i� +

1

E − Hi + i�
Ui��i

+� , �5�

�� f
−� = �� f� +

1

E − Hf + i�
Uf�� f

−� . �6�

With some algebraic manipulation it can be shown �36� that
the transition matrix elements are expressed in the forms
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Tfi
�post��k� f,k�i� = �� f

−�Vf − Uf��i
+� �7�

and

Tfi
�prior��k� f,k�i� = �� f

−�Vi − Ui��i
+� . �8�

Now replacing �i
+ and � f

− by �i and � f in Eqs. �5� and �6�,
respectively, we obtain

��i
+� = ��i� +

1

E − Hi + i�
Ui��i� = ��i� + Gi

+Ui��i� , �9�

�� f
−� = �� f� +

1

E − Hf + i�
Uf�� f� = �� f� + Gf

−Uf�� f� ,

�10�

which are then used in the expressions of Tfi in Eqs. �7� and
�8�. Thus our distorted-wave scattering amplitude finally be-
comes

Afi�k� f,k�i� = 	−
� f

2


�� f

−�Vf − Uf��i
+� �post form� �11�

=	−
� f

2


�� f

−�Vi − Ui��i
+� �prior form� ,

�12�

where ��i
+� and �� f

−� satisfy Eqs. �9� and �10�, respectively.

III. APPLICATIONS

A. 1s-2s excitation of atomic hydrogen by positron impact

Using the prior form of the T-matrix of Eq. �8� we have

Tfi�k� f,k�i� = �� f
−�Vi − Ui��i

+�

= �� f + Gf
−Uf� f�Vi − Ui��i + Gi

+Ui�i�

= �� f�Vi��i� − �� f�Ui��i� + �� f�Vi�Gi
+Ui�i�

− �� f�Ui�Gi
+Ui�i� + �Gf

−Uf� f�Vi��i�

− �Gf
−Uf� f�Ui��i� + �Gf

−Uf� f�Vi − Ui�Gi
+Ui�i� .

�13�

It can be easily verified that making use of post form brings
about the same expression. For the case under consideration,
we have in a.u.,

Ui = ��i�Vi��i� = ��1s�Vi��1s� = 	 1

r1
+ 
i
e−�r1,

Uf = �� f�Vf�� f�

= ��2s�Vf��2s�

=
1

8
�8 + 6
ir1 + 2
i

2r1
2 + 
i

3r1
3�e−
ir1,

where Vi=Vf = ��1/r1�− �1/r12��, r�12=r�2−r�1 ,�1s

=�
i
3 /
e−
ir2, �2s=1/�32
�2−
ir2�e−
fr2, 
 f =
i /2, �

=2
i, 
i=1. The plane wave states in the incident and the
final channels are given by

�i�r�1,r�2� = eik�i·r�1�1s�r�2� and � f�r�1,r�2� = eik� f·r�1�2s�r�2� .

�� f�Ui��i� therefore vanishes due to orthogonality of �i and
� f.

We now use the bilinear form of Green’s function in Eq.
�13� as

Gi
+�r�1,r�2;r�1�,r�2�� =

1

�2
�3

��
�
� dk��

�r�1,r�2���� � � ����r�1�,r�2��
E − E�� + i�

�14�

in which the intermediate plane-wave states ����� belong to
the incident channel Hamiltonian Hi. In this calculation, we
have included only �=100 intermediate state of hydrogen.
Thus we have neglected contribution from transition to an
intermediate excited state followed by superelastic scattering
from that state. We thus obtain

Tfi�k� f,k�i� = �� f�Vi��i� +
1

�2
�3�
�
� dk��

E − E�� + i�
�� f�Vi����������Ui��i� −

1

�2
�3�
�
� dk��

E − E�� + i�
�� f�Ui����������Ui��i�

+ 	 1

�2
�3�
�
� dk��

E − E�� + i�
��i�Vi����������Uf�� f�
*

− 	 1

�2
�3�
�
� dk��

E − E�� + i�
��i�Ui����������Uf�� f�
*

+
1

�2
�6�
�

�
�
� dk��

E − E�� + i�
� dk��

E − E�� + i�
������Vi − Ui��������� �Uf�� f��*�����Ui��i� �15�

or
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Tfi�k� f,k�i� = �� f�Vi��i� +
1

�2
�3�
�
� dk��

E − E�� + i�
�� f�Vi�����

������Ui��i� , �16�

where *denotes the complex conjugate of the respective

terms in angle brackets and the last four terms of Eq. �15�
vanish due to the orthogonality of hydrogenic states. It is to
be noted that the appearance of the residual interaction Vi in
Eqs. �15� and �16� is an outcome of splitting Vi−Ui as in Eq.
�13�. That Vi−Ui does not involve the positron-proton inter-
action is explained below Eq. �4�.

Now using the relations of the amplitudes such as

TABLE I. The present partial-wave contributions to the 1s-2s
excitation cross section in units of �
a0

2� of hydrogen atom in
e+-hydrogen collisions in the energy range 20–300 eV. The notation
x�−y� stands for x�10−y. � includes all significant partial-wave
contributions.

Energy �eV�

l 20.0 30.0 40.0 54.4 75.0

0 0.1865 0.959�−1� 0.561�−1� 0.305�−1� 0.157�−1�
1 0.761�−1� 0.665�−1� 0.509�−1� 0.349�−1� 0.219�−1�
2 0.188�−1� 0.288�−1� 0.289�−1� 0.248�−1� 0.187�−1�
3 0.322�−2� 0.899�−2� 0.122�−1� 0.134�−1� 0.124�−1�
4 0.439�−3� 0.228�−2� 0.424�−2� 0.608�−2� 0.699�−2�
5 0.519�−4� 0.503�−3� 0.129�−2� 0.243�−2� 0.351�−2�
6 0.557�−5� 0.101�−3� 0.358�−3� 0.888�−3� 0.161�−2�
7 0.188�−4� 0.925�−4� 0.303�−3� 0.697�−3�
8 0.333�−5� 0.227�−4� 0.982�−4� 0.286�−3�
9 0.532�−5� 0.305�−4� 0.113�−3�
10 0.121�−5� 0.917�−5� 0.431�−4�
11 0.268�−5� 0.160�−4�
12 0.580�−5�
13 0.206�−5�

� 0.2852 0.2031 0.1541 0.1135 0.0821

Energy �eV�

l 100.0 150.0 200.0 250.0 300.0

1 0.860�−2� 0.363�−2� 0.197�−2� 0.122�−2� 0.828�−3�
2 0.138�−1� 0.688�−2� 0.407�−2� 0.268�−2� 0.190�−2�
3 0.134�−1� 0.769�−2� 0.493�−2� 0.342�−2� 0.251�−2�
4 0.103�−1� 0.692�−2� 0.485�−2� 0.356�−2� 0.272�−2�
5 0.679�−2� 0.543�−2� 0.418�−2� 0.327�−2� 0.261�−2�
6 0.402�−2� 0.386�−2� 0.330�−2� 0.276�−2� 0.231�−2�
7 0.219�−2� 0.255�−2� 0.243�−2� 0.218�−2� 0.192�−2�
8 0.112�−2� 0.159�−2� 0.170�−2� 0.164�−2� 0.152�−2�
9 0.551�−3� 0.951�−3� 0.114�−2� 0.118�−2� 0.116�−2�
10 0.259�−3� 0.547�−3� 0.734�−3� 0.826�−3� 0.855�−3�
11 0.118�−3� 0.306�−3� 0.461�−3� 0.561�−3� 0.614�−3�
12 0.523�−4� 0.166�−3� 0.282�−3� 0.372�−3� 0.431�−3�
13 0.227�−4� 0.885�−4� 0.169�−3� 0.241�−3� 0.297�−3�
14 0.963�−5� 0.462�−4� 0.997�−4� 0.154�−3� 0.201�−3�
15 0.402�−5� 0.238�−4� 0.578�−4� 0.968�−4� 0.134�−3�
16 0.166�−5� 0.120�−4� 0.330�−4� 0.600�−4� 0.881�−4�
� 0.0613 0.0407 0.0304 0.0243 0.0202

TABLE II. Present differential cross sections for the 1s-2s ex-
citation atomic hydrogen by positron impact, in a.u. The notation
x�−y� stands for x�10−y.

Angle
�deg�

Energy �eV�

20.0 30.0 40.0 75.0 150.0

0 5.14�−1� 6.74�−1� 7.53�−1� 8.63�−1� 9.25�−1�
5 5.04�−1� 6.52�−1� 7.17�−1� 7.80�−1� 7.50�−1�
10 4.77�−1� 5.89�−1� 6.21�−1� 5.83�−1� 4.17�−1�
15 4.35�−1� 5.01�−1� 4.93�−1� 3.71�−1� 1.77�−1�
20 3.85�−1� 4.03�−1� 3.64�−1� 2.99�−1� 6.52�−2�
25 3.31�−1� 3.10�−1� 2.54�−1� 1.10�−1� 2.31�−2�
30 2.77�−1� 2.30�−1� 1.70�−1� 5.62�−2� 8.65�−3�
35 2.28�−1� 1.67�−1� 1.11�−1� 2.89�−2� 3.64�−3�
40 1.85�−1� 1.19�−1� 7.22�−1� 1.55�−2� 1.78�−3�
45 1.48�−1� 8.50�−2� 4.73�−2� 8.81�−3� 1.00�−3�
50 1.18�−1� 6.10�−2� 3.17�−2� 5.41�−3� 6.31�−4�
55 9.47�−2� 4.43�−2� 2.18�−2� 3.57�−3� 4.29�−4�
60 7.61�−2� 3.29�−2� 1.56�−2� 2.51�−3� 3.08�−4�
65 6.16�−2� 2.50�−2� 1.16�−2� 1.86�−3� 2.29�−4�
70 5.04�−2� 1.94�−2� 8.89�−2� 1.43�−3� 1.76�−4�
75 4.17�−2� 1.55�−2� 7.05�−3� 1.14�−3� 1.38�−4�
80 3.51�−2� 1.27�−2� 5.75�−3� 9.24�−4� 1.10�−4�
85 2.99�−2� 1.06�−2� 4.80�−3� 7.64�−4� 9.00�−5�
90 2.58�−2� 9.09�−3� 4.08�−3� 6.43�−4� 7.50�−5�
95 2.26�−2� 7.88�−3� 3.53�−3� 5.48�−4� 6.30�−5�
100 2.01�−2� 6.94�−3� 3.10�−3� 4.73�−4� 5.40�−5�
105 1.80�−2� 6.19�−3� 2.75�−3� 4.13�−4� 4.60�−5�
110 1.64�−2� 5.58�−3� 2.46�−3� 3.65�−4� 4.00�−5�
115 1.50�−2� 5.09�−3� 2.23�−3� 3.25�−4� 3.60�−5�
120 1.39�−2� 4.68�−3� 2.04�−3� 2.93�−4� 3.20�−5�
125 1.29�−2� 4.33�−3� 1.87�−3� 2.66�−4� 2.90�−5�
130 1.22�−2� 4.05�−3� 1.74�−3� 2.44�−4� 2.70�−5�
135 1.15�−2� 3.81�−3� 1.63�−3� 2.26�−4� 2.40�−5�
140 1.10�−2� 3.61�−3� 1.53�−3� 2.11�−4� 2.30�−5�
145 1.05�−2� 3.44�−3� 1.46�−3� 1.99�−4� 2.10�−5�
150 1.02�−2� 3.30�−3� 1.39�−3� 1.89�−4� 2.00�−5�
155 9.86�−3� 3.19�−3� 1.34�−3� 1.81�−4� 1.90�−5�
160 9.62�−3� 3.11�−3� 1.30�−3� 1.75�−4� 1.90�−5�
165 9.44�−3� 3.04�−3� 1.27�−3� 1.70�−4� 1.80�−5�
170 9.32�−3� 2.99�−3� 1.25�−3� 1.67�−4� 1.80�−5�
175 9.24�−3� 2.96�−3� 1.24�−3� 1.65�−4� 1.80�−5�
180 9.22�−3� 2.96�−3� 1.23�−3� 1.64�−4� 1.80�−5�
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gB�k� f, k�i� = 	−
2


� f

−1

�� f�Vi��i�, f f��k� f, k�i�

= 	−
2


��

−1

�� f�Vi�����, etc.,

we obtain from Eq. �16�,

Afi�k� f, k�i� = gB�k� f, k�i� + Dfi�k� f, k�i� , �17�

where

Dfi�k� f, k�i� =
1

�2
�3�
�
	−

2


��



�� dk��

E − E�� + i�
f f��k� f, k�i�f�i�k� f, k�i� . �18�

It is not convenient to evaluate the amplitude �17� as a func-
tion of the scattering angle in threedimensions. We would
rather perform the partial-wave analysis on this amplitude to
reduce it to a form amenable for computations by expanding
both sides of Eq. �17� as

Afi�k� f, k�i� =
4


�kikf
�
l,m

Afi
l �kf, ki�Ylm�k̂f�Ylm

* �k̂i� , �19�

gB�k� f, k�i� =
4


�kikf
�
l,m

gB
l �kf, ki�Ylm�k̂f�Ylm

* �k̂i� , �20�

and similarly for the other amplitudes. On multiplication

with YL0
* �k̂f� and integration over k̂f, one obtains with using

TABLE III. Integrated cross section for e++H�1s�→e++H�2s�,
in units of 
a0

2.

Energy �eV� 54.4 100.0 200.0 300.0

Present 0.1135 0.0613 0.0304 0.0202

CCPAa 0.127 0.061 0.030 0.020

UEBS1b 0.061 0.030

CCOMc 0.124 0.080 0.040

Pseudomodeld 0.072 0.049 0.027

21-state CCAe 0.126

First Born 0.102 0.058 0.030 0.020

aCCPA, close-coupled pseudostate approximation by Walters �32�.
bUEBS1, unitarized eikonal-Born series �version 1�, Byron et al.
�33�.
cCCOM, coupled-channel optical model, Bransden et al. �34�.
dPseudomodel by Mukherjee et al. �39�.
e21-state close coupling approximation, Morgan �35�.

FIG. 2. Differential cross section for e++H�1s�→e++H�2s� at
�a� 54.4 eV, �b� 100.0 eV, and �c� 200.0 eV. Solid line, present
results; dashed line, cross sections, Ref. �32�; dotted line, DWB2D,
Ref. �30�.

FIG. 3. Total 1s-2s excitation cross section of hydrogen atom in
positron-hydrogen collisions in the energy range 20–300 eV. Open
square, present results; open circle, Kernohgan et al. �41�
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the orthogonal properties of the spherical harmonicss,

� YL0
* �k̂f��Afi�k� f,k�i��dk̂f =

4


�kfki

�Afi
�L��kf,ki��YL0

* �k̂i� ,

�21�

and similar other expressions. On choosing the direction of

incidence along the Z axis, one has k�i= �0,0 ,ki� , k̂i . k̂f

=cos � f , ŶL0�k̂f�=��2L+1� /4
PL�cos � f�dk̂f =sin � fd� fd� f,

thus on integration over � f, the partial-wave scattering am-
plitude is obtained as

�Afi
�L��kf, ki�� = �kikf/2�

−1

+1

�Afi�k� f,k�i��PL�cos � f�d�cos � f� .

�22�

Other amplitudes are all analyzed similarly. In order to per-
form the partial-wave analysis of the amplitude involving the

TABLE IV. Present partial-wave contributions to the ground state Ps formation cross section in units of
�
a0

2� in e+-hydrogen collisions in the energy range 20–300 eV. The notation x�−y� stands for x�10−y

includes all significant partial-wave contributions.

Energy �eV�

l 20.0 25.0 35.0 50.0 75.0

0 0.9862 0.4981 0.1782 0.5674�−1� 0.1373�−1�
1 0.2138 0.1183 0.4090�−1� 0.1130�−1� 0.2275�−2�
2 0.8562 0.5298 0.2133 0.6764�−1� 0.1528�−1�
3 0.7875 0.5661 0.2694 0.9638�−1� 0.2374�−1�
4 0.4642 0.3898 0.2206 0.8971�−1� 0.2431�−1�
5 0.2189 0.2149 0.1449 0.6717�−1� 0.2013�−1�
6 0.9008�−1� 0.1034 0.8314�−1� 0.4397�−1� 0.1461�−1�
7 0.3377�−1� 0.4531�−1� 0.4347�−1� 0.2626�−1� 0.9691�−2�
8 0.1182�−1� 0.1855�−1� 0.2124�−1� 0.1467�−1� 0.6016�−2�
9 0.3926�−2� 0.7208�−2� 0.9850�−2� 0.7778�−2� 0.3550�−2�
10 0.1251�−2� 0.2686�−2� 0.4383�−2� 0.3960�−2� 0.2012�−2�
11 0.3850�−3� 0.9677�−3� 0.1886�−2� 0.1950�−2� 0.1104�−2�
12 0.1152�−3� 0.3389�−3� 0.7889�−3� 0.9339�−3� 0.5889�−3�
13 0.3365�−4� 0.1159�−3� 0.3223�−3� 0.4369�−3� 0.3070�−3�
14 0.9630�−5� 0.3880�−4� 0.1290�−3� 0.2003�−3� 0.1569�−3�

� 3.6682 2.4956 1.2327 4.8912�−1� 1.3764�−1�

Energy �eV�

l 100.0 150.0 200.0 250.0 300.0

0 0.4610�−2� 0.8749�−3� 0.2463�−3� 0.8765�−4� 0.3647�−4�
1 0.6801�−3� 0.1137�−3� 0.3017�−4� 0.1046�−4� 0.4332�−5�
2 0.4813�−2� 0.8334�−3� 0.2216�−3� 0.7610�−4� 0.3101�−4�
3 0.7754�−2� 0.1380�−2� 0.3698�−3� 0.1272�−3� 0.5181�−4�
4 0.8299�−2� 0.1535�−2� 0.4180�−3� 0.1449�−3� 0.5923�−4�
5 0.7214�−2� 0.1397�−2� 0.3882�−3� 0.1361�−3� 0.5600�−4�
6 0.5512�−2� 0.1122�−2� 0.3191�−3� 0.1133�−3� 0.4703�−4�
7 0.3854�−2� 0.8261�−3� 0.2410�−3� 0.8686�−4� 0.3638�−4�
8 0.2524�−2� 0.5710�−3� 0.1711�−3� 0.6260�−4� 0.2649�−4�
9 0.1573�−2� 0.3757�−3� 0.1157�−3� 0.4303�−4� 0.1840�−4�
10 0.9416�−3� 0.2378�−3� 0.7527�−4� 0.2847�−4� 0.1231�−4�
11 0.5458�−3� 0.1458�−3� 0.4747�−4� 0.1825�−4� 0.7981�−5�
12 0.3078�−3� 0.8702�−4� 0.2915�−4� 0.1140�−4� 0.5042�−5�
13 0.1697�−3� 0.5076�−4� 0.1750�−4� 0.6966�−5� 0.3116�−5�
14 0.9169�−4� 0.2902�−4� 0.1030�−4� 0.4172�−5� 0.1888�−5�
� 4.8977�−2� 9.6092�−3� 2.7119�−3� 9.6213�−4� 3.9964�−4�
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pole term 1/ �E−E��± i��, we split it into a �-function part and
a principal-value part,

1/�E − E�� ± i�� = � i
��E − E��� + P
1

E − E��
. �23�

We thus get Dfi�k� f ,k�i� as

Dfi
�L��kf, ki� = i�

�

f f�
�L��kf, k��f�i

�L��k�,ki�

−
2



�
�

P�
0

� k�dk�

k�
2 − k�

2 f f�
�L��kf, k��f�i

�L��k�, ki�

= �Dfi
�r�,Dfi

�i�� . �24�

TABLE V. Present partial-wave contributions to the Ps�2s� and Ps�3s� formation cross section in units of �
a0
2� in e+-hydrogen collisions

in the energy range 20–300 eV. The notation x�−y� stands for x�10−y. � includes all significant partial-wave contributions.

Reaction: e++H�1s�→Ps�2s�+H+

Energy �eV�

l 20.0 50.0 75.0 100.0 200.0 300.0

0 0.2130 0.8360�−2� 0.1971�−2� 0.6503�−3� 0.3304�−4� 0.4480�−5�
1 0.7882�−2� 0.1338�−2� 0.2781�−3� 0.8429�−4� 0.4042�−5� 0.6726�−6�
2 0.6038�−1� 0.9393�−2� 0.2167�−2� 0.6801�−3� 0.3225�−4� 0.4419�−5�
3 0.4733�−1� 0.1366�−1� 0.3493�−2� 0.1140�−2� 0.5401�−4� 0.7356�−5�
4 0.2189�−1� 0.1274�−1� 0.3600�−2� 0.1232�−2� 0.5971�−4� 0.8337�−5�
5 0.7920�−2� 0.9441�−2� 0.3040�−2� 0.1089�−2� 0.5524�−4� 0.7918�−5�
6 0.2478�−2� 0.6179�−2� 0.2197�−2� 0.8311�−3� 0.4663�−4� 0.6704�−5�
7 0.7019�−3� 0.3591�−2� 0.1499�−2� 0.5996�−3� 0.3592�−4� 0.5292�−5�
8 0.1846�−3� 0.2025�−2� 0.9161�−3� 0.3939�−3� 0.2537�−4� 0.3853�−5�
9 0.4576�−4� 0.1027�−2� 0.5471�−3� 0.2503�−3� 0.1746�−4� 0.2609�−5�
10 0.1079�−4� 0.5268�−3� 0.3110�−3� 0.1464�−3� 0.1174�−4� 0.1734�−5�
11 0.2438�−5� 0.2563�−3� 0.1679�−3� 0.8434�−4� 0.7197�−5� 0.1176�−5�
12 0.1123�−3� 0.9803�−4� 0.5254�−4� 0.4240�−5�
13 0.5857�−4� 0.4378�−4� 0.2728�−4� 0.2733�−5�
14 0.2276�−4� 0.2399�−4� 0.1509�−4� 0.1667�−5�

� 3.6178�−1� 6.8746�−2� 2.0375�−2� 7.2910�−3� 3.9307�−4� 5.6380�−5�

Reaction: e++H�1s�→Ps�3s�+H+

Energy �eV�

l 20.0 50.0 75.0 100.0 200.0 300.0

0 0.2667�−1� 0.2893�−2� 0.7838�−3� 0.2668�−3� 0.9430�−5� 0.1040�−5�
1 0.5381�−2� 0.2825�−3� 0.4647�−4� 0.1184�−4� 0.1460�−5� 0.4100�−6�
2 0.1738�−1� 0.2716�−2� 0.5546�−3� 0.1751�−3� 0.9300�−5� 0.1679�−5�
3 0.1155�−1� 0.3861�−2� 0.9444�−3� 0.3055�−3� 0.1545�−4� 0.2508�−5�
4 0.4781�−2� 0.3786�−2� 0.1071�−2� 0.3554�−3� 0.1844�−4� 0.2740�−5�
5 0.1574�−2� 0.2780�−2� 0.9290�−3� 0.3295�−3� 0.1781�−4� 0.2517�−5�
6 0.4511�−3� 0.1837�−2� 0.6882�−3� 0.2646�−3� 0.1453�−4� 0.2100�−5�
7 0.1175�−3� 0.1082�−2� 0.4044�−3� 0.1714�−3� 0.1075�−4� 0.1618�−5�
8 0.2850�−4� 0.5436�−3� 0.2745�−3� 0.1137�−3� 0.7790�−5� 0.1168�−5�
9 0.6550�−5� 0.3639�−3� 0.1681�−3� 0.6805�−4� 0.5257�−5�
10 0.1420�−5� 0.1293�−3� 0.1149�−3� 0.5280�−4� 0.3398�−5�
11 0.8010�−4� 0.5087�−4� 0.3430�−4� 0.2279�−5�
12 0.3464�−4� 0.1478�−4� 0.1185�−4� 0.1550�−5�
13 0.1233�−4� 0.2208�−4� 0.5860�−5�
14 0.1726�−4� 0.9230�−5� 0.3890�−5�

� 6.7938�−2� 2.0431�−2� 6.0812�−3� 2.1775�−3� 1.1923�−4� 1.8110�−4�
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In terms of these amplitudes, the partial-wave form of the
distorted wave amplitude is given as

Afi
�L��kf, ki� = gB

�L��kf, ki� + Dfi
�L��kf, ki� �25�

which is a function of the scattering energies for any partial
wave L.

1. Results and discussion:

We have calculated the distorted-wave amplitudes for 1s
-2s excitation using the relation �25�. The evaluation of the
single-dimensional principal-value integral over �0,�� can
be performed quite accurately by splitting the range into in-
tervals �0,2k�� and �2k� ,��. Then we use Gauss Legendre
quadrature of even number of points for the first interval
�0,2k�� such that the principal-value integral is defined char-
acteristically as

TABLE VI. Present differential cross sections �a.u.� for the reactions e++H�1s�→Ps�n�s�+ p. The notation x�−y� stands for x�10−y.

Reactions e++H�1s�→Ps�1s�+ p e++H�1s�→Ps�2s�+ p e++H�1s�→Ps�3s�+ p

Angle �deg� 50 eV 100 eV 50 eV 100 eV 50 eV 100 eV

0.0 0.1023�2� 0.1459�1� 0.1394�1� 0.2238 0.4036 0.6500�−1�
5.0 0.8234�1� 0.1086�1� 0.1128�1� 0.1655 0.3259 0.4769�−1�

10.0 0.4335�1� 0.4567 0.6002 0.6836�−1� 0.1723 0.1912�−1�
15.0 0.1490�1� 0.1087 0.2084 0.1568�−1� 0.5872�−1� 0.4044�−2�
20.0 0.2962 0.1048�−1� 0.4132�−1� 0.1360�−2� 0.1101�−1� 0.2440�−3�
25.0 0.1250�−1� 0.3190�−3� 0.1567�−2� 0.8100�−4� 0.2800�−3� 0.7800�−4�
30.0 0.1705�−1� 0.5026�−2� 0.2770�−2� 0.8300�−3� 0.1140�−2� 0.3650�−3�
35.0 0.6026�−1� 0.8039�−2� 0.9325�−2� 0.1254�−2� 0.3255�−2� 0.4930�−3�
40.0 0.8422�−1� 0.8546�−2� 0.1289�−1� 0.1297�−2� 0.4320�−2� 0.4880�−3�
45.0 0.8896�−1� 0.7842�−2� 0.1353�−1� 0.1169�−2� 0.4454�−2� 0.4310�−3�
50.0 0.8342�−1� 0.6786�−2� 0.1261�−1� 0.9980�−3� 0.4113�−2� 0.3610�−3�
55.0 0.7406�−1� 0.5750�−2� 0.1113�−1� 0.8350�−3� 0.3607�−2� 0.2980�−3�
60.0 0.6421�−1� 0.4856�−2� 0.9593�−2� 0.6980�−3� 0.3095�−2� 0.2310�−3�
65.0 0.5527�−1� 0.4124�−2� 0.8200�−2� 0.5960�−3� 0.2638�−2� 0.1630�−3�
70.0 0.4763�−1� 0.3534�−2� 0.7018�−2� 0.5010�−3� 0.2252�−2� 0.2000�−3�
75.0 0.4130�−1� 0.3062�−2� 0.6042�−2� 0.4190�−3� 0.1936�−2� 0.1740�−3�
80.0 0.3612�−1� 0.2681�−2� 0.5245�−2� 0.3920�−3� 0.1667�−2� 0.1030�−3�
85.0 0.3189�−1� 0.2373�−2� 0.4601�−2� 0.3110�−3� 0.1501�−2� 0.1610�−3�
90.0 0.2843�−1� 0.2122�−2� 0.4064�−2� 0.3120�−3� 0.1346�−2� 0.8000�−4�
95.0 0.2559�−1� 0.1915�−2� 0.3657�−2� 0.2460�−3� 0.1055�−2� 0.1150�−3�

100.0 0.2324�−1� 0.1743�−2� 0.3257�−2� 0.2490�−3� 0.1148�−2� 0.7500�−4�
105.0 0.2129�−1� 0.1600�−2� 0.3026�−2� 0.2200�−3� 0.9820�−3� 0.6300�−4�
110.0 0.1965�−1� 0.1479�−2� 0.2747�−2� 0.1870�−3� 0.6710�−3� 0.1000�−3�
115.0 0.1828�−1� 0.1377�−2� 0.2486�−2� 0.2010�−3� 0.1106�−2� 0.5400�−4�
120.0 0.1713�−1� 0.1291�−2� 0.2422�−2� 0.1740�−3� 0.7780�−3� 0.5100�−4�
125.0 0.1614�−1� 0.1218�−2� 0.2282�−2� 0.1490�−3� 0.4950�−3� 0.8200�−4�
130.0 0.1532�−1� 0.1155�−2� 0.2047�−2� 0.1600�−3� 0.6210�−3� 0.5100�−4�
135.0 0.1461�−1� 0.1103�−2� 0.1920�−2� 0.1600�−3� 0.9230�−3� 0.4200�−4�
140.0 0.1402�−1� 0.1058�−2� 0.1921�−2� 0.1400�−3� 0.7820�−3� 0.4100�−4�
145.0 0.1353�−1� 0.1020�−2� 0.1930�−2� 0.1240�−3� 0.5190�−3� 0.5800�−4�
150.0 0.1311�−1� 0.9890�−3� 0.1876�−2� 0.1230�−3� 0.4120�−3� 0.6200�−4�
155.0 0.1278�−1� 0.9630�−3� 0.1779�−2� 0.1290�−3� 0.3890�−3� 0.4600�−4�
160.0 0.1251�−1� 0.9430�−3� 0.1682�−2� 0.1330�−3� 0.4110�−3� 0.3800�−4�
165.0 0.1231�−1� 0.9280�−3� 0.1609�−2� 0.1340�−3� 0.4610�−3� 0.3500�−4�
170.0 0.1217�−1� 0.9170�−3� 0.1565�−2� 0.1320�−3� 0.5190�−3� 0.3400�−4�
175.0 0.1209�−1� 0.9110�−3� 0.1542�−2� 0.1310�−3� 0.5610�−3� 0.3300�−4�
180.0 0.1206�−1� 0.9090�−3� 0.1536�−2� 0.1300�−3� 0.5760�−3� 0.3300�−4�
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lim
�→0+

	�
0

k�−�

dk� ¯ + �
k�+�

2k�

dk�¯
 ,

since the distribution of quadrature points are evenly distrib-
uted around the midpoint k�=k�. The evaluation of the inte-
gral for the other interval �2k� ,�� can be performed in a
straightforward manner by using any standard technique. We
have however used the Gauss-Legendre method with 20
quadrature points for smooth convergence of the results.

The results of present partial-wave contributions to the
1s-2s excitation cross section of hydrogen atom in
e+-hydrogen collisions have been presented in Table I in the
energy range 20–300 eV. We have included all the significant
partial wave contributions to calculate total cross section. It
is clear from Table I that the contribution of partial waves to
the total cross section decreases monotonically with the
higher partial waves. It clearly indicates that, as we shall see
later, critical angles in the differential cross section do not
move in the forward direction and hence there exists no sec-
ondary maxima or minima. Critical angles are defined to be
those scattering angles at which differential cross section as-
sumes its minimum value for a perticular incident positron
energy �existence and behavior of critical angle along with
the secondary maxima and minima for positron-hydrogen
collisions have been studied in detailed in Refs. �48–50�. To
be more precise, the steadily decreasing partial wave contri-

bution implies that the scattering amplitudes are of the same
nature, and this steadily decreasing amplitudes, by which the
differential cross section is calculated, can not introduce
some up and down structures in the differential cross section.
These results of distorted-wave theory have been used to
compute the differential cross section as a function of scat-
tering angle and energy. We have approximated the higher
partial wave contribution to the distorted wave amplitudes by
the corresponding FBA values so that the differential cross
section for 1s-2s excitation of hydrogen atom by positron
impact takes the form

TABLE VII. Differential cross sections �a.u.� as a function of
scattering angle for the reaction e++H�1s�→Ps�1s�+H+. The nota-
tion x�−y� stands for x�10−y.

Angle
�deg�

Energy �20 eV�

DWAa JSb SWc MGSd MGe

0 2.9�1� 3.2�1� 4.2�1� 4.0�1� 4.1�1�
5 2.6�1� 2.9�1� 3.8�1� 3.6�1� 3.7�1�
10 1.8�1� 2.1�1� 2.8�1� 2.7�1� 2.8�1�
15 1.0�1� 1.2�1� 1.8�1� 1.7�1� 1.7�1�
20 4.3 5.5 9.3 8.8 9.2

25 1.2 1.9 4.0 3.8 4.1

30 1.3�−1� 3.5�−1� 1.3 1.4 1.5

35 5.8�−2� 1.2�−3� 5.3�−2� 3.7�−1� 4.5�−1�
40 3.2�−1� 1.1�−1� −3.8�−1� 5.8�−2� 8.0�−2�

Energy �200 eV�

0 9.8�−2� 1.0�−1� 1.2�−1� 1.3�−1� 1.4�−1�
5 6.9�−2� 7.1�−2� 8.9�−2� 9.8�−2� 1.0�−1�
10 2.4�−2� 2.6�−2� 3.6�−2� 4.2�−2� 4.3�−2�
15 4.4�−3� 5.1�−3� 9.2�−3� 1.3�−2� 1.3�−2�
20 2.2�−4� 3.6�−4� 1.4�−3� 3.2�−3� 3.1�−3�
25 9.9�−5� 2.7�−5� -2.1�−4� 8.0�−4� 7.3�−4�
aPresent calculation.
bReference �43�.
cReference �27�.
dReference �25�
eReference �26�.

FIG. 4. Differential cross section �a.u.� as a function of scatter-
ing angle �in degrees� for the reactions �a� e++H�1s�→Ps�1s�
+H+ , �b�e++H�1s�→Ps�2s�+H+, and �c� e++H�1s�→Ps�3s�+H+

at the energies 20 eV, 50 eV, and 100 eV, respectively, solid line, 20
eV; dashed line, 50 eV; dotted line, 100 eV.
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d�

d�
=

kf

ki

�Afi�k� f, k�i��
2

=
kf

ki

�Ar�k� f, k�i��
2

+ �Ai�k� f, k�i��
2
,

�26�

where

Ar�k� f, k�i� =
1

�kikf
�
l=0

�

�2l + 1�Ar
�l��kf, ki�Pl�cos ��

=
1

�kikf
	�

l=0

L

�2l + 1�Ar
�l��kf, ki�Pl�cos ��

+ �
l=L+1

�

�2l + 1�gB
�l��kf, ki�Pl�cos ��


=
1

�kikf
�
l=0

L

�2l + 1��Ar
�l��kf, ki� − gB

�l��kf,ki��

�Pl�cos �� + gB�k� f, k�i� �27�

and

Ai�k� f,k�i� =
1

�kikf
�
l=0

�

�2l + 1�Ai
�l��kf,ki�Pl�cos ��

=
1

�kikf
�
l=0

L

�2l + 1�Ai
�l��kf,ki�Pl�cos �� . �28�

L is the number of partial waves up to which the contribution
of distorted-wave amplitudes have been taken into account.
The accuracy of the values of differential cross sections has
been examined by integrating the differential cross sections
over the entire solid angle to obtain the total cross section

� = 2�
−1

1 	 d�

d�

d�cos �� �units of 
a0

2� . �29�

This formula �29� reproduces the same results for total cross
sections as obtained by summing up the partial-wave contri-
bution.

Our presents results of differential cross sections for the
1s-2s excitation of atomic hydrogen by positron impact have
been displayed in Table II at some discrete energies in the
range 20–150 eV. It is clear that forward scattering domi-
nates over the backward scattering. Cross section peaks at
the very forward angles and then slowly decreases to become
nearly flat at the backward scattering angles. Hence critical
angle always lies at the backward extremity �180°� of the
scattering angle and consequently no secondary minima or
maxima appears in the curve of differential cross sections. In
Fig. 2 we have compared our results of differential cross
sections at the incident energies 54.4 eV, 100.0 eV, and 200.0
eV, respectively, with those of Walters �32� and of Bubelev et
al. �30�. The present results near the forward angles are al-
ways less than those of the other predictions. Except below
the scattering angle 150°, the present results coincidence
with those of Walters �32� and Bubelev et al. �30�. It is a
matter of fact that the results of different theoretical calcula-
tions differ considerably very near the forward directions

�30–32,39,40�. With the increase in energy the difference be-
tween the different theoretical predictions decreases. We be-
lieve that present results at intermediate and large scattering
angles are expected to be reliable since the calculation is
devised to approximate the rearrangement channel, which is
responsible for important short-range correlations. The in-
ability of the present method to account for the loss of in-
elastic flux appropriately is responsible for the discrepancies
near the forward directions. Proper approximation of the dis-
crete and continuum intermediate states by the distortion po-
tential will accurately present the differential cross sections
near the forward directions, we believe. Our integrated in-

FIG. 5. Differential cross section �a.u.� as a function of energy
�in eV� for the reactions �a� e++H�1s�→Ps�1s�+H+, �b� e+

+H�1s�→Ps�2s�+H+, and �c� e++H�1s�→Ps�3s�+H+ for the angle
60° and 90°, respectively, solid line, 60° dashed line, 90°.
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elastic cross sections for 1s-2s excitation of hydrogen atom
by positron impact at the energies 54.5 eV, 100 eV, 200 eV,
and 300 eV are given in Table III along with the predictions
of Walters �32�, Byron et al. �33�, Bransden et al. �34�,
Mukherjee et al. �39�, Morgan �35�. It follows that the
present results are in good agreement with those predictions.
We have further compared our present results for total cross
sections with the 33-state approximation of Kernoghan et al.
�41� in Fig. 3. It follows that the present results are in good
agreement with all those predictions. It is important to note
that though there exist differences in the differential cross
sections near the forward scattering angle for different ap-
proximations the total cross sections predicted by different
approximations are nearly equal. This is due to the fact that
the differential cross sections, when integrated over the solid
angle to yield total cross sections, have negligible contribu-
tion at the very forward scattering angles owing to the mul-
tiplicative factor sin � in Eq. �29�. The major contribution to
the total cross section comes from the differential cross sec-
tions at the intermediate scattering angles.

B. Positronium formation in positron-hydrogen collisions

Using the post form of the T-matrix of Eq. �7� we have

Tfi�k� f,k�i� = �� f
−�Vf − Uf��i

+�

= �� f
−�Vf��i

+�

= �� f + Gf
−Uf� f�Vf��i + Gi

+Ui�i�

= �� f�Vf��i� + �� f�Vf�Gi
+Ui�i� . �30�

In this case

Ui = ��i�Vi��i� = ��1s�Vi��1s� = 	 1

r1
+ 
i
e−�r1,

Uf = �� f�Vf�� f� = �� f�Vf�� f� = 0,

where Vi= � 1
r1

− 1
r12

�, Vf = � 1
r1

− 1
r2

�, �i=�
i
3


 e−
ir2, �=2
i ,
i=1
with the plane wave states in the incident and the final chan-
nel given by

�i�r�1, r�2� = eik�i·r�1�i�r�2� and � f�r�12, s�12� = eik� f·s�12� f�r�12�

in atomic units. s12= �r�1+r�2� /2 being the coordinates of the
center of mass of Ps atom and � f�r�12� are the wave function
of Ps atom, where f corresponds to �nlm� ,n=1, 2, 3.

Using the same technique as of the preceding section we
obtain the partial-wave distorted amplitude as.

Afi
�L��kf, ki� = gB

�L��kf, ki� + Dfi
�L��kf, ki� , �31�

1. Results and discussion:

We have computed the distorted-wave amplitudes �31� for
each significant partial waves. Calculations for evaluating
amplitudes for �100�→ �n�00� transitions along with the
method of evaluation of general three-denominator Lewis
integral have been presented in the Appendixes. Our present
partial-wave contributions to the ground state Ps formation

TABLE VIII. Critical angles �c along with the differential cross sections �d� /d���c
for the reactions

e++H�1s�→Ps�n�s�+ p in the energy range E� �20, 150�. The notation x�−y� stands for x�10−y.

Reactions e++H�1s�→Ps�1s�+ p e++H�1s�→Ps�2s�+ p e++H�1s�→Ps�3s�+ p

E�eV� �c�deg� �d� /d���c
�a.u.� �c�deg� �d� /d���c

�a.u.� �c�deg� �d� /d���c
�a.u.�

20 33 0.18�−1� 30 0.82�−3� 35 0.26�−3�
30 30 0.48�−2� 30 0.39�−3� 30 0.12�−3�
40 28 0.14�−2� 28 0.13�−3� 28 0.60�−4�
50 27 0.32�−3� 27 0.58�−4� 26 0.38�−4�
60 26 0.59�−4� 26 0.24�−4� 25 0.12�−4�
70 25 0.96�−4� 25 0.10�−5� 24 0.80�−5�
80 25 0.45�−4� 24 0.25�−4� 24 0.10�−4�
90 24 0.65�−4� 24 0.10�−5� 23 0.10�−5�
100 24 0.12�−4� 24 0.10�−5� 23 0.20�−5�
110 24 0.35�−4� 23 0.90�−5� 23 0.30�−5�
120 23 0.62�−4� 23 0.30�−5� 22 0.20�−5�
130 23 0.23�−4� 23 0.20�−5� 22 0.10�−5�
140 23 0.17�−4� 23 0.20�−5� 22 0.10�−5�
150 23 0.14�−4� 23 0.30�−5� 22 0.10�−6�
160 23 0.14�−4� 23 0.30�−5� 22 0.10�−6�
170 23 0.14�−4� 23 0.30�−5� 22 0.10�−6�
180 23 0.14�−4� 23 0.30�−5� 22 0.10�−6�
190 23 0.13�−4� 22 0.20�−5� 22 0.10�−6�
200 23 0.13�−4� 22 0.20�−5� 22 0.10�−6�

A. GHOSHAL AND P. MANDAL PHYSICAL REVIEW A 72, 032714 �2005�

032714-12



cross section along with the corresponding summed up num-
bers giving total Ps�1s� formation cross sections are pre-
sented in Table IV for some discrete energies in the range
20–300 eV. Table V exhibits the same event for 1s→2s and
1s→3s captures. From both Tables IV and V it is clear that
the contribution to the total cross section, for all energies, as
a function of partial wave is not monotonous. It is a clear
indication, as we shall observe later, of the forward move-
ment of critical angle.

Differential cross section and critical angle:Studies on the
differential cross section for electron capture by an incoming
positron reveal interesting findings. The differential cross
section for Ps formation is obtained using the formula

d�

d�
= 2
�v f/vi��

0




��Afi�k� f, k�i���2 sin � f d� f �a.u.� , �32�

where v f =�kf /� f ,vi=�ki /�i ,� f = k̂i . k̂f is the scattering
angle. We have approximated the higher partial-waves con-
tribution to the distorted-wave amplitudes by the correspond-
ing first Born amplitudes as the distorted-wave amplitudes
reduce to the Born values for these partial waves so that the
scattering amplitude is obtained as

�Afi�k� f, k�i�� =
1

�kikf
�
l=0

L

�2l + 1��Afi
�l��kf, ki��Pl�cos � f�

+
1

�kikf
�
L+1

�

�2l + 1�gl
B�kf, ki�Pl�cos � f�

�33�

=
1

�kikf
�
l=0

L

�2l + 1���Afi
�l��kf, ki�

− gl
B�kf, ki���Pl�cos � f� �34�

+ gB�k� f, k�i� , �35�

where the FBA amplitude

gB�k� f, k�i� = �− � f/2
�� f�Vf��i �36�

=
1

�kikf
�
l=0

�

�2l + 1�gl
B�kf, ki�Pl�cos � f� , �37�

Pl�cos � f� denotes the Legendre polynomial of the first kind

of order l ,� f = k̂f . k̂i is the scattering angle, and L is the num-
ber of partial waves up to which the contribution of
distorted-wave amplitudes have been taken into account.

The accuracy of the values of d� /d� has been examined
by integrating the differential cross sections over the entire
solid angle to obtain the total cross appropriately produces
low differential cross section as

� = 2�
−1

1 	 d�

d�

d�cos �� �in units of 
a0

2� . �38�

This formula �38� reproduces the same results for total cross
sections as obtained by summing up the partial-wave contri-
bution.

The differential cross section as a function of scattering
angle and incident energy for all three capture processes
have been calculated by using distorted-wave amplitudes.
The tabulated values of differential cross sections at some of
the scattering angles for the capture processes 1s→1s ,1s
→2s and 1s→3s have been shown in Table VI for the en-
ergies 50 and 100 eV. Further in Table VII our present dif-
ferential cross sections for ground state Ps formation have
been compared with similar other available results such as,
distorted wave calculation of Shakeshafts et al. �27�, second-
order distorted wave calculation of Mandal et al. �25� and
all-order distorted wave approximation of Mandal and Guha
�26�. Our results are a little bit lower than all these calcula-
tions. Some graphs have been presented in Figs. 4 and 5.
Figure 4 clearly indicates the movement of critical angle in
the differential cross sections of Ps formation in the forward
direction.

The critical angles for the transitions �100�→ �n�00� ,n�
=1, 2, 3 have been listed in Table VIII in the energy range
20–200 eV. For all the three capture processes the nature of
movement of the critical angle is very similar. At the incident
energy of 20 eV it lies around 30° to 35° and then with
increasing energy it approaches very slowly in the forward
direction. It ultimately stops moving at an angle 22° thus
forming a primary minimum in the differential cross section
therein. The curved tunnel in the surface plots of Figs. 6–10
clearly demonstrate this fact. Further from Fig. 4 and the
surface plots of Figs. 6–10 is noted that though the differen-
tial cross sections, for all three capture processes, peak at the
forward scattering angle, there also exists secondary maxi-
mum just beside the minimum. This secondary maximum
peaks around 50° and prominently emerges in the energy
range 30–40 eV. The crests in the Fig. 4 showing the second-
ary maximum start becoming flat with the increasing energy.
As we have earlier stated in Refs. �48–50� that possible in-
terferences of scattered waves of different angular momen-

FIG. 6. Differential cross sections �a.u.� as a function of incident
momentum �a.u.� and the scattering angle � 30°–180°� for the reac-
tion e++H�1s�→Ps�1s�+H+ in the energy range 20–200 eV.
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tum states are responsible for such a nature of the differential
cross section.

Total cross section:We have presented our integrated cross
section results for Ps formation along with the other
distorted-wave results in Table IX. Our results for ground
state Ps formation cross section are higher than distorted
wave results of Shakeshafts et al. �27� but lower than the
distorted-wave results of Mandal and Guha �26� Mandal and
Guha, and Sil �25� except at the energy of 20 eV. It is inter-
esting to note that the present distorted-wave results for
ground state Ps formation cross section become coincident
with our Schwinger’s results �49� from the incident energy of
50 eV. We have compared our results for ground state Ps
formation cross section with other theoretical and experi-
mental predictions in Fig. 11. Though our results are nearly

equal with experimental data of Weber et al. �45� at 20 eV
and 30 eV, these are slightly lower than the 33-state approxi-
mation of Kernoghan et al. �41� and integral form of CCA of
Basu et al. �44�. Beyond 30 eV the experimental results of
Weber et al. �45� are higher than our prediction as well as the
prediction of Kernoghan et al. �41�. It is clear from Fig. 11
that our results are close to those of Kernoghan et al. �41�
beyond 30 eV.

The total cross section results of Ps formation in 2s state
have been plotted in Fig. 12 along with the results of Ker-
noghan et al. �41�. Through the results of Kernoghan et al.
�41� slightly increase first and then decrease with the increas-
ing energy, our results steadily decrease for the lower energy

FIG. 7. Differential cross sections �a.u.� as a function of incident
momentum �a.u.� and the scattering angle � 0°–180°� for the reac-
tion e++H�1s�→Ps�1s�+H+ in the energy range 20–100 eV.

FIG. 8. Differential cross sections �a.u.� as a function of incident
momentum �a.u.� and the scattering angle � 0°–180°� for the reac-
tion e++H�1s�→Ps�2s�+H+ in the energy range 20–200 eV.

FIG. 9. Differential cross sections �a.u.� as a function of incident
momentum �a.u.� and the scattering angle � 0°–180°� for the reac-
tion e++H�1s�→Ps�2s�+H+ in the energy range 20–100 eV.

FIG. 10. Differential cross sections �a.u.� as a function of inci-
dent momentum �a.u.� and the scattering angle �0°–180°� for the
reaction e++H�1s�→Ps�2s�+H+ in the energy range 20–100 eV.
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and then for the higher energy these decrease very slowly to
become almost flat. Beyond 60 eV of incident energy our
results become coincident with those of Kernoghan et al.
�41�.

It is clear from the graph plotted by Hewitt et al. �46� that
the curves of total cross Ps formation in 2s state differ sig-
nificantly for different approximations below the impact en-
ergy 60 eV. The authors considered �close-coupled approxi-
mation� CCA for two basis sets, UBA �unitary Born
approximation� for two basis sets, and distorted curves by
Khan et al. �47�. Even the 18-state approximation curve of
Kernoghan et al. �42� has some fluctuation below 50 eV and
significantly differs from the 33-state approximation curve of
Kernoghan et al. �41�.

IV. CONCLUSIONS

The scattering amplitude in the framework of distorted-
wave formalism has conveniently been derived by approxi-

mating the distortion potential in a particular channel as the
average of perturbation of that particular channel over the
bound states. The present form of the theory allows one to
calculate the scattering amplitude for all partial waves. The
most advantage of this method is that a few straightforward
calculations are required to compute the scattering ampli-
tude. We have successfully applied this method to 1s-2s ex-
citation of hydrogen atom by positron impact and positro-
nium formation in positron-hydrogen collisions. The
inability of the present method to account for the loss of
inelastic flux appropriately produces low differential cross
section for inelastic scattering near the very forward scatter-
ing angle, though there exists discrepancies regarding this in
different theoretical investigations. Yet the total inelastic
cross sections predicted by this theory are in good agreement
with the other approximations. For rearrangement collisions
this method works well in the intermediate and high energy
range. So it seems plausible that the method may conve-
niently be applied to heavy projectiles also.

TABLE IX. Integrated cross section, in units of 
a0
2, as a function of impact energy, for the reaction

e++H�1s�→Ps�n�s�+ p. The notation a�−b� means a�10−b.

Energy �eV�

20 50 100 200 300

e++H�1s�→Ps�1s�+ p

DWAa 3.67 4.89�−1� 4.89�−2� 2.70�−3� 3.97�−4�
SWb 2.2 4.3�−1� 4.8�−2� 3.0�−3�
MGSc 3.3 5.1�−1� 5.7�−2� 3.8�−3�
MGd 3.4 5.5�−1� 6.1�−1� 3.8�−3�
FBA 3.34 4.64�−1� 4.58�−2� 2.51�−3� 3.68�−4�

e++H�1s�→Ps�2s�+ p DWAa 3.62�−1� 6.87�−2� 7.29�−3� 3.93�−4� 5.64�−5�
FBA 2.28�−1� 6.56�−2� 6.87�−3� 3.61�−4� 5.1�−5�

e++H�1s�→Ps�3s�+ p DWAa 6.79�−2� 2.04�−2� 2.18�−3� 1.19�−4� 1.8�−5�
FBA 5.49�−2� 1.98�−2� 2.09�−3� 1.07�−4� 1.5�−5�

aPresent calculation.
bReference �27�.
cReference �25�.
dReference �26�.

FIG. 11. Total positronium formation cross section �in units of

a0

2� in ground state in positron-hydrogen collisions in the energy
range 20–300 eV. Open square, present result; open circle, Ker-
noghan et al. �41�; triangle, Basu et al. �44�; inverted triangle, We-
ber et al. experiment �45�.

FIG. 12. Total positronium formation cross section �in units of

a0

2� in 2s state in positron-hydrogen collisions in the energy range
20–300 eV. Open square, present result; open circle, Kernoghan
et al. �41�.
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APPENDIXA A: EVALUATION OF A GRNERAL THREE-
DENOMINATOR LEWIS INTEGRAL

The three-denominator Dalitz integral

1


2 � dp�

�p2 − k2 − i����p� − v�1�2 + 
1
2���p� − v�2�2 + 
2

2�
�A1�

appears in the second-Born amplitude and was first evaluated
in a closed form by Dalitz �51�. Later Lewis �52� encoun-
tered the same integral while studying electron scattering by
potentials using the second-Born approximation and consid-
ered a more general representation:

L111��;v�1,
1;v�2,
2�

=
1


2 � dp�

�p2 + �2���p� − v�1�2 + 
1
2���p� − v�2�2 + 
2

2�

=
1

N
1
2

ln
� + N

1
2

� − N
1
2

, �A2�

where

N = �2 − �� , �A3�

� = ���v�1 − v�2�2 + �
1 + 
2�2� + 
1�v2
2 + 
2

2 + �2�
+ 
2�v1

2 + �2 + 
1
2� , �A4�

�� = ��v�1 − v�2�2 + �
1 + 
2�2��v1
2 + �� + 
1�2��v2

2 + �� + 
2�2� .

�A5�

The same integral appears in a variety of first-and higher-
order approximations in electron-atom, positron-atom, ion-
atom, and photon-atom collisions for elastic scattering, im-
pact excitations, rearrangement and ionizing collisions
�25,26,53–55�. Historically Gavrila �55� also studied the in-
tegral �A1� while working out the second Born amplitude for
photon-atom collisions and arrived at the same result �A2� as
that of Lewis �52�. He used an integral representation of the
Coulomb Green’s function in the momentum space. It was
however proved by Sil and co-workers �53� that ��−�2 is

positive definite and N
1
2 = i���−�2. Thus the parent integral

�A2� can be expressed analytically as �Roy et al. �53��

L111 =
1

i��� − �2
ln

� + i��� − �2

� − i��� − �2

=
1

i��� − �2
ln

Rei�

Re−i� =
1

i��� − �2
2i� =

2�

��� − �2
,

�A6�

where

R2 = �2 + �� − �2 = �� , �A7�

� = arctan	��� − �2

�

 . �A8�

The higher-order derivatives are supposedly obtained simply
by differentiating �A6� with respect to � ,
1 ,
2 so that higher
powers in the denominator are generated �53,54�. In what
follows we prescribe a viable method of evaluation of the
most general three-denominator integral.

Method of evaluation:In this paper, we present a simple
method to obtain the general integral

Llmn��;v�1,
1;v�2,
2�

=
1


2 � dp�

�p2 + �2�l��p� − v�1�2 + 
1
2�m��p� − v�2�2 + 
2

2�n .

�A9�

These integrals are of utmost importance in variational and
other higher-order calculations involving one-and two-
electron systems in electron-atom, positron-atom, ion-atom,
photon-atom scattering, and transitions to higher Rydberg
states.

Writing a= �p� −v�1�2+
1
2 , b= �p� −v�2�2+
2

2, we use the
Feynman parametrization technique �56� to obtain

1

ambn =
�m + n − 1�!

�m − 1� ! �n − 1�!�0

1 tm−1�1 − t�n−1

��p� − �� �2 + �2�m+n
dt ,

�A10�

where

�� = tv�1 + �1 − t�v�2, �A11�

�2 = t
1
2 + �1 − t�
2

2 + t�1 − t��v�1 − v�2�2. �A12�

After interchanging the order of integration, we have

Llmn =
�m + n − 1�!

�m − 1� ! �n − 1�!�0

1

tm−1�1 − t�n−1dtIlmn,

�A13�

where

Ilmn =
1


2 � dp�

�p2 + �2�l��p� − �� �2 + �2�m+n
. �A14�

Choosing the vector �� along the z axis of p� = �px , py , pz�
= �p ,� ,�� such that �p� −�� �2= p2+�2−2p� cos �=A
−B cos �, with A= p2+�2 and B=2p�, this gives

Ilmn =
1


2�
0

� �
0


 �
0

2
 p2 sin � dpd�d�

�p2 + �2�l�A − B cos ��m+n .

�A15�

Performing integrations over the angular variables � ,�, we
obtain
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Ilmn =
2



�

0

� p2dp

�p2 + �2�l	 �A − Bt�−�m+n�+1

B��m + n� − 1� 
t=−1

t=1

=
2


�m + n − 1��0

� p2dp

�p2 + �2�l

1

B
	 1

�A − B�m+n−1

−
1

�A + B�m+n−1

=

2


�m + n − 1��0

� p2dp

�p2 + �2�l

�A + B�m+n−1 − �A − B�m+n−1

B�A2 − B2�m+n−1 .

Thus

Llmn =
2�m + n�!


�m − 1� ! �n − 1�!�0

1

tm−1�1 − t�n−1dt

��
0

� p2dp

�p2 + �2�l

�A + B�m+n−1 − �A − B�m+n−1

B�A2 − B2�m+n−1 .

�A16�

This is our final result which is to be evaluated numerically.
The double integrals over �0, 1� and �0,�� are highly con-
vergent for ��0, ∀ l ,m ,n�N. However for �=0 and l�1,
the integrals Llmn are divergent; these remain convergent
whenever l=1 and ∀ m ,n�N.

We used transformations

t = 1
2 �1 + y�, t � �0,1�,y � �− 1,1� , �A17�

p = c
1 + z

1 − z
, p � �0,��,z � �− 1,1� �A18�

to carry out the integrations numerically employing Gauss-
Legendre quadrature. Only 16 points for the t-integration and
20 points for the p integration were found sufficient for con-
vergent results in our test cases. One can use such values of
c as would ensure prompt convergence in the radial integra-
tion. �Take c=2.0 for instance.�

APPENDIX B: APPLICATION TO 100\n�00 CAPTURE
AMPLITUDES

The amplitudes for 100→n�00 capture process in e+

+H�100�→Ps�n�00�+H+,n�=1, 2, 3 are obtained by insert-
ing the appropriate bound-states �1s�r�2� for H�1s� and
�1s�r�12� ,�2s�r�12� ,�3s�r�12� for Ps�n�s�. Evaluation of each of
the transition amplitudes is implemented with the help of the
Lewis integrals Llmn. We show below the Ps formation am-
plitudes in FBA for transitions 1s→n�s in terms of these
integrals. These amplitudes have been used in the calculation
of matrix elements of the distorted-wave approximation
�DWA� in Sec. III B 1.

1. Amplitude for 1s-1s transition

Taking Fourier integral transforms for functions of the
form exp�−
r� /r , exp�−
r�,

exp�− 
r�/r =
1

2
2 � eip� ·r�

p2 + 
2dp� , �B1�

exp�− 
r� =




2 � eip� ·r�

�p2 + 
2�2dp� , �B2�

and then utilizing the � -function properties, such as,

� ei�q�−�� �·r�f�q��dq� dr� = �2
�3� ��q� − �� �f�q��dq� = �2
�3f��� � ,

�B3�

we obtain

� eiA� ·r�1+i·B� ·r�2−ar2−br12
1

r2
dr�1dr�2 = 32
2b

1

��1
2 + a2���2

2 + b2�2 ,

�B4�

� eiA� ·r�1+i·B� ·r�2−ar2−br12
1

r12
dr�1dr�2 = 32
2a

1

��1
2 + a2�2��2

2 + b2�
,

�B5�

and

� eiA� ·r�1+i·B� ·r�2−ar2−br12
1

r1
dr�1dr�2

= 32ab� dp�

p2��p� + A� + B� �2 + a2�2��p� + A� �2 + b2�2

= 32
2abL122�0;�� 1,a;�� 2,b� , �B6�

where �� 1=A� +B� and �� 2=A� . Therefore

F11
�t��a,b,�� 1,�� 2� =� eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r2

dr�1dr�2

= 32
2	abL122�0;�� 1,a;�� 2,b�

−
b

��1
2 + a2���2

2 + b2�2
 �B7�

and

F11
�r��a,b,�� 1,�� 2� =� eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r12

dr�1dr�2

= 32
2	abL122�0;�� 1,a;�� 2,b�

−
a

��1
2 + a2�2��2

2 + b2�
 . �B8�

Differentiating Eqs. �B7� and �B8� with respect to a we get
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F21
�t��a,b,�� 1,�� 2� =� r2eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r2

dr�1dr�2

= − 32
2	bL122�0;�� 1,a;�� 2,b�

− 4a2bL132�0;�� 1,a;�� 2,b�

−
2ab

��1
2 + a2�2��2

2 + b2�2
 �B9�

and

F21
�r��a,b,�� 1,�� 2� =� r2eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r12

dr�1dr�2

= − 32
2	bL122�0;�� 1,a;�� 2,b�

− 4a2bL132�0;�� 1,a;�� 2,b�

−
1

��1
2 + a2�2��2

2 + b2�

+
4a2

��1
2 + a2�3��2

2 + b2�

 . �B10�

Further differentiation of Eqs. �B9� and �B10� with respect to
a yields

F31
�t��a,b,�� 1,�� 2� =� r2

2eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r2

dr�1dr�2

= 32
2	− 12abL132�0;�� 1,a;�� 2,b�

+ 24a3bL142�0;�� 1,a;�� 2,b�

+
2b

��1
2 + a2�2��2

2 + b2�2

−
8a2b

��1
2 + a2�3��2

2 + b2�2
 �B11�

and

F31
�r��a,b,�� 1,�� 2� =� r2

2eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r12

dr�1dr�2

= 32
2	− 12abL132�0;�� 1,a;�� 2,b�

+ 24a3bL142�0;�� 1,a;�� 2,b�

+
12a

��1
2 + a2�3��2

2 + b2�

−
24a3

��1
2 + a2�4��2

2 + b2�

 . �B12�

It is however easy to verify the following integrals:

� r12e
iA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r2

dr�1dr�2 = F21

�r��b,a,�� 2,�� 1� ,

�B13�

� r12e
iA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r12

dr�1dr�2 = F21

�t��b,a,�� 2,�� 1� ,

�B14�

� r12
2 eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r2

dr�1dr�2 = F31

�r��b,a,�� 2,�� 1� ,

�B15�

� r12
2 eiA� ·r�1+i·B� ·r�2−ar2−br12	 1

r1
−

1

r12

dr�1dr�2 = F31

�t��b,a,�� 2,�� 1� .

�B16�

We now calculate the 1s-1s transition amplitude g1s,1s in
FBA as

g1s,1s = 	−
� f

2


�� f�Vf��i�

= 	−
� f

2


 � � f

*Vf�idr�1dr�2

= 	−
� f

2


 � e−i·k� f·s�12�1s�r�12�	 1

r1

−
1

r2

ei·k�i·r�1�1s�r�2�dr�1dr�2

= 	−
� f

2


Nf

*Ni� ei�k�i−�k� f/2��.r�1+i�−k� f/2�.r�2	 1

r1

−
1

r2

e−
ir2−
fr12dr�1dr�2, �B17�

where

�i�r�1,r�2� = eik�i·r�1�1s�r�2�

and

� f�r�12,s�12� = eik� f·s�12�1s�r�12� ,

with �1s�r�2�=Nie
−
i·r2 ,�1s�r�12�=Nfe

−
f·r12 ,Ni=�
i
3 /
 ,Nf

=�
 f
3 /
 ,
i=2
 f =1/a0=1�a.u.�. Therefore

g1s,1s = CF11
�t��
i,
 f,�� 1,�� 2� , �B18�

where

C = 	−
� f

2


�
i

3



�
 f

3



�� 1 = k�i − k� f, �� 2 =

k� f

2
.

�B19�

2. Amplitude for 1s-2s transition

The 1s-2s transition amplitude g2s,1s in FBA is given by

A. GHOSHAL AND P. MANDAL PHYSICAL REVIEW A 72, 032714 �2005�

032714-18



g2s,1s = 	−
� f

2


�� f�Vf��i�

= 	−
� f

2


 � � f

*Vf�idr�1dr�2

= 	−
� f

2


 � e−i·k� f·s�12�2s�r�12�

�	 1

r1
−

1

r2

ei·k�i·r�1�1s�r�2�dr�1dr�2

= 	−
� f

2


Nf

*Ni� ei	k�i−
k� f
2

·r�1+i	−

k� f
2

·r�2�2 − 
 fr12�

�	 1

r1
−

1

r2

e−
ir2−


f
2

r12dr�1dr�2, �B20�

where

�i�r�1,r�2� = eik�i.r�1�1s�r�2�

and

� f�r�12,s�12� = eik� f.s�12�2s�r�12�

with �1s�r�2�=Nie
−
ir2 ,�2s�r�12�=Nf�2−
 fr12�e−�
f/2�r12,Ni

=�
i
3 /
 ,Nf =�
 f

3 /32
 ,
i=2
 f =1/a0=1�a.u.�. Therefore

g2s,1s =
1

4�2
C
2F11

�t�	
i,

 f

2
,�� 1,�� 2
 − 
 fF21

�r�	
 f

2
,
i,�� 2,�� 1
� .

�B21�

3. Amplitude for 1s-3s transition

Finally 1s-3s transition amplitude g3s,1s in FBA is of the
form

g3s,1s = 	−
� f

2


�� f�Vf��i�

= 	−
� f

2


 � � f

*Vf�idr�1dr�2

= 	−
� f

2


 � e−i·k� f·s�12�3s�r�12�

�	 1

r1
−

1

r2

ei·k�i·r�1�1s�r�2�dr�1dr�2

= 	−
� f

2


Nf

*Ni� ei�k�i−�k� f/2��·r�1+i�−k� f/2�·r�2�27 − 18
 fr12

+ 2
 f
2r12

2 �	 1

r1
−

1

r2

e−
ir2−�
f/3�r12dr�1dr�2, �B22�

where

�i�r�1,r�2� = eik�i·r�1�1s�r�2�

and

� f�r�12,s�12� = eik� f·s�12�3s�r�12�

with �1s�r�2�=Nie
−
ir2 ,�3s�r�12�=Nf�27−18
 fr12

+2
 f
2r12

2 �e−�
f/3�r12 ,Ni=�
i
3 /
 ,Nf =

1
81

�
 f
3 /3
 ,
i=2
 f =1/a0

=1�a.u.�. Therefore

g3s,1s = C
1

81�3

27F11

�t�	
i,

 f

3
,�� 1,�� 2
 − 18
 fF21

�r�

�	
 f

3
,
i,�� 2,�� 1
 + 2
 f

2F31
�r�	
 f

3
,
i,�� 2,�� 1
� .

�B23�
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