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Exact solutions for perturbed confined hydrogen atoms: Polarizabilities and nuclear

shielding factors
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We extend our recent treatment of a well-known model of a nonrelativistic hydrogen-like atom confined
within an impenetrable spherical “box” of radius R. Analytical closed-form solutions are presented for the
first-order perturbation corrections appropriate to the dipole polarization of all s states. Exact solutions are
expressed conveniently in terms of Kummer (confluent hypergeometric) M functions, exactly as for the field-
free atom, by exploiting several well-known recurrence and differential relations for these functions. The M
functions and all necessary integrals are evaluated using standard MAPLE routines, which exploit analytical
properties of these functions. The accuracy of our procedures has been checked by a similar calculation of the
dipole shielding factors. Our procedures are easily extended to states of nonzero angular momentum, as well as
to higher-multipole perturbations. Our exact values may be of interest in assessing the utility of this simple

model of atomic confinement.
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I. INTRODUCTION

The concept of a confined system was originally sug-
gested by Michels et al. [1] and applied to an astrophysical
problem by Sommerfeld and Welker [2] who used the model
of a confined hydrogen atom in a spherical box. The model
of a confined system has been used extensively for many
years in such diverse fields as the effect of pressure on en-
ergy levels, the cell model of the liquid state, semiconductor
quantum dots, and problems in astrophysics, such as the rate
of escape of stars from galactic clusters and the theory of
white dwarfs. An extensive list of references to many appli-
cations may be found in Varshni [3] who treats the problem
of confined hydrogen approximately.

Our present interest centers on the effect of an applied
field on confined hydrogenlike systems and in particular on
finding exact solutions for the first-order equation for treat-
ing such a field perturbatively. The analytical function ob-
tained is used to calculate polarizabilities and nuclear shield-
ing factors. Recently (Burrows and Cohen [4]), we used a
mixture of Lie algebraic and analytical methods to obtain
closed-form solutions of a model for a confined hydrogenlike
atom (CHA) of nuclear charge Z. The model Hamiltonian (in
conventional atomic units) is

1
Hy=- EVZ + Vy(r|R), (1)
—, 0=<r<R,
Vo(r|R) = (2)
©, r=R,
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and so differs from the usual unconfined hydrogenlike atom
(UHA) only in that a radial boundary condition must be sat-
isfied at a finite radius r=R (of the supposedly impenetrable
barrier), instead of at infinite R. This model has attracted a
large variety of calculations over the years and still serves as
a generic model for studies of possible pressure effects on
general atoms. Quite recently, we gave both approximate
(Laughlin er al. [5]) and exact [4] solutions of the field-free
problem, and it is clearly preferable to employ exact solu-
tions in order to investigate properties other than the energies
of the model. In the present work, we obtain analytical solu-
tions of the first-order equations appropriate to the dipole
polarization of all s states of the CHA. These may be seen as
a generalization of the analytical solutions for the multiple
polarizabilities of the ground state of the UHA (Dalgarno and
Lewis [6]), and we have calculated both polarizabilities and
shielding factors (cf. Dalgarno [7]) for the CHA ground state
over a range of confinement radii R. The zeroth-order solu-
tions for a general (nl) state are written very conveniently as
a product of a simple harmonic function (a solution of
Laplace’s equation) and a purely radial function (since angu-
lar momentum remains quantized, exactly as for the UHA):

Yo = Nr'Y (6, d)exp(— x/2)M(c,d,x), EO:—%az. (3)

Here, N is a normalization constant, Y}, is the usual spherical
harmonic, the parameter « (different for each state) must be
determined numerically from a zero of the Kummer M func-
tion M(c,d,x) at r=R so as to satisfy the required boundary
condition, while the scaled radius x and the parameter ¢ both
depend explicitly on «; we write

Z
c=(+1)-—,
a

d=2(l+1), x=2ar. (4)
Note that, in the UHA limit as R— o, it is found that
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a—ZIn+1+1), c——n, (5)

so that the Kummer M functions become Laguerre polyno-
mials and we recover the conventional solutions.

The calculation of a for each confinement radius R and
for each n/ state has been achieved fairly easily using stan-
dard MAPLE packages for locating the zeros of the M func-
tions. This is not a completely trivial exercise, which we will
address briefly in the Appendix.

In the present work, we treat in detail the dipole polariz-
abilities and shielding factors of a general ns state of the
CHA. Our numerical results for the ground-state polarizabil-
ities confirm and improve some recent numerical calcula-
tions (Montgomery [8], Laughlin [9]), and our solutions are
given in closed form in terms of finite sets of M functions
and their derivatives, all of which may be calculated using
MAPLE. These exact solutions are new, and it is clear that our
procedures may be generalized to treat all nl states, as well
as other (higher-order) polarizabilities and shielding factors,
which we do not consider here.

The nonrelativistic quantum mechanical formulas for the
dipole polarizability and shielding factor of a one-electron
atom with field-free normalized wave function ¢, and first-
order correction i, are given by [7]

;= 2{yn|r cos(0)|i), (6)

Bi= 2|5 cos(@lue )

where the first-order solution i, satisfies the inhomogeneous
equation

(Ho—= Ep) i == [r cos(6) . (8)

Note that Eq. (8) is not an eigenvalue problem and, on ac-
count of the angular factor in ¢, there is no first-order en-
ergy shift for any state of the CHA.

An equivalent expression for the dipole shielding factor is

Ba=2(y|r cos(6)| ), )
where ¢ satisfies the analog of Eq. (8),

(HO_EO)‘/’{=_<%COS(0))¢O- (10)

The derivation of Eq. (9) depends on the operator Hy—E,
being Hermitian, which in turn relies on the boundary con-
ditions. We require the total wave function to vanish at r
=R (to all orders); thus, it is necessary to ensure that all of
the wave functions ¢, ¥, and ¢ vanish at r=R. In the
following section we give a detailed derivation of the solu-
tion ¢, making extensive use of several known recurrence,
derivative, and numerical properties of these M functions
(we follow the notations of Abramowitz and Stegun [10] and
label their equations with AS). Apart from any intrinsic in-
terest, the calculation of shielding factors using both Egs. (7)
and (9) provides an independent check on the accuracy of the
entire calculation. This check is particularly valuable, as we
are unaware of any earlier calculation of shielding factors for
comparison (except for the limiting case of the UHA). Our
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calculated polarizabilities serve to improve and confirm
some recent sets of numerical calculations [5,6].

II. ANALYTICAL SOLUTIONS FOR THE CHA
A. Field-free solutions

Here, we give a brief (purely analytical) derivation of the
zeroth-order solutions of the CHA; similar procedures are
used to solve Egs. (8) and (10) below.

The field-free Schrodinger equation is first multplied by
=2r:

—2r(Hy—Eo) i = 0. (11)

On account of the confinement caused by the impenetrable
barrier at r=R, all states of the CHA are bound states. We
now express the solutions i, in product form (but note care-
fully that this is not the usual complete separation of vari-
ables and the motivation for our approach has been given in
Burrows and Cohen [4])

wO:rlYlm(H’(ﬁ)X(r)' (12)
The purely radial factor y(r) then satisfies the equation
2 d
[rD;+2(l+1)D,+2Z+2Eyr]x=0, x(R)=0, D,= o
-

(13)

Introducing a scale parameter «, writing x=2ar, and

x(r) = exp(= x/2)y(x), (14)

it is readily found that a may be chosen so that
Ey=-— (15)

and the function y(x) satisfies the ordinary differential equa-
tion

d
L(c,d,x)y(x) =[xD*+ (d - x)D — c]y(x) = 0, =0
X
(16)
where the parameters ¢ and d are given by
V4
c=(I+1)-—, d=2(I+1). (17)

o

Equation (16) is the cannonical Kummer equation (AS-
13.1.1), with one convergent series solution (regular at x=0)
denoted by

y(x) =M(c,d,x), (18)

and to satisfy the boundary conditions, we require
M(c,d,2aR)=0. Thus, the complete solution for any given
pair (R,l) is achieved by locating successive zeros of
M(c,d,x) as a function of «; this has been achieved using
standard MAPLE computing packages. We note that, although
both ¢ and x depend on «;, this presents no difficulty. Once «
has been computed in this way, the corresponding field-free
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energy is calculated from Eq. (15), while the complete solu-
tion ¢, is normalized so that

(olbo)r=1, (19)

where the subscript R in Eq. (19) denotes that the radial part
of this three-dimensional integral is to be taken over the fi-
nite range O<r=<R. This completes our derivation of the
solution i, given in Eq. (3) above.

B. First-order solutions for s states

For simplicity of presentation, we now treat in detail only
the solution of Eq. (8) appropriate to the case of the dipole
polarizability of a general ns state of the CHA placed in a
uniform field in the z direction. The necessary extensions to
other field directions, to other states, and to higher-multipole
polarizabilities are all straightforward and will not be pur-
sued here. We give an outline of the corresponding solution
of Eq. (10), appropriate to shielding factors, in the following
subsection.

As before, we first multiply Eq. (8) throughout by =27, so
that we actually treat the equation

= 2r(Hy = Eo) iy = 2r[r cos(6) 14 (20)

and we solve Eq. (20) over 0<r<R subject to the same
boundary condition on r=R so that ;(R)=(R)=0. Now,
for any unperturbed ns state (with [=0), we have a purely
radial solution for i,

=N exp(—x/2)M(c,d,x), (21)

and we observe that the presence of the factor r cos(6) on the
right-hand side of Eq. (20) implies that we may write the
perturbed solution ¢, of any s state in a form analogous to a
field-free p state solution (with /=1) of Eq. (11) above:

i1 = Nr cos()exp(—x/2)F(x). (22)

In ¢; we use the same values of «, N, and x as in ¢ and E,
is similarly unchanged; thus, substituting Eqs. (21) and (22)
into Eq. (20) leads to the following equation for F(x):

L(c+1,d+2,x)F(x) = uxM(c,d,x),

1 Z
c=1-—, d=2.
o

(23)

The new parameters (c+1,d+2) on the left-hand side of Eq.
(23) both arise from the p-state character of the solution
(with I=1) by comparison with the s-state character of .

In order to obtain the solution of Eq. (23) satisfying the
boundary condition at »=R we also need to solve the homo-
geneous equation

L(c+1,d+2,x)f(x)=0. (24)

Its solution is simply f(x)=M(c+1,d+2,x), and the com-
plete solution of Eq. (23) may then be formed from f(x) and
any particular solution. We construct such a particular solu-
tion as follows.
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It is easily verified [using the definition of the operator
L(a,b,x) and Kummer’s equation] that for any k which dif-
fers from a,

L(a,b,x)M(k,b,x) = (k—a)M(k,b,x), (25)
while, taking the partial derivative of Kummer’s equation for

M(a,b,x) with respect to the parameter a,

D L abx)M(a.b.x)] = Lia.b.x) > [M(a.b.x)] - M(a.b.x)
oa da

=0. (26)

Thus we can always find a particular solution of a general
inhomogeneous equation of the form

L(a,b,x)F,(x) = G(x) (27)

in terms of Kummer functions provided only that G(x) can be

expressed as a superposition of the set of functions
{M(k,b,x)} with fixed b. To solve Eq. (23), we need only
calculate the expansion coefficients A in the expansion

xM(c,d,x)= > AiM(c— 1 +k,d+2,x). (28)
k
In order to establish Eq. (28) we use (AS-13.4.1) with ¢,d
replacing a,b,
xM(c,d,x)=(c—d)M(c-1,d,x)+(d-2c)M(c,d,x) + cM(c
+1,d,x), (29)
together with repeated application of (AS-13.4.3), leading to
d(d+ )M (k,d,x) = (d = k)(d + 1 — k)M (k,d + 2,%) + 2k(d

—k)M(k+1,d+2,x)+k(k+1)M(k
+2,d+2,x). (30)

The coefficients A; in Eq. (27) are then calculated explicitly
(with d=2):

_(e=2)(c=3)(c-4)
= . ,

Ao

(c=1)(c=2)(c-3)
3 )

A1=—2

Ay=clc—=1)(c-2),

a,=_plexele=)
3
B (c+2)(c+1)c

4 5 (31)

Then the required particular solution of Eq. (23) is given by
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1 J
F(x)=py - EAOM(C - 1,4,x) —AM(c,4,x) +A2(9—M(c
c

1
+ 1,4,x) + AsM(c +2,4,x) + §A4M(c + 3,4,x)},

(32)

and the complete solution, which also satisfies the boundary
condition F(7)=0 where 7=2aR, may be written conve-
niently

M(c+1,4,x)

F(x) = F,(x) —Fp(T)M(C+ R

(33)
This completes the solution for ¢, and using it together
with i, we may now calculate both the polarizabilities and
shielding factors from Egs. (6) and (7). It is readily seen that
the three-dimensional matrix element which appears in Eq.
(6) reduces, after integrations over the angles # and ¢, to a
purely radial integral (over the finite range 0 <r<R)

8 R
%sz exp(—r)r*M(c,2,2ar)F(2ar)dr, (34)
0

while the normalization integral of ¢, determines N? from

R
1= 477sz exp(= r)r*[M(c,2,2ar)*dr. (35)
0

Thus, the numerical evaluation of «; is reduced to quotients
of integrals over Kummer functions for which the numerical
evaluation is straightforward (see below); a similar result
holds for S,.

C. Additional solution

Comparing Egs. (8) and (10), we note that the only
change is to replace one factor on the right-hand side,
rcos(6), by (1/7*)cos(6). Since both are harmonic functions,
we now follow exactly the same procedure as before and
adopt the form

b= N% cos(B)exp(—x/2)G(x). (36)

The resulting inhomogeneous equation for G(x) differs
from that for F(x) in Eq. (23) only in having the operator
L(c=2,d-4,x) in place of L(c+1,d+2,x):

L(c-2,d-4,x)G(x) = uxM(c,d,x). (37)

[Quite generally, in calculating multipole effects—when
P, is to be repaced by (1/r*!)P,,—the corresponding
change to the radial equation is simply to replace [——(l
+1).]

Since the second parameter value on the left-hand side of
Eq. (37) is now smaller than that on the right-hand side, we
require a different strategy for this problem from our earlier
solution of Eq. (22). Here we note a generalization of Eq.
(25):
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k
L(a,b,x)M(k,m,x)=—((b-m)M(k+1,m+1,x)+ (k
m

—a)M(k,m,x). (38)

This uses the definitions of L(a,b,x) and M(k,m,x) as well
as the general differential property (AS-13.4.8):

k
DM (k,m,x) = —M(k+1,m+1,x). (39)
m

In this case we may express xM(c,2,x) both in the form
derived from Eq. (29) (with d=2) and also [using (AS-
13.4.4)]

xM(c,2,x) =M(c,1,x) —M(c-1,1,x), (40)

and we now seek a particular integral of Eq. (37) of the form
2

G(x)=u, BM(c—2+k,1,x), (41)
k=0

since from Eq. (36) we see that
L(c-2,-2,x)M(k,1,x)=(k+2-c)M(k,1,x) = 3kM(k
+1,2,x). (42)
By inspection, we have a particular integral

G,(x) == u{M(c-2,1,x) = 2M(c - 1,1,x) + M(c,1,x)},
(43)

so that the formal solution which satisfies the boundary con-
dition is
3
x’M(c+1,4,x)
Gx)=G,(x)-G,(7) 5 —— . 44
() =G,(x) = G,(7) Mt 140 (44)

Note that it is necessary to use the alternative solution to the
Kummer equation x'"*M(1+a-b,2-b,x) (AS-13.1.13)
since in general M(c—1,-2,x) is not defined.

III. RESULTS FOR THE GROUND STATE

The results of our calculations of dipole polarizabilities
and nuclear shielding factors of the ground 1s state of the
CHA are presented in Tables I and II. Table I includes results
of some earlier precise polarizability calculations (Montgom-
ery [8], Laughlin [9]); all values are in complete agreement,
and we have now listed values which are certainly correct to
at least eight significant decimal digits over the entire range
of confinement radii R. This accuracy is certainly sufficient
for most physical applications.

Table II gives similar results for the shielding factors, cal-
culated with both ¢, and ¢| for the same range of R values.
These are also identical to at least eight significant decimal
digits. We have not discovered any earlier accurate calcula-
tions of shielding factors.

We emphasize that similar calculations may obviously be
carried through for other (excited) s states, and it is to be
expected that similar high accuracy can be expected for such
states; our methods can be extended straightforwardly to un-
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TABLE 1. Polarizabilities.

PHYSICAL REVIEW A 72, 032508 (2005)

TABLE II. Nuclear shielding factors.

R ay (h=0.001) a, (Laughlin)  a,; (Montgomery) R B, (h=0.001) B, (additional)
0 4.5 4.5 4.5 o 1 1
10 4.49681418 4.496814 4.49681 10 0.999957586 0.999957586
8 4.45396472 4.453965 4.45396 8 0.999131573 0.999131573
6 4.05814050 4.058140 4.05814 6 0.987274170 0.987274170
4 2.37798233 2.377982 2.37798 4 0.894473120 0.894473121
2 0.342558111 0.342558 0.34256 2 0.572902117 0.572902116
1 0.0287920226 0.028792 0.02879 1 0.312211770 0.312211769
0.5 0.00203563840 — — 0.5 0.161660577 0.161660577
0.25 0.000134604036 — — 0.25 0.0821146022 0.0821146022
0.125  0.00000864270980 — — 0.125 0.0413659810 0.0413659810

perturbed states of nonzero angular momentum without dif-
ficulty.

This calculation illustrates that the exact solutions found
may easily be used in quadrature calculations to obtain ac-
curate estimates of the polarizabilities and nuclear shielding
factors. In the following appendix, we include some details
of the numerical methods employed in the present work. It
would appear that standard MAPLE packages are extremely
reliable for calculations with Kummer M functions.

APPENDIX: NUMERICAL PROCEDURES

All the numerical procedures used in this paper depend
ultimately on the evaluation of the Kummer M functions
M(a,d,x) with prescribed sets of values of a, d, and x; the
derivatives dM/da and dM/dx are also evaluated from other
M functions. In Ref. [10] (p. 511) there is a comprehensive
section on numerical methods which mainly depend on the
recurrence relations such as

da+x)M(a,d,x) +x(a—d)M(a,d + 1,x) —adM(a + 1,d,x)
=0 (A1)
[(AS-13.4.5)] and transformations such as
M(a,d,x)=e*M(d - a,d,— x) (A2)

[(AS-13.1.27)]. In the present work we have used the com-
puter package MAPLE which evaluates M(a,d,x) accurately
and efficiently.

However, for each state considered and for each specified
confinement radius R, it is first necessary to determine a
parameter « once only from the appropriate zero of

M(1-z/a,2,2aR)=0. (A3)

Any standard root-finding process may be used here; in the
cases where « is imaginary (E,>0), it is more convenient to
solve the real equation

[M(1 -z/a,2,2aR)|*=0 (A4)

and the same techniques may be employed.

The numerical integration is straightforward since inte-
grands contain only standard functions (including the Kum-
mer M functions), and these can all be evaluated to the full
precision used. However, we also need to consider carefully
the calculation of

Jd
—M(a,d,x), (A5)
da

which is required for F, in Eq. (32) above. We have used a
finite-difference approximation with fourth-order error so
that

exp(— g)%M(a,d,x) =~ A(h,x), (A6)

where exp(x/2)A(h,x) is given by

M(a—2h,d,x)—8M(a—h,d,x) +8M(a+ h,d,x) — M(a +2h,d,x)
12h '

This particular form of A(k,x), which includes the exponen-
tial asymptotic factor, has been found useful for the cases
where R is large.

The routines in MAPLE have been used without adaption

(A7)

for all values of R except R=2, and the results are obtained
accurately and speedily using 12-digit precision. In the case
R=2, where a=0 in (A7), the unadapted method leads to
longer computations to achieve an accuracy consistent to 12
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significant figures. In such a situation we may reverse the
order of the calculations so that instead of the computation of
integrals such as

2
f A(h,2ar)(2ar)rdr, (A8)
0
we use
| 4
_E I'a

2
I, = 2f M(a - 2h,d,2ar) Yy 2ar)r* exp(— ar)dr,
0

2
I,=- 16[ M(a - h,d,2ar)y(2ar)r* exp(— ar)dr,
0

PHYSICAL REVIEW A 72, 032508 (2005)

2
Iy = 16f M(a + h,d,2ar)y(2ar)r* exp(— ar)dr,
0

2
Iy=- ZJ M(a +2h,d,2ar)fy(2ar)r* exp(— ar)dr.
0

(A9)

In this way the computational error is essentially the error in
numerical integration and A can be chosen sufficiently small
to obtain consistent results. This procedure enables accurate
results for the case R=2 to be obtained quickly even though
the computation of one integral has been replaced by esti-
mates for four integrals. All results of this work presented in
Tables I and II were calculated with £#=0.01 and 2=0.001,
with identical values for all significant digits.
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