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We report the results of our calculations of the magnetic dipole hyperfine constants for the ground and
low-lying excited states of Pb+ using the relativistic coupled-cluster theory. The spectacular role of correlation
effects particularly for the 6p3/2 state is highlighted. The relative importance of core polarization and pair
correlation effects have been studied and the result obtained for the ground state is different from that of Ba+,
which has a single s valence electron.
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Coupled-cluster theory has been used to study a wide
range of many-body systems and has been referred to as the
universal many-body theory �1–3�. It has recently been ap-
plied to calculate ground- and excited-state properties of nu-
clei �4�. Although the nonrelativistic version of this theory
has been applied to a variety of light atoms and molecules
�5�, its extension to the relativistic regime is rather recent
�6,7�. There have been relatively few theoretical studies of
properties of heavy atomic systems based on the relativistic
coupled-cluster �RCC� theory. Pb+�Z=82� is the heaviest
atomic ion that has been trapped and cooled so far �8,9�. The
magnetic dipole hyperfine constants have been measured for
the 6p�2P1/2� and 6p�2P3/2� states of this ion �10�, and these
data can be compared with calculations of the corresponding
quantities using RCC theory. Such comparisons would in-
deed constitute an important test of this theory. The nonlinear
RCC in the singles and doubles approximation with partial
triples added in some cases has yielded results to an accuracy
of about 1% for atoms and ions with a single s valence
electron �13,14�. However, the correlation effects in Pb+ are
expected to be much stronger as it has a 6p valence electron
and two 6s electrons in its outermost core orbital.

The hyperfine structure constant �A� for the atomic state
�JM� can be expressed in terms of a reduced expectation
value

A = �N��I

I
� 	J��T�1���J�


J�J + 1��2J + 1�
, �1�

with �N being the nuclear magnetic moment and ��I / I� the
Lande’s nuclear g-factor �gI�. T�1� can be written as �15�

T�1� = �
q

tq
�1� = �

qj

− ie
8�/3rj
−2� j · Y10

�q�, �2�

where rj is the radial position of the jth electron, � j is the
Dirac matrix, and Y10

�q� is a vector spherical harmonic.
We have used the RCC theory to obtain the atomic wave

functions. In the open-shell coupled-cluster theory �17,18�
the many-body wave function for a system with single va-
lence electron can be written as

��v� = eT�1 + Svav
†��0� , �3�

where av
† is the creation operator corresponding to a valence

orbital v and ��0� is a closed-shell determinantal state built
from occupied Dirac-Fock �DF� orbitals. T and Sv are the
closed- and open-shell particle-hole excitation operators, re-
spectively. The curly bracket represents normal ordered form
of the operators. In this work both T and Sv operators are
considered at the level of single and double excitations and
effects from leading-order triple excitations are incorporated
partially, as has been considered in our earlier work �13�.

Explicitly, the T operator is defined as

T = T1 + T2

= �
a,p

ap
†aata

p +
1

4 �
ab,pq

ap
†aq

†abaatab
pq, �4�

where ta
p and tab

pq are the amplitudes of the single and double
excitations, respectively, from the closed-shell core. Simi-
larly, the open-shell excitation operator �Sv� is defined as,

Sv = S1v + S2v

= �
p�v

ap
†avsv

p +
1

2 �
a,pq

ap
†aq

†aaavsva
pq, �5�

with sv
p and sva

pq being the single and double excitation ampli-
tudes involving the valence electron.*Electronic address: bijaya@iiap.res.in
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In coupled-cluster theory, the expectation value of any
operator can be expressed as

	O� =
	�v�O��v�
	�v��v�

=
	�v��1 + Sv

†eT†
OeT�1 + Sv��v�

	�v��1 + Sv
†eT†

eT�1 + Sv��v�
. �6�

The above expression was applied to compute the hyperfine
structure constant A as given in Eq. �1�. The details of the
procedure for calculating this expression have been given by
�11,12� and applied in �13,14,19�.

The orbitals used in the present work were constructed as
linear combinations of Gaussian type orbitals of the form
�20�

Fi,k�r� = rke−�ir
2
, �7�

where k=0,1 , . . . for s , p , . . . type orbital symmetries, respec-
tively. For the exponents, the even tempering condition

�i = �0�i−1 �8�

was used. The occupied orbitals are the DF single-particle
states for closed-shell Pb++. The occupied and virtual orbitals
were constructed from the closed-shell potential of Pb++ us-
ing the same Fock operator. All orbitals were generated on a
grid using a two-parameter Fermi nuclear distribution ap-
proximation given by

� =
�0

1 + e�r−c�/a , �9�

where the parameter c is the half-charge radius, and a is

related to the skin thickness, which is defined as the interval
of the nuclear thickness in which the nuclear charge density
falls from near 1 to near zero. Table I displays total number
of basis functions used for the DF calculation, total number
of occupied and virtual orbitals considered for the coupled-
cluster calculations and the energy criteria in atomic unit for
selecting virtual orbitals. We have chosen �0 as 0.008 25 and
� as 2.73 for all the symmetries. The DF energies for occu-
pied orbitals obtained using these parameters are in good
agreement with the corresponding values of the numerical
DF orbitals. They have also been used in calculating excita-
tion energies and the lifetime of the first excited state for Pb+

in our earlier work �16�.
In Table II we present the results for the hyperfine con-

stants using the DF approximation with the Lande’s nuclear
g-factor, gI=1.185 166 and compare them with the experi-
mental values for the 6p1/2 and 6p3/2 states—the only two
states on which measurements have been made. The poor
agreement of the results indicate the importance of correla-
tion effects for these states �which were absent in the DF
approximation�.

It is interesting to note that the DF values for these two
states deviate from their respective experimental values in
opposite directions, so that the sign of the correlation contri-
butions are opposite for the two cases. This is further sup-
ported by the results obtained from the leading diagrams
based on second-order relativistic many-body perturbation
theory �RMBPT�2�� that are given in Table II. Here the
dominant contributions to RMBPT�2� are given explicitly.
While electron correlation at this level is substantial for all
the states, it is dramatic in the case of 6p3/2 state because of
the unusually large and negative core polarization. We have
also given the results of our effective valence shell Hamil-
tonian method �Hv�, which is a variant of multireference
many-body perturbation theory �21�, for 6p1/2 and 6p3/2
states. In the same table we give the significant contributions
to the core polarization using RMBPT�2� that arises from the
interaction of the outermost core 6s and the valence 6p3/2
electrons �fourth and fifth columns, respectively�. The sum of
these individual contributions is −971.5 MHz, and after tak-
ing into account the polarization of all the other core elec-
trons, a net contribution of −814.6 MHz is obtained. The
corresponding Hv contribution is −791.9 MHz. Clearly, the
Hv method is inadequate for obtaining an accurate value of
the magnetic dipole hyperfine constant of the 6p3/2 state. The
very large size of this second-order correction suggests that
an all-order method like coupled-cluster theory is necessary
for a correct quantitative description of the correlation, ef-
fects in Pb+. This is indeed reflected in the results given in
Table III. Again, the “bare” operator O represents the DF

TABLE I. Description of total number of basis functions, active holes, and active particles involved in this calculation.

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2

38 35 35 30 30 25 25 20 20

Active holes 6 4 4 3 3 1 1 0 0

Active particles 7 9 9 8 9 7 7 7 7

Upper energy limit �a.u.� 2800 2850 2850 510 510 22.6 22.6 22.6 22.6

FIG. 1. Goldstone diagrams representing core polarization in
MBPT.
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approximation; i.e., excluding any correlation effects. Sev-
eral important correlation contributions for our RCC calcu-

lations are also presented in Table III. Ō=eT†
OeT denotes the

“dressed” operator containing the contributions of the
closed-shell cluster amplitudes in Eq. �6�. Although core po-
larization �OS2v� and pair correlation �OS1v� are the domi-

nant correlation effects, core correlation effects �Ō-O� are by
no means negligible; they amount to about 9% for the 7s
state. Summing up all the contributions given in Table III
leads to significant improvements in our calculated values of
the hyperfine constants of the 6p1/2 and 6p3/2 states. The
sub-1% �0.7%� agreement between the former and experi-
ment is indeed spectacular. A similar agreement cannot be
expected for the latter state which is characterised by ex-
tremely peculiar correlation effects. Even so, the hyperfine
constant for this state differs from experiment �3.6% error
bar� by a little less than 7%. This is certainly remarkable
considering that the corresponding discrepancy at the levels

of RMBPT�2� and the Hv method are 48% and 16%, respec-
tively. It is interesting to note from Table IV �third column�
that the core-polarization contributions in RCC theory follow
the same trend as in RMBPT�2� and Hv. However, the con-
tribution from this effect in RCC �−591 MHz� is signifi-
cantly different than the corresponding contributions in the
other two methods �−814.4 MHz and −791.9 MHz�.

The plot in Fig. 2 highlights the relative importance of the
core polarization and pair correlation for the different states.
It is instructive to point out that, unlike the hyperfine con-
stant in the ground state of Ba+ �14�, core-polarization effects
are larger than pair correlation for the ground and first ex-
cited state; i.e., 6p1/2 and 6p3/2 states of Pb+. This is the result
of the much stronger valence-core interactions in Pb+ com-
pared to Ba+.

In summary, the power of RCC theory has been exploited
to obtain a quantitative understanding of correlation effects
in hyperfine interactions in a heavy atomic system with
strongly interacting configurations. It has been demonstrated
that the results of the DF, RMBPT�2�, and Hv approxima-
tions in the case of Pb+ differ substantially from the mea-
sured values of the hyperfine constants. However, the inclu-
sion of single, double, and a subset of triple particle-hole
excitations to all orders in the framework of RCC theory
leads to a dramatic improvement in the results. The relevance
of the present work extends beyond hyperfine interactions in
Pb+. Our results highlight the fact that a judicious use of

TABLE II. Dirac-Fock values, second-order relativistic many-
body polarization theory �RMBPT�2�� and Hv results for Pb+ hy-
perfine structure constants in MHz �second row� and the dominating
contributions as shown in Fig. 1.

Lowest-order
MBPT terms

6p1/2

state
7p1/2

state
6p3/2

state 7s1/2

O�DF� 11 513.5 1983.1 918.3 7822.9

RMBPT�2� 15 722.8 2578.4 302.9 12 663.9

Core pol. �RMBPT�2�� 1506.2 82.1 −814.6 1624.21

Pair corr. �RMBPT�2�� 2297.4 359.6 203.6 3012.7

Hv 12 972 — 484 —

Core pol. �Hv� 1522.6 — −791.9 —

Experiment 13 000 583�21�

TABLE III. Contributions of different coupled-cluster terms to
the Pb+ hyperfine structure constant. c.c. stands for the complex
conjugate part of the corresponding terms.

Terms
6p1/2

state
6p3/2

state
7s1/2

state
7p1/2

state

O− Ō 665.3 −43.7 983.3 85.4

ŌS1v+c.c. 952.2 78.4 2122.6 326.6

ŌS2v+c.c. 1188.2 −591.0 1916.8 35.6

S1v
† ŌS1v

21.0 1.6 164.6 14.1

S1v
† ŌS2v+c.c. 22.2 0.6 180.2 19.2

S2v
† ŌS2v+c.c. 149.6 194.61 298.8 18.7

Important effective two-body terms of Ō

S2v
† OT1+c.c. −20.2 2.0 14.6 −0.76

S2v
† OT2+c.c. −160.2 −12.6 −135.4 −21.64

Norm. −88.5 −6.7 −181.8 −22.98

Total 12 903.7 623.2 11 158.6 2263.5

TABLE IV. Contributions of the 6s1/2 core electron �in MHz� to
the core-polarization effect for 6p3/2 state using the RMBPT�2� ap-
proximation and RCC theory �RCCT�.

Virtual orbital RMBPT�2� RCCT

7s1/2 −190.88 −128.28

8s1/2 −51.16 −35.99

9s1/2 −169.96 −123.44

10s1/2 −468.88 −369.62

11s1/2 −90.62 −73.46

FIG. 2. The ratios of pair-correlation and core-polarization ef-
fects with respect to the DF values.
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RCC theory can yield accurate results for properties that are
sensitive to the nuclear region. Indeed, this has important
implications for Tl �7�, which like Pb+ is a heavy atomic
system with strongly interacting configurations and is one of
the leading candidates for the study of parity nonconserva-
tion due to neutral weak currents �22,23�. It also has an im-
portant bearing on the electric dipole moment of Tl, which
currently provides the best limit for the electron electric di-
pole moment �24� and would therefore be of interest to par-
ticle physicists. This work and our previous work �16� sug-
gest that an accurate calculation of the electric dipole parity

non-conserving amplitude for the 6p1/2→6p3/2 transition in
Pb+ is possible. If an accurate parity nonconservation experi-
ment corresponding to this transition �wavelength=7100 Å
�10�� can be performed, then this ion could be a good candi-
date for testing the Standard Model of particle physics.

We are grateful to Prof. Günther Werth for valuable dis-
cussions and suggestion for this calculation. It was possible
to establish contact with him through the DST-DAAD ex-
change program. The calculation is carried out using the
Tera-flopp Supercomputer in C-DAC, Bangalore.
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